
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

ORANalyst: Systematic Testing Framework
for Open RAN Implementations

Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan,
and Syed Rafiul Hussain, The Pennsylvania State University

https://www.usenix.org/conference/usenixsecurity24/presentation/yang-tianchang

ORANalyst: Systematic Testing Framework for Open RAN Implementations

Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, Syed Rafiul Hussain
The Pennsylvania State University

{tzy5088, szr5848, aranjbar, gtan, hussain1}@psu.edu

Abstract
We develop ORANalyst, the first systematic testing frame-
work tailored for analyzing the robustness and operational
integrity of Open RAN (O-RAN) implementations. O-RAN
systems are composed of numerous microservice-based com-
ponents. ORANalyst initially gains insights into these com-
plex component dependencies by combining efficient static
analysis with dynamic tracing. Applying these insights,
ORANalyst crafts test inputs that effectively navigate these
dependencies and thoroughly test each target component. We
evaluate ORANalyst on two O-RAN implementations, O-
RAN-SC and SD-RAN, and identify 19 previously undiscov-
ered vulnerabilities. If exploited, these vulnerabilities could
lead to various denial-of-service attacks, resulting from com-
ponent crashes and disruptions in communication channels.

1 Introduction

The standard body for mobile telecommunications [1] has
designed a new disaggregated architecture for 5G radio ac-
cess network (RAN) to enable software-centric deployment
on general-purpose hardware. This new architecture splits the
RAN’s network stack into multiple nodes, each capable of op-
erating independently on geographically separated machines
to form the RAN network. As 5G RAN evolves towards more
diverse and adaptable deployments, the O-RAN Alliance [21],
a worldwide community of mobile operators, vendors, and
research institutions, proposes Open RAN (O-RAN). It intro-
duces RAN intelligence controllers to reshape RANs into
smarter, open, virtualized, and interoperable multi-supplier
solutions. These advanced controllers interact with different
RAN nodes through standardized interfaces, enabling them
to manage and optimize RANs in near real-time based on
network metrics. O-RAN’s software-centric intelligence con-
troller also supports third-party applications to enhance the
network’s adaptive capabilities, thereby improving RAN per-
formance and user experience. This new and complex RAN
design, with its focus on flexibility, openness, and a software-
centric architecture, unfortunately also greatly expands the

attack surface of O-RAN. For instance, with nodes like radio
units of base stations sourced from multiple vendors inter-
facing collectively with O-RAN, each interaction and depen-
dency introduces a potential security risk. This heterogeneity
and complex RAN architecture demand O-RAN’s resilience
against unexpected inputs, which could arise from malformed
or potentially malicious data sent from its connected nodes.

Prior research has demonstrated that mobile RANs are sus-
ceptible to misconfigurations [45], implementation and depen-
dency vulnerabilities [42], and can also be compromised by
malicious user devices [5]. Consequently, adversaries exploit-
ing a vulnerable RAN node may deliver unpredictable inputs
to O-RAN components through its public-facing interfaces,
leading to crashes that violate O-RAN’s robustness and oper-
ational integrity. Such security lapses may lead to large-scale
network collapses, substantial financial losses, and could even
threaten national security. The active adoption of O-RAN tech-
nologies further amplifies these risks. More than 31 major op-
erators from over 45 countries, including Deutsche Telekom
and AT&T, are actively deploying or trailing commercial O-
RAN [22, 53], with reports of these systems incorporating or
are derived from open-source implementations [15, 24]. The
urgency of these concerns underscores an in-depth security
analysis of O-RAN implementations to certify the security
and reliability of this next-generation network system. In this
paper, we, therefore, aim to address the following research
question: can we develop an automated reasoning framework
to analyze the robustness and operational integrity of O-RAN
implementations, providing high-security assurances prior to
their commercial deployments?
Challenges. O-RAN’s unique threat model and its service-
based architecture (SBA) pose distinct challenges that existing
software testing techniques [2, 4] struglle to address. Com-
ponents in O-RAN are divided into separate microservice
programs, such as the database, the subscription manager, and
other applications. These components are deployed across dif-
ferent logical containers and communicate via network traffic.
Functioning as independent, long-running programs, these
microservices are continuously ready to process incoming re-

USENIX Association 33rd USENIX Security Symposium 1921

quests. They engage in complex network communications to
fulfill O-RAN’s functionalities. Each input originating from
base stations or cellular devices traverses a complex path in
the O-RAN, navigating through multiple components, under-
going numerous layers of sanitization checks and parsing
processes, and engaging in a sequence of network request
interactions before reaching components laying in deeper
layers of O-RAN. The typical software testing approach of
analyzing only a single component in isolation, without con-
sidering its dependencies on other components [18,50], would
lead to a high number of false positive results. These false-
positive vulnerabilities are not exploitable in a complete, i.e.,
end-to-end deployment of O-RAN, due to the sanity checks
and preprocessings conducted by upstream components. Fur-
thermore, unlike the well-defined protocols and messaging
formats of O-RAN’s public interfaces for communication
with the RAN, the internal messaging systems between O-
RAN’s internal components lack standardization in technical
specifications [68] and vary significantly across different im-
plementations. Consequently, isolated testing further requires
manually crafting messages that conform to the protocol and
format each component expects to yield meaningful results.
Approach. To address these unique challenges, we intro-
duce ORANalyst, a dynamic feedback-guided end-to-end
testing methodology that intelligently identifies and navi-
gates dependencies between O-RAN components to find
threat-model-compliant problematic inputs. In our end-to-end
testing method, testing inputs are sent to a component only
through O-RAN’s public-facing interfaces, e.g., the interface
with RAN that is well-specified. By focusing on generating
and testing the standardized messages that are interchanged
between the RAN and the O-RAN, ORANalyst bypasses the
need for detailed knowledge of each component’s internal
messaging implementations. Yet, developing such an end-to-
end testing framework introduces its own set of challenges,
most notably when testing and sending inputs to a deeply
rooted component within O-RAN. Inputs targeting these com-
ponents must navigate through several layers of decoding and
validation conducted by upstream components. Test inputs
may get discarded by these checks and never reach their in-
tended targets unless the knowledge of the sequence and order
of those upstream components (i.e., dependency among com-
ponents) is strategically incorporated while crafting inputs.

To craft inputs that can effectively explore each component,
ORANalyst first computes the dependencies among compo-
nents involved in different O-RAN operations. It dynamically
records the network and program execution traces of inputs
during regular O-RAN operations, and combines both traces
to identify each input’s entry and exit points in each compo-
nent. By leveraging this component-level reachability anal-
ysis, ORANalyst designs a dependency-aware incremental
testing strategy. With this approach, ORANalyst starts test-
ing with the components directly connected to the RAN (i.e.,
the root in the component-level dependency tree), and then

progressively moves to those located deeper within the O-
RAN’s communication chain (i.e., subsequent successors).
This gradual approach helps us resolve the dependencies and
interactions of components while thoroughly analyzing each
layer of the system. To ensure that the inputs generated by
ORANalyst can effectively reach the component under test
(CUT) and still provide enough variations to test the compo-
nent, we design an inter-procedural static analysis to extract
path constraints along each component’s entry point to the exit
point, while mitigating the well-known state explosion prob-
lem. Path constraints collected from components upstream
of the CUT are combined to guide the generated inputs past
those previous components to reach the CUT. At the same
time, path constraints of the CUT enable ORANalyst to create
inputs that probe into CUT’s deeper logic.
Results. We have evaluated ORANalyst on the only two
widely-used, commercially-adopted O-RAN open-source im-
plementations. ORANalyst identified 19 issues in both the
platforming components and the application programs run-
ning on both implementations. These issues can lead to com-
ponent crashes and messaging channel disruptions.
Responsible disclosure and open-sourcing. We have re-
ported all 19 issues to developers and received confirmation
on 9 issues. 15 CVEs are assigned for all 19 reported issues.
ORANalyst is publicly available on GitHub [29].
Contributions. In summary, our contributions include:
• We develop the first systematic analysis technique tailored

for O-RAN systems dubbed ORANalyst that can compute
the complex dependencies among components in O-RAN’s
service-based architecture.

• We design an effective test input generation mechanism
that combines dynamic analysis with efficient static path
constraint extraction, enabling the generated inputs to ef-
fectively probe and test deep O-RAN components.

• We evaluate ORANalyst on two O-RAN implementations
and uncovered 19 critical issues that lead to component
crashes and messaging channel disruptions.

2 Background

In Release 15, the mobile telecommunication standard body,
the Third Generation Partnership Project (3GPP) [1], defined a
flexible, disaggregated architecture for the 5G-RAN, splitting
the base station into the Central Unit (CU), the Distributed
Unit (DU), and the Radio Unit (RU), each designed to host
different layers/functions of the 5G radio stack. To accom-
modate 5G RAN’s transition towards diverse and software-
centric deployment, the O-RAN Alliance [21] designs O-
RAN (depicted in Figure 1) to create a multi-supplier solution
where equipment from various vendors can be easily plugged
and played to form the RAN. It incorporates a service-based
architecture (SBA), where different functions and services
are implemented as separate microservice programs, com-
municating over network traffic. Each microservice can be

1922 33rd USENIX Security Symposium USENIX Association

independently developed, deployed, and scaled on general-
purpose hardware. In addition to the disaggregation of the
base station, O-RAN introduces two RAN Intelligent Con-
trollers (RICs), the Near-Real-Time RIC (Near-RT RIC) and
the Non-Real-Time RIC (Non-RT RIC), for automated opti-
mization and control of network operations and resources in
response to real-time network conditions.

A1 Interface

E2 Interface

E2
Management

Subscription
Management

Security

SDL

Internal Messaging System

E2 Termination (E2T)

Conflict
Mitigation

xApp 1 xApp 2 xApp N...
Near-RT RIC

Service Management and Orchestration System (SMO)

Non-RT RIC

O-DU
RAN
O-CU O-RU

Figure 1: O-RAN RIC Architecture

❑ Near-RT RIC and xApps. Near-RT RIC’s role is to dy-
namically manage and optimize the RAN by responding to
network conditions in near real-time (10ms to 1s scale) [68].
Near-RT RIC’s functionality is driven by modular applica-
tions known as xApps. These xApps can be sourced from
third-party developers and may also be open-sourced, each
designed to perform specific tasks, including load balancing,
interference management, and Quality of Service (QoS) con-
trol. To support xApps’ functionalities, Near-RT RIC provides
various platforming components, such as a Shared Data Layer
(SDL), Security, Conflict Mitigation, E2 Management, etc.
❑ Non-RT RIC. The Non-RT RIC operates on a timescale
above 1 second and is part of the Service Management and
Orchestration (SMO) framework. Its functions are typically
strategic, e.g., policy control, network planning, and broader
long-term RAN management tasks.
❑ E2 open interface. An O-RAN system can simultane-
ously govern multiple RAN nodes (i.e., CUs and DUs) from
different operators. Each RAN node interfaces with the Near-
RT RIC through the E2 interface. E2 Termination (E2T) is
the end point of this interface in the Near-RT RIC, and E2
Management handles the setup, maintenance, and teardown of
E2 sessions. The E2 interface runs over SCTP protocol [78]
and is logically divided into two protocols: E2 Application
Protocol (E2AP) [66] and E2 Service Model (E2SM) [67].
Both protocols are defined using ASN.1 formats [3] in the
technical specifications. E2AP provides signaling procedures
for the setup and modification of the E2 connection, error
indication, and the reporting of general RAN status. E2SM
supports service-level interactions between xApps and the
RAN, e.g., reporting of various RAN-/cell-level metrics, con-
trol of RAN operations, etc.
❑ Workflow between O-RAN RIC and RAN. In a typical

O-RAN RIC communication, after the SCTP connection be-
tween the Near-RT RIC and a RAN node is established, the
RAN node first transmits an E2AP E2SetupRequest listing
the service models it supports and the performance metrics it
can report. The near-RT RIC processes this information and
replies with an E2SetupResponse message. If the E2 setup
is successful, xApps can send subscription messages to
the connected RAN node specifying the E2SM used and the
metrics they want to subscribe to. During this subscription
negotiation, an xApp can specify trigger events or the period-
icity with which the RAN node should send report metrics.
Following a successful subscription, xApps continuously re-
ceive and process indication messages sent by the RAN,
which contain the RAN’s performance metrics, and optionally
sending control messages to optimize RAN operations.
❑ Open-source implementations. Two commercially-
adopted, widely-used O-RAN implementations are available
as open-source projects: the O-RAN Software Community
(O-RAN-SC) [23], which is developed through a collabora-
tion between the O-RAN Alliance [21] and Linux Founda-
tion [20]; and SD-RAN [32], developed by Open Networking
Foundation (ONF) [27]. Both open-source projects are being
utilized for commercial deployments. For example, O-RAN-
SC’s Near-RT RIC is being used by China Mobile in its pri-
vate 5G network solution [15], whereas Deutsche Telekom is
conducting a commercial field trial in Berlin using SD-RAN’s
RIC [24]. Both implementations are cloud-native where each
component is shipped as a Docker image [6] and deployed
in Kubernetes [17]. However, the two implementations dif-
fer in their approaches to handling logical components. For
instance, the SD-RAN implementation consolidates the log-
ical components of E2T, E2 management, and subscription
management into a unified E2T microservice. In contrast, the
O-RAN-SC implementation treats each of these components
as distinct, individual microservices running in separate con-
tainers. Components in both implementations are developed
using a variety of programming languages, with C/C++ and
Go being the most predominant.

3 Threat Model & Motivation

In this section, we discuss our threat model and summarize the
limitations of existing approaches when testing O-RAN RIC
implementations, which motivates the design of ORANalyst.

3.1 Threat Model
O-RAN’s interoperability [71], while offering significant ben-
efits to network operators, also introduces substantial security
challenges for the RIC. The RIC must manage interactions
with RAN components from different vendors and network
operators, each with distinct system implementations and
differing security protocols. These variations not only ex-
poses each individual RAN to potential security issues but

USENIX Association 33rd USENIX Security Symposium 1923

Category Fuzzer RT NG GA NR Notes on Requirements, Effectiveness and Efficiency

General
Fuzzers AFL [50]/LibFuzzer [18] ✗ ✓ ✗ ✓

Requires complete control over the target program to fork, execute, and terminate for each testing run. Does not
support long-running servers and can not explore the interactions between components.

Protocol
Fuzzers AFLNET [70] ✗ ✓ ✗ ✗* Similar to general fuzzers, requires complete control over the target server to fork, execute, and terminate for each

testing run. *The stateful mode requires a response for each request.

Protocol
Fuzzers BooFuzz [4]/Peach [11] ✓ ✗ ✓ ✓

Manual specification of message grammar is required. As generation fuzzers, no feedback is accepted, hence input
generation is not guided by dynamic code exploration. Due to no feedback, a timeout mechanism is employed,
which delays sending the next input, resulting in inefficiencies.

Protocol
Fuzzers Frizzer [9] ✓ ✓ ✗ ✓

Dynamically instrument the code using Frida which is extremely slow. More importantly, Frida instrumentation is
unstable and can lead to crashes of the target program, generating numerous false positives.

API Fuzzers Restler [39]/EvoMaster [7] ✓ ✓ ✗* ✗
Requires a response with each request as feedback. *Can automatically generate Rest API-compliant messages,
but does not work with the ASN.1 used in O-RAN.

Microservice
Fuzzer Evomaster RPC [83] ✓ ✗ ✓ ✗ Requires manually developing a driver to send input and collect coverage for each testing component.

O-RAN Tester ORANalyst ✓ ✓ ✓ ✓
Can generate highly structured inputs automatically from the ASN.1 message definitions, while utilizing insights
on the interactions of O-RAN components to test each target component efficiently.

Table 1: Comparison of Different Fuzzing Techniques. RT: support (R)emote (T)arget, NG: (N)o manual definition of (G)rammar is
required, GA: (G)rammar-(A)ware input generation/mutation, NR: (N)o (R)esponse message required for each test case

also cumulatively heightens the overall network’s suscepti-
bility to breaches. Key security concerns include misconfig-
urations [45], vulnerabilities in implementation [45], depen-
dency weaknesses [81], and potential compromises by mali-
cious user devices, also known as User Equipments (UEs) [5].
Consequently, the RIC must be prepared for a variety of un-
expected, malformed, or malicious inputs. Our threat model
considers one misbehaving RAN transmitting unexpected or
malicious inputs to the RIC. We do not consider vulnerabil-
ities that require multiple misbehaving RANs collaborating
to exploit in this work. We assume that RIC components
are benign (but vulnerable) and do not attack each other as
they are owned and deployed by the same party. This threat
model aligns with the threat IDs T-O-RAN-05, T-E2-01, and
T-E2-03 considered in O-RAN’s official risk assessment [63].
O-RAN’s study on security for Near-RT RIC and xApps [64]
also identifies this threat as a critical issue and concludes that
the Near-RT RIC should not assume that the data it received
is valid or trusted. We align our work with the security assess-
ments report by O-RAN. Under this threat model, our primary
objective is to ensure the robustness and operational integrity
of RIC against unpredictable and malicious inputs from RAN.
This involves ensuring the RIC handles any unexpected data
without crashing or hanging.

3.2 Limitations of Existing Testing Methods
Directly applying existing testing techniques for analyzing
the O-RAN RIC encounters significant limitations, as sum-
marized in Table 1. (L1): General program fuzzers, such as
AFL [50], LibFuzzer [18], and Driller [77], are optimized
for testing single monolithic command-line applications and
struggle to navigate the intricate component-to-component
interactions and diverse communication protocols inherent
to O-RAN’s distributed and service-based architecture. (L2):
Protocol fuzzers like AFLNET [70] and BooFuzz [4] support
sending testing inputs over network traffic, allowing them to
target remote systems. However, they are generally tailored to-
wards testing individual servers rather than an interconnected
microservices environment. (L3): These fuzzers [4, 11] also

often require the labor-intensive and error-prone task of manu-
ally constructing message grammars. (L4): Existing microser-
vice fuzzers [83], though designed to address some aspects
of service-based architectures, require the manual creation
of driver code to feed inputs into test components and gather
coverage feedback. (L5): API fuzzers like RESTler [39] and
EvoMaster [7] primarily depend on analyzing response mes-
sages to guide their mutation strategies, whereas in O-RAN
RIC, requests from the RAN often result in no observable
responses. Besides, existing API fuzzers typically only sup-
port Rest APIs [28], instead of the ASN.1 messages on SCTP
connections used by O-RAN’s public interfaces.

3.3 Motivation for End-to-End Testing
ORANalyst employs an end-to-end design where all test
inputs are sent through O-RAN’s public-facing E2 inter-
face. An alternative approach would be to adapt existing
fuzzers [18, 50, 70, 77] to test individual components of the
RIC in isolation. With this approach, the fuzzer abstracts away
the interactions between the component under test (CUT) and
other RIC components by using stubs, i.e., simplified com-
ponents that perform no actual functionality. Upon finding a
crash-inducing input, the fuzzer also needs to validate that the
input can cause the crash in an end-to-end setup. However,
O-RAN operations often involve complex inter-component
communications, such as querying a database for cell config-
uration data of a RAN. Testing in isolation not only demands
extensive effort to manually stub these interactions to pro-
duce realistic data [59] but also increases the risk of analysis
errors from over-simplified stubbing. Furthermore, this iso-
lated testing approach tends to generate many false positives,
as many crash-inducing inputs detected under this approach
would likely be filtered out by intermediate components in an
end-to-end deployment, thus never reaching the CUT.

To illustrate this scenario, consider the high-level E2T pro-
cessing logic presented in Listing 1. When it receives a new
message from the RAN, it first decodes the message (line
2), validates the message content (line 6), and then processes
the message or forwards it to other components based on the

1924 33rd USENIX Security Symposium USENIX Association

1 func processE2AP(e2apByte []byte) error {
2 e2ap , err := decode(e2apByte)
3 if err != nil {
4 return err
5 }
6 if err = validateE2AP(e2ap); err != nil {
7 return err
8 }
9 switch e2ap.type{

10 case indication:
11 processIndication(e2ap)
12 // ... other cases
13 }
14 }
15
16 func processIndication(e2ap E2AP) {
17 indMsg := e2ap.IndicationMsg
18 if err := validateIndication(indMsg); err != nil {
19 return err
20 }
21 if stream , ok := getStream(indMsg); ok {
22 sendIndMsg(indMsg)
23 } else {
24 return errors.NewNotFound("stream not found")
25 }
26 }

Listing (1) Illustrative E2T Implementation

1 func GetUeID(ueID *e2sm_v2_ies.Ueid) (int64 , error) {
2 switch ue := ueID.Ueid.(type) {
3 case *e2sm_v2_ies.Ueid_GNbUeid:
4 return ue.GNbUeid.GetAmfUeNgapId().GetValue(), nil
5 // ... other UE ID type cases
6 }

Listing (2) False Positive example, taken from SD-RAN’s rimedo-ts
xApp

1 struct encode_result encode_action_definition(const
char *action_bytes){

2 // ... setup variables to be used for decoding
3 // decode action_bytes to e2smKpmRanFunctDescrip
4 asn_dec_rval_t rval = asn_decode((void**)&

e2smKpmRanFunctDescrip , action_bytes);
5 char **actionArr;
6 if(rval.code == RC_OK) {
7 // ... extract the action items from

e2smKpmRanFunctDescrip to actionArr
8 }
9 // ... encode variables setup , setup buffer buf for

encoding result
10 int encodeRes = encode_action_arr(&buf[0], &buf_size

, actionArr);
11 int encoded[encodeRes]; // * vulnerable line *
12 // ... further processing using encoded
13 }
14
15 size_t encode_action_arr(unsigned char *buf, size_t *

buf_size , char **actionArr) {
16 // allocate memory for actionDef , the structure to

be encoded
17 for (int index = 0; index < actionDefCount; i++) {
18 // ... constructing the action definition list to

actionDef for each index in actionArr
19 }
20 // ... constructing other fields of actionDef
21 asn_enc_rval_t encode_result = asn_encode_to_buffer(

actionDef , buf, *buf_size);
22 if (encode_result.encoded == -1) {
23 return -1; // returns -1 when encounters an

encoding error
24 }
25 // ... normal return of positive encoded size
26 }

Listing (3) Example of an unchecked return value issue, taken from
O-RAN-SC’s kpimon-go xApp, simplified for presentation

message type (lines 9 - 13). Therefore, all inputs must pass
the initial checks and validations enforced by the E2T before
reaching any other components. Now consider the simplified
code in Listing 3, which demonstrates a crashing vulnera-
bility found by ORANalyst from O-RAN-SC’s kpimon-go
xApp [16]. The vulnerability’s root cause lies in lines 10 and
11, where the return value encodeRes can be negative in
the event of an encoding error. This value is then used as the
length for initializing an array without checking for negativity,
leading to unexpected behavior when using the array and a
program crash. At first glance, the issue might seem straight-
forward and detectable by certain existing static or dynamic
analysis techniques [40, 41, 43, 46, 72, 74]. However, such
detection results in numerous false positives. To illustrate,
consider Listing 2 showing an SD-RAN’s xApp [25]. Here,
a pointer’s field access in line 2 is not validated for nullity.
A tool analyzing only the xApp would likely flag this as a
crash-inducing bug. Yet, in an end-to-end setup where the
input is sent from the RAN, we found that the E2T compo-
nent enforces a non-null check on this field when validating
the input (in a function represented by line 18 in Listing 1),
leading to early rejection of the message. Consequently, such
inputs can never reach the vulnerable xApp to trigger a crash.

Furthermore, testing any RIC component in isolation by di-
rectly interfacing the fuzzer with the CUT poses several addi-
tional challenges due to unspecified message formats for inter-
nal components and difficulties in triaging the results. O-RAN
specifications do not define messaging protocols and formats
used for communications between two internal RIC compo-

nents. As a result, different RIC implementations employ dif-
ferent internal messaging infrastructures using custom APIs
or formats, even for components performing similar func-
tionalities. For instance, O-RAN-SC utilizes a customized
routing system to relay indication messages from the E2T
to the targeted xApps. However, SD-RAN’s implementation
uses gRPC’s streams to complete the same task. Identifying
these diverse messaging formats and crafting appropriate mes-
sages for each component demands manual and error-prone
code scanning. On the other hand, verifying that the identified
vulnerabilities in each component are exploitable from RAN
inputs is also challenging. It requires complex and manual
mapping of the tested internal message to the messages sent
from RAN. In contrast, in an end-to-end testing setup, the
protocols and messages accepted by the RIC from the RAN
are well-defined in the E2AP and E2SM protocols by O-RAN
specifications. In addition, any issues found by test inputs sent
over the E2 interface are directly exploitable by a misbehav-
ing RAN node. These reasons justify an end-to-end testing
approach that aligns with our proposed threat model.

3.4 Scope of Testing
Our threat model specifically targets the E2 interface, the Near-
RT RIC that is directly connected with E2, and the xApps
that operate within the Near-RT RIC, due to their critical role
in responding directly to RAN conditions. For the sake of
exposition, we refer to the O-RAN RIC broadly as O-RAN
occasionally in this paper. In this work, our main focus is
on effectively reasoning about component dependencies and

USENIX Association 33rd USENIX Security Symposium 1925

interactions in O-RAN. We limit our scope to finding memory
corruption issues that can cause O-RAN components to crash
or become unresponsive, and do not consider logical or state-
ful bugs. Each of our testing runs is conducted in a stateless
manner, which also reflects the RAN’s limited control over
the RIC’s operational states. From the RAN’s perspective,
interactions with the RIC can be broadly categorized into two
phases: pre-connection and post-connection with the RIC.
The transition from the pre-connection to the post-connection
is through RAN sending a successful E2SetupRequest mes-
sage to the E2T. We test both scenarios by configuring the
RIC to the corresponding state before starting testing. We only
test individual inputs instead of sequences of inputs. While
testing in the pre-connection state, if an E2SetupReueqst

message sent from the RAN is accepted by the E2T, the state
is transitioned to post-connection. ORANalyst terminates the
established connection and initiates a new SCTP connection
to the E2T, effectively resetting the state to pre-connection.
O-RAN’s technical specifications mandate SBA for imple-
menting its RIC [61], so monolithic implementations are not
specification-compliant. In this work, we focus on testing
service-based implementations.

4 Challenges & Methodology

We first summarize the challenges in designing an end-to-end
testing framework for O-RAN, then present ORANalyst’s
design which aims to address these challenges.

4.1 Challenges of End-to-End O-RAN Testing
C1 Generating targeted and meaningful test inputs. For
end-to-end testing of an O-RAN RIC, inputs from the RAN
are initially processed by the E2T (entry point in the RIC from
RAN), where they undergo decoding and validation before
being either routed to their target components or discarded.
For testing components downstream of the E2T, e.g., xApps
(as shown in Figure 1), it is essential to generate inputs that
can successfully reach these targets to ensure effective testing.
Moreover, without inputs reliably reaching the intended target,
a timeout mechanism has to be employed to infer the inputs’
failure to reach the target [51], resulting in more delays.
Motivating Example. To better explain this challenge, we
illustrate it with the running example in Listing 3. Test inputs
sent to the RIC from the fuzzer emulating as a RAN connect-
ing to the RIC first pass through intermediate components
(e.g., E2T) before reaching their target (i.e., the xApp in this
example). To exploit the vulnerability in lines 10 and 11, the
encode_action_arr function must return a negative value.
We observe that the encoding process in line 21 may result in
an error if the action definition list, constructed in the while
loop from lines 17 to 19, is empty. The length and contents of
this list are determined by the parameter actionArr, which
is extracted in the encode_action_definition function

from lines 6 to 8. Therefore, to uncover the vulnerability,
the action_bytes variable, which contains the encoded
information about supported RAN functions for RIC con-
trol, must either be decoded successfully but contain no ac-
tion items or fail to decode. It is important to note that
action_bytes are embedded within an E2SetupRequest,
sent by the RAN during registration to the RIC. Should the
entire E2SetupRequest message fail to decode or contain
malformed information, it will be rejected by the E2T dur-
ing the checks in lines 2 or 11 in Listing 1, preventing the
message from reaching the affected xApp.

In summary, for a fuzzer to reveal the vulnerability, the
test input it generates must satisfy the following criteria: (i)
It must first navigate past decoding checks and validations
of earlier components, such as the E2T, to reach the targeted
component. (ii) Upon reaching the test component, the input
must successfully pass initial decoding (syntactic correctness
check) to prevent an early exit and ensure that it reaches the
problematic code segment. (iii) Finally, the input must also
contain some anomaly to trigger the vulnerability (e.g., an
encoding error at line 22 in Listing 3 by providing an empty
action definition list within actionDef.

C2 Constantly evolving message formats. Existing general-
purpose grammar-aware input generation tools like Peach [11]
or BooFuzz [4] require manual extraction of message formats.
No automated ASN.1 message generation tool currently exists.
Libprotobuf-mutator-asn1 [19] can generate ASN.1 messages
from protobuf [30] definitions but requires a manual ASN.1-
to-protobuf translation. These manual efforts pose challenges
for testing O-RAN protocols, i.e., E2AP [66] and E2SM [67],
where hundreds of structures are used to define numerous
message types. To make matters worse, both protocols are fre-
quently updated by the standard body, rendering the manual
construction and maintenance of grammar from the techni-
cal documents for each version impractical. Since O-RAN’s
initial release in 2020, both E2AP and E2SM protocols have
undergone four major revision versions alongside numerous
minor updates. Additionally, O-RAN implementations often
utilize different versions of these protocols [23, 26, 32].

C3 Identifying O-RAN’s end-of-processing of an input.
For efficient testing, a new test input should be dispatched
as soon as the previous one finishes processing in the CUT.
On the other hand, for accurate coverage collection and fault
attribution, inputs must not overlap with previous processing
ones. Precisely identifying the end-of-processing for input
is often challenging in O-RAN RIC, as the RIC does not
respond to certain types of inputs from the RAN (e.g., indi-
cation messages). This differs from the expectations of API
fuzzers [7, 39], which depend on response messages to de-
termine the end of a request. Moreover, unlike traditional
fuzzing conventions, remote microservice targets in O-RAN
do not signal input processing completion through function
returns or control transfers back to the fuzzer.

1926 33rd USENIX Security Symposium USENIX Association

Test
Input

Benign
RANs

Source
Code Code

Instrumentor

Static
Analysis

Message
Mutator

Input
Constraints

Input
Scheduler

Generated
Test Input

Feedback
Collector

Input
Sender

RIC
Deployment

E2T

CUT
Runtime
Monitor

ASN.1 Message
Definition

Code Coverage
 Feedback

Fitness
Score

Dependency
Analysis

(Preprocessing)

Testing Input
Generation

Crashing
Inputs &

Crash
Logs

Operation
Trace

Component
Dependency

Runtime Analysis
(Testing)

Trace
Analyzer

Instrumented
RIC Deployment

Entry/Exit BBs
Initial Corpus

Figure 3: Architecture of ORANalyst. Details are discussed in §4.2

4.2 ORANalyst’s Methodology

To address the challenges detailed in §4.1, we de-
sign ORANalyst, an end-to-end, grammar-guided, feedback-
driven fuzzing framework for O-RAN. In this design, the
fuzzer emulates a RAN node connected with the target O-
RAN RIC system. To sidestep challenge C1 , ORANalyst
takes an incremental testing approach, where it focuses on
testing a singular O-RAN component at any time, while also
considering the complex interactions among other compo-
nents in the RIC without stubbing any components. Initially,
ORANalyst focuses on the “shallow” components that are
directly connected to the fuzzer. In this workflow, the first
component tested is E2T, as it directly interfaces with the
RAN, and is responsible for managing all message decod-
ing and routing to other components of the RIC. During the
testing of each component, ORANalyst also collects the path
conditions required for the inputs to propagate to the next
component through an efficient static analysis. We discuss in
detail how we circumvent challenges in static analysis, such
as the path explosion problem in §5. As the testing progresses,
we move to components deeper in the system, aggregating
path conditions collected from the previous components to
constrain input mutation so that the generated message can
reach the component under test (CUT) consistently. The archi-
tecture of ORANalyst is detailed in Figure 3. To achieve the
proposed methodology, ORANalyst operates in two stages: a
preprocessing stage, where it extracts component dependency
information, and a runtime testing stage.

4.2.1 Dependency Analysis Through Dynamic Tracing

When an input is sent to the RIC, it sequentially passes
through several RIC components for processing. While static
analysis allows ORANalyst to find execution paths of an input
within a component, it cannot directly identify the subsequent
component an input flows to. This inter-component infor-
mation flow occurs via network traffic, such as API [28] or
gRPC [13] calls, and the destination endpoint cannot be easily
extracted through static methods. This is because endpoints
from different components are connected through RIC’s in-
ternal routing and messaging systems, which are managed

dynamically during O-RAN’s runtime. Additionally, extract-
ing this information from O-RAN specifications is also not
possible since implementations vary in their designs of the in-
ternal components. For example, SD-RAN merges the logical
E2T, E2 management, and subscription management into a
single E2T component, while O-RAN-SC separates each func-
tion into individual components. Manually scanning the code
and compiling this information is an arduous and error-prone
task. To address this, ORANalyst collects dynamic execution
and network traces during the normal operation of O-RAN
and constructs a component dependency tree.

The goal of dynamic tracing is to capture the flow of all
message types in the O-RAN implementation to understand
the implementation’s components dependency. Specifically,
for each message type, dynamic tracing provides three types
of information: (i) A sequence of components the input passes
through to guide ORANalyst’s testing order from shallow- to
deep-lying components during runtime analysis; (ii) Detailed
information on the entry and exit points (basic blocks) of the
input in each component, which the static analysis uses to gen-
erate path constraints for ORANalyst to create targeted inputs
for testing the CUT (detailed in §5); and (iii) Raw packets
collected over the E2 interface, used as initial corpus during
runtime analysis. To extract these three pieces of information,
we set up the target O-RAN implementation with all available
xApps configured to communicate with unmodified benign
RANs, recording naturally occurring traffic from O-RAN’s
regular operations for 24 hours. We collect two types of traces:
(i) we use tcpdump [34] to record all raw packets sent and
received by each RIC component, forming a network trace.
(ii) We instrument each RIC component to assign unique iden-
tifiers to each edge and basic block in the source code, tracing
code execution paths by collecting all executed basic blocks
and edges during runtime to form an execution trace.

ORANalyst combines the collected network and execution
traces using timing, order, and message type information to
form a comprehensive operation trace. By aligning the order
and timestamps of the network packets with the correspond-
ing execution paths, it maps the sequence of components that
each message type traverses. From the execution trace of
each component, it extracts the entry and exit basic blocks

USENIX Association 33rd USENIX Security Symposium 1927

for the message traversed in a component. Although the ex-
ecution path information is also available, we do not use it
as the traces may not cover all execution paths from entry
to exit, potentially over-restricting the input generation. In-
stead, we use static analysis to identify all potential execution
paths and associated path constraints required for the input
to flow from entry to exit, i.e., to the next component. We
group the extracted information by message types and cross-
validate to ensure consistency across the same message types.
If messages of the same message type result in different ex-
tracted component dependencies or entry and exit points, it
may indicate that the message type is not fine-grained enough.
For example, indication messages of the same service model
may have different reporting formats, resulting in different
extracted dependencies. In case of any inconsistencies, we
refine the message type distinctions to be more fine-grained
if necessary, by sub-categorizing the message types.

As dynamic tracing only records messages that naturally
occur during a 24-hour operation of O-RAN with benign
RANs, it is possible that some rarely occurring messages are
not captured. In that case, we do not test those messages. This
is acceptable as this work aims for correctness, i.e., ensuring
that all detected issues are true vulnerabilities exploitable by a
misbehaving RAN node, rather than completeness, i.e., we do
not claim to find all vulnerabilities. We provide an evaluation
of our dynamic tracing in §7.2. Note that we did not encounter
any circular dependencies, i.e., no single input traverses the
same component more than once.

4.2.2 Runtime Analysis

The component dependency extracted during preprocessing
guides ORANalyst’s runtime analysis. ORANalyst focuses
on testing one component at a time, beginning with the first
component the input encounters in the RIC (E2T), and pro-
gressively moves to deeper components. To ensure that test
inputs can navigate past previous components to reach the
deeper ones, input generation is refined iteratively during the
testing of each CUT. ORANalyst extracts the necessary path
constraints that ensure the input navigates past the CUT by
designing an efficient static analysis, as detailed in §5. This
allows ORANalyst to systematically explore and test each
component in a dependency sequence. Below, we introduce
other key components in the runtime analysis process.
❑ Grammar-aware input generation. Inputs sent to the
RIC from RAN through the public-facing E2 interface follow
the highly structured ASN.1 format, as specified by E2AP [66]
and E2SM [67] protocols and detailed in the corresponding
technical specifications. Traditional byte-level input gener-
ation and mutation methods [18, 50] view the entire input
as bytes, ignoring its underlying structure and context. This
approach leads to a significant proportion of test inputs be-
ing discarded by the RIC’s decoding functions checking the
syntactic correctness of the inputs. As a result, those inputs

cannot reach the CUT’s input processing logic, where the
main functionalities of the component reside. Consequently,
byte-level input generation and mutation methods miss the
opportunity to uncover potentially more impactful vulnerabil-
ities within the processing logic.

To address this, ORANalyst employs a grammar-aware
mutation strategy that generates inputs conforming to the
expected input structure but incorporating unexpected val-
ues. The grammar-aware generation strategy also allows us
to control specific field values in the generated inputs to sat-
isfy input constraints collected from static analysis. However,
as mentioned in C2 , manually translating message formats
from ASN.1 to fuzzer-specific formats [4, 11, 19] for various
message types and versions in O-RAN protocols is not fea-
sible. To overcome this, we leverage the limited number of
datatypes in ASN.1 to directly implement mutation rules on
ASN.1 formats without translating them into internal repre-
sentations. By operating directly on ASN.1 formats, we can
also support ASN.1-specific features like field constraints and
encoding/decoding operations using existing ASN.1 compil-
ers [35] to auto-generate information from ASN.1 grammars.

We implement a universal set of generation and mutation
rules based on the field datatypes and the constraints each
datatype may enforce, rather than on specific fields in a mes-
sage. ORANalyst applies these universal rules across different
message types and protocol versions during testing, eliminat-
ing the need for manual updates with each new revision. Raw
packets collected over the E2 interface during dependency
analysis are used as the initial corpus for the message mutator.
The mutator decodes and mutates messages in the corpus,
and can also generate missing message fields. Table 2 details
the generation and mutation methods applied to each ASN.1
datatype. All inputs generated by the grammar-aware message
mutator are in valid ASN.1 syntax. However, ORANalyst also
selectively incorporates byte-level mutations into the gener-
ated and encoded test inputs to craft slightly malformed pack-
ets for testing the decoding logic of CUT. The motivating
example in Listing 3 demonstrates that some encoding errors
are required to trigger certain vulnerabilities, emphasizing the
need to also test slightly malformed packets.
❑ Identifying the end of input processing. Test inputs gen-
erated by the message mutator are scheduled by the input
scheduler and sent to the CUT by the input sender. How-
ever, as discussed in challenge C3 , it is difficult to determine
when a test input has finished being processed by the CUT.
To address this, we observe that like typical web server im-
plementations, each component in the RIC operates in a con-
tinuously running loop that accepts new requests indefinitely.
The return to the beginning of a new loop iteration, where a
new request can be accepted, might indicate the completion
of processing the previous input. However, in O-RAN, new
threads are often spawned for parallel input processing. This
means that even if the main loop is ready to accept new inputs,
the processing of the previous input may still be ongoing in

1928 33rd USENIX Security Symposium USENIX Association

Field Type Constraints Generation Method Mutation Method
Boolean - Generate both True and False. Change the boolean value to the alternative.
Integer Value

Constraint
Generate “interesting” values (e.g., 0, positive, negative, bound-
ary values) within constraints.

Randomly select an integer value or assign boundary values within
the given constraints.

Enumerated Valid Enums Generate all possible enumeration values. Randomly change to a different enumeration option.
Bit String Bit Size

Constraint
Create bit strings of varying lengths, including boundary cases,
within constraints.

Within size constraints, perform byte-level mutations, or generate a
new random bit string.

Octet String Octet Size
Constraint

Generate random octet strings of diverse lengths, including
edge cases.

Modify to a random octet sequence within size limits, or opt for
boundary lengths.

Sequence /
Sequence Of

Sequence
Length

Produce sequences of varied lengths, including boundary
lengths, randomly populating each entry according to its type.

Randomize length in constraints or set to lower/upper constraints,
and randomly delete/add/mutate each element based on type.

Choice - Create instances of all available choice options using methods
described in this table depending on the field type.

Mutate to an alternative choice option or modify the existing one
while introducing random mutations in the subfields.

Optional - Populate the optional field although it is allowed to be empty. Apply probabilistic mutations to the values of optional fields, ran-
domly remove existing fields, or introduce previously absent ones.

Table 2: Generation and Mutation Methods for Each Field Type

different threads. To accurately determine the end of request
processing, we establish two criteria: (i) the readiness of the
main message-receiving loop to accept the next input, which
ORANalyst monitors by instrumenting the start of the loop;
and (ii) the termination of all threads initiated for processing
the prior input, which ORANalyst tracks by instrumenting
all thread creations and terminations. Existing O-RAN im-
plementations we tested do not use thread pools to manage
their threads. This is because, in Go, threads (goroutines) are
lightweight and inexpensive to create and terminate, and there
are simpler ways to limit concurrency than using thread pools.
Consequently, ORANalyst only monitors thread creation and
termination. However, support for thread pools can be added
to ORANalyst by instrumenting the tasks submitted to the
thread pool and monitoring the callbacks when tasks finish.
❑ Feedback loop. Leveraging components introduced above,
we design ORANalyst to generate inputs that effectively reach
any specific CUT in the O-RAN RIC. The runtime monitor
oversees the processing of each input in the CUT and eval-
uates the outcome. Once input processing is complete, the
runtime monitor first checks for and reports any crashes trig-
gered by the input, and then restarts the crashed component.
If no crash occurs, it collects code coverage data from the
execution, which is then sent back to the feedback collector
for fitness score calculation and subsequent test input schedul-
ing. To handle scenarios where an input fails to reach the
CUT, ORANalyst employs a timeout mechanism. If a series
of consecutive inputs or a significant portion of inputs fail
to reach the CUT, the runtime monitor raises an alert indi-
cating a potential stall in the CUT or an issue with the input
constraints. We detail this identification mechanism in §7.2.

5 Input Constraints Generation

To generate inputs that effectively reach and explore each
component in the RIC, ORANalyst combines static analysis
with dynamic tracing to generate path constraints that guide
inputs from the E2 interface to the target component. Using
dynamic tracing, as detailed in §4.2.1, ORANalyst extracts in-
formation about the specific components an input reaches, the
sequence/order of traversal, and the entry and exit points (ba-
sic blocks) in each component. ORANalyst begins its testing

of each component with an intra-component static dataflow
analysis to collect path constraints required to reach the exit
point (e.g., API or gRPC calls to another component) of the
CUT from its entry point. Satisfying these path constraints
ensures test inputs can reach the next component. These path
conditions serve two critical purposes: First, they provide
semantic guidance for the fuzzer when exploring the CUT,
enabling it to produce inputs that are not only syntactically
valid but also semantically interesting for exploring different
branching paths of the CUT. In this setup, values satisfying
and violating branch conditions are both tested. Second, in
the context of testing subsequent components in the commu-
nication chain (based on the component dependency tree),
these conditions are used to generate inputs that can navigate
through the current component and reach the next one. In this
scenario, ORANalyst specifically generates inputs that meet
the branch conditions necessary to reach the exit point of the
current component. Below we discuss details about the static
analysis to ensure efficiency and accuracy.

5.1 Critical Path Conditions

When performing the static analysis on a CUT, we observe
that enumerating all paths and branch conditions the input
traverses from the entry to the exit quickly leads to path explo-
sion issues. The problem arises from the need to exhaustively
explore possible paths at each branch point, demanding sig-
nificant memory and computing resources. This challenge
is further exacerbated by the numerous checks and complex
processing logic dependent on various message fields that
are common in RIC components. We, however, observe that
while many branch conditions evaluate different field process-
ing routines, they usually do not alter the control flow leading
to the exit. Moreover, we notice that certain errors in input
processing or validation logic, despite triggering logging ac-
tivities, do not result in input rejection, indicating these errors
do not affect the message’s progression to the exit.

For instance, consider the motivating example in Listing 3,
where action_bytes undergo decoding in line 4. As these
bytes are extracted from the input and are therefore tainted
during the static analysis, an inter-procedural dataflow analy-
sis would examine the asn_decode function’s complex logic

USENIX Association 33rd USENIX Security Symposium 1929

and branches, resulting in path explosion. However, note that
the return value rval, while used to guide input processing
in line 6, does not lead to the early termination of the func-
tion even if the return value indicates an error, thereby not
affecting the overall control flow. This observation allows us
to bypass a detailed analysis of the decode function since the
decoding result does not affect the control flow.

1 func AssociateRanToE2THandlerImpl(data models.
RanE2tMap) error {

2 err := validateE2TAddressRANListData(data)
3 if err != nil {
4 xapp.Logger.Warn(" Association of RAN to E2T

Instance data validation failed: " + err.Error()
)

5 return err
6 }
7 // further processing
8 return sendRoutesToAll()
9 }

Listing 4: Critical Path Condition Example

Based on the above observation, we found that only a small
portion of all path conditions checked along an execution
path from the entry to the exit point need to be satisfied for
the input to reach the exit. We denote such path conditions
as critical conditions, and refer to the branches depending
on these critical conditions as critical branches. Listing 4
illustrates an example of such critical path conditions, which
depicts a simplified implementation for associating a RAN to
an E2T instance in O-RAN-SC’s routing manager. Here, if the
validation check in line 2 fails, the input is discarded in line
5, preventing further processing or its acceptance. Thus, the
condition in line 3 is deemed critical, and ORANalyst focuses
on finding the input constraints that can fulfill this condition.
This targeted focus on critical branches allows us to circum-
vent the common path explosion problem while computing
path constraints using static analysis. This approach also en-
sures that identified critical conditions are enough to enable
the input to traverse to the exit.

5.2 Extracting Path Conditions

To efficiently identify critical branches within a component
whilst avoiding path explosion, we design an inter-procedural
static analysis based on the Program Dependency Graph
(PDG) [49] which comprises both the Control Dependency
Graph (CDG) and the Data Dependency Graph (DDG). Us-
ing a function call graph, we first identify all sequences of
function calls from an entry point to an exit point of the CUT,
which we denote as function call paths. The task of identifying
critical path conditions from entry to exit is then reduced to
identifying the conditional branches that affect the execution
of subsequent function calls along each function call path.

The algorithm ORANalyst uses to extract the critical path
conditions is presented in Algorithm 1. It traces each function
call in a function call path (lines 1-6) and identifies the basic
blocks containing the call site that invokes the subsequent
function in the call path (line 7). It then analyzes the callee

Algorithm 1 Critical Path Constraint Collection
Input:

Fentry : Function Containing the Entry Point
Fexit : Function Containing the Exit Point

Output: List of Boolean Expressions Representing the Critical Path Condi-
tions Required to be Satisfied to Reach Fexit from Fentry

1: procedure COLLECTPATHCONSTRAINT
2: totalPathConstraint = {}
3: for each function call path Pi from Fentry to Fexit do
4: pathConstraint = {}
5: for each edge E j in Pi do

// Get caller and callee of edge
6: fcaller , fcallee = getCallerAndCallee(E j)

// Get target basic block in the caller containing call-site to callee
7: bcallsite = getCallSiteBlock(fcaller , fcallee)

// Get control blocks of bcallsite in fcaller
8: Bcontrol = getControlDependentBlocks(CDG(fcaller), bcallsite)

// Append conditions in last instructions of control blocks
9: for each control block bk in Bcontrol do

10: pathConstraint = pathConstraint ∪ getCondition(bk)
11: end for
12: end for
13: totalPathConstraint = totalPathConstraint ∪ pathConstraint
14: end for
15: return totalPathConstraint
16: end procedure

function’s CDG to determine the control dependency of these
target basic blocks (line 8). Given a target basic block in
a function, the CDG shows all basic blocks whose control
decisions at the end of the block directly determine whether
the target basic block is reachable. All these control decisions
must be satisfied to reach the target basic block. These control
decisions are collected as path conditions, and we extract all
such conditions for all function calls in a function call path.
By combining these conditions (lines 9-16), we obtain the
path constraints required to follow all function call paths, i.e.,
the path constraints to reach the exit point from the entry point
of a CUT. To handle indirect function calls, we use off-the-
shelf points-to-analysis techniques [79] available for Go-SSA
IR for Go programs and LLVM-IR for C/C++ programs. We
observe that the use of pointers and function pointers (i.e.,
indirect calls) in existing O-RAN source code is very limited.
Therefore, existing points-to-analysis tools are adequate for
our analysis. This observation may not be true for all future
O-RAN implementations, but it is a common trait of most
protocol implementations.

We illustrate the above idea with the example presented in
Listing 4. In this example, the target line to reach is line 8,
and the critical branch is the if branch in line 3. If the branch
condition err! = nil is evaluated to be true, line 8 would
not be reachable. Hence, we collect the condition err! = nil

as well as its required value False as the critical condition.
Since we only focus on extracting critical path conditions
utilizing CDG, our methodology can effectively disregard
non-critical branches, such as those pertaining to error log-
ging that do not result in early function termination. Further-
more, this approach also sidesteps the exponential increase in

1930 33rd USENIX Security Symposium USENIX Association

enumerating paths that typically results in path explosion.

5.3 Selective Function Processing
Some conditions collected during the previous step may
depend on the return values of function calls. For example,
the collected condition err! = nil in Listing 4 depends
on the result of the validateE2TAddressRANListData

function. To determine what inputs can satisfy this
condition, ORANalyst needs to further analyze the
validateE2TAddressRANListData function. However,
some functions, such as library functions, typically do not
contain meaningful constraints on the input. To alleviate path
explosion, we selectively analyze only functions that yield
meaningful constraints on the input. To this end, we first
discern functions that contain meaningful input constraints,
which we call validating functions, as they typically apply
validation checks that inputs must satisfy to reach the exit
point. We call other functions generic.

The validateE2TAddressRANListData function is an
example of a validating function, as it validates the input
and contains critical conditions on inputs. Inputs containing
values that fail this validating function get discarded by the
component. Conversely, generic functions can generate er-
rors in case of failure and can also affect control flows, but
they do not yield meaningful constraints on the inputs. For
example, in Listing 5, the database retrieval function SDL.Get
is a generic function. We would skip analyzing the imple-
mentation details of this function since it would not result in
meaningful constraints over the input. Instead, our static anal-
ysis would only record the function itself as a condition, i.e.,
that the data retrieval corresponding to the key is successful.

1 data , err := SDL.Get(key)
2 if err != nil {
3 return err
4 }
5 // further processing using data

Listing 5: Generic Function Example

Based on this insight and the following observation, we
design a heuristic approach to distinguish between generic
and validating functions. We observe that generic functions
are typically called multiple times in different contexts due to
their broad use cases, while validating functions are used in
more specific contexts. We use the following criteria to iden-
tify the functions we want to process: (i) The function should
not be from a library or an imported open-source shared
project, as these functions are often generic and involved
in data management, logging, or networking (e.g., SDL.Get
in Listing 5). (ii) The function should not be invoked by more
than a threshold number of functions across more than a num-
ber of packages of the CUT. This criterion helps identify and
exclude generic functions that are likely to be invoked in dif-
ferent contexts due to their broad applicability. In practice, we
use empirical observations to set the threshold. During testing,
if a function is invoked by more than three functions in the

CUT or by functions from more than two different packages,
we label it as generic and do not analyze it. We provide some
assessments of the classification accuracy in §7.2.

Finally, for the functions we decide to analyze, we apply
a similar methodology as described in §5.2 to collect condi-
tions. We identify the basic blocks generating the required
return value and utilize the function’s CDG to determine the
conditions for reaching these blocks. For example, in the
validateE2TAddressRANListData function in Listing 4,
we examine the basic blocks returning no errors and use the
CDG to identify the conditions for reaching these blocks.
This process is recursive, continuing until all conditions are
resolved without dependencies on other validating functions.

5.4 Path Conditions To Input Constraints

After extracting the path conditions of each function call path,
we map the collected conditions as constraints to specific
fields in the generated test inputs. Each extracted path con-
dition is represented as a boolean variable, along with its
requisite value (True/False) for reaching the target block. For
example, Listing 4 produces the boolean variable condition
err != nil, and the required value False, as explained in §5.2.
To generate constraints on inputs based on each condition, we
employ a backward dataflow analysis. This analysis traces
the variable involved in the condition back to a field access
operation from the input through a backward taint analysis.
ORANalyst then maps the condition on the boolean variable
to constraints of specific fields in the input. The extracted
constraints are used as additional rules for the input generator.
Loops. Performing backward analysis on loops can create
scalability issues and potentially unsound results. However,
due to the characteristics of protocol implementations, we ob-
serve that the majority of loops in O-RAN’s RIC components
iterate over a list of items in the message. In such scenarios,
each iteration functions independently of the others, and the
execution results from each iteration do not carry over to other
iterations. We identify these scenarios by confirming that in
the loop body, there are no cross-iteration dependencies (e.g.,
in SSA form, no variables defined inside the loop are used out-
side of their defined iteration, and no phi instructions are used
to select a value from previous iterations). For such cases, we
only analyze the loop once, treating the loop index as a sym-
bolic value representing the list index. For other generic loops
performing calculations where results are carried over itera-
tions, we limit the number of loop iterations we process by
capping the number of loop unrollings ORANalyst performs.

6 Implementation

We implement ORANalyst with five main components: (i)
automated instrumentation for feedback collection from CUT,
(ii) inter-component input tracing, (iii) static analysis for in-

USENIX Association 33rd USENIX Security Symposium 1931

put constraints, (iv) grammar-aware input generator, and (v)
fuzzing engine to compute fitness score and schedule inputs.
Feedback instrumentation. For C/C++ components, we use
AFL++ [50]’s afl-clang as our instrumentation tool. For Go,
we extend go-fuzz [12]’s AST-based basic block coverage
tool to include edge coverage by instrumenting branching
statements for comprehensive path tracking. A universal cus-
tomized runtime monitor is injected in each CUT to monitor
the runtime information, manage shared memory for coverage
data, and collect and relay coverage feedback to the fuzzer.
Dynamic tracing. We employ tcpdump [34] to capture net-
work traces for each RIC component. Using our instrumenta-
tion tool, we assign unique identifiers to each edge and basic
block to track code execution and collect execution traces.
Static analysis. We construct PDG using the LT algo-
rithm [54] and the algorithm by Ferrante et al. [49]. For Go
programs, we perform the static analysis on SSA intermediate
representation (IR), while for C/C++ programs, we utilize
SVF [79] to work with LLVM IR.
Grammar-aware input generation. The input generation
utilizes datatype definitions, constraint specifications, and
encoding/decoding routines from code generated by the
ASN.1 C compiler [35] using E2AP and E2SM ASN.1 gram-
mars [66, 67]. Additionally, we incorporate input constraints
identified through static analysis to input generation by apply-
ing special rules on the specific messages and fields involved.
Fuzzing engine. We build our fuzzing engine by extending
go-fuzz [12] to support remote coverage data reception, static
analysis, and grammar-aware input generation.

7 Evaluation

❏ Experiment setup. For our experiments, we use a laptop
with Intel i7-9750H CPU and 16GB DDR4 RAM. Only two
matured and commercially-adopted open-source O-RAN RIC
implementations exist: O-RAN-SC [21] and SD-RAN [32].
We evaluated both implementations. Specifically, we tested
on SD-RAN’s latest 1.4 release and O-RAN-SC’s most recent
I-release. Both O-RAN implementations offer a Kubernetes-
based deployment for their RIC, wherein each microservice
component is separately compiled into a Docker image and
then deployed as a pod within the Kubernetes deployment,
communicating with other components via network traffic.

To prepare an O-RAN implementation for testing, we first
instrument the source code of the CUT and recompile it fol-
lowing the original Dockerfile into an instrumented Docker
image. We then replace the original CUT’s Docker image
with the instrumented image in the Kubernetes deployment.
For each vulnerability identified by ORANalyst, we conduct
manual validation to ensure that the vulnerability can be repro-
duced in the original deployment, thereby confirming that the
instrumentation does not introduce any false-positive issues.
We have not encountered any false positives caused by our
instrumentation. When we discover a crash that is triggered

E2SetupRequest (#1,2,6-9)

Attacking
RAN E2T xApp

E2SetupResponse

RICSubscriptionRequest

RICSubscriptionResponse (#3)

IndicationMessage (#10-19)

RICServiceUpdate (#4)

E2NodeConfigUpdate (#5)

Figure 4: Flow of exploitable messages between the attacking
RAN, E2T, and xApp. Other RIC components are omitted for
conciseness. Dotted lines represent optional messages, while
solid lines represent required messages in the procedure. #

denotes the vulnerability IDs corresponding to the message.

continuously and hinders the deeper testing of the component,
we manually devise and apply a patch to suppress the crash.

7.1 Identified Issues & Potential Exploits

We deploy ORANalyst to test 4 xApps and 6 platform compo-
nents across two O-RAN RIC implementations. These com-
ponents vary in size, with each one’s lines of code (LoC) typ-
ically ranging from several thousand to 100,000. The testing
is conducted in both the pre-connection and post-connection
state, each for a 24-hour period for each component. We iden-
tify 19 distinct issues across 7 components. Among these,
17 issues led to crashes, and 2 resulted in the blockage of
communication channels, thereby obstructing all subsequent
messages, as detailed in Table 3. Notably, only 7 of the 19
issues (#1, 6, 7, 8, 9, 13, 14) were triggered by malformed
packets, which either caused segmentation faults or index out-
of-bounds panics during decoding. Conversely, the remaining
12 issues were exploitable through well-formed inputs. The
discovery of these issues underscores ORANalyst’s efficacy
in reaching and exploring the processing logic, while find-
ings through malformed inputs demonstrate that ORANalyst
is also capable of discovering issues in the decoding logic.
Figure 4 illustrates the flow of messages within the O-RAN
procedures and highlights the messages that trigger vulnerabil-
ities listed in Table 3. The figure shows the sequence in which
these messages interact with the E2T and an xApp within
the RIC. For simplicity, this diagram does not include other
components involved in the RIC, such as E2 Management.
❏ Memory issues. The most common problems we identified
are memory-related, such as crashes caused by index out-of-
bounds panics. For example, the Key Performance Measure-
ment (KPM) E2SM indication message type includes a field
for an array of measurement items and an integer count of
the number of items in the array. In SD-RAN’s kpimon xApp,
we observed that the count value is used to iterate over the
array items without validating the array’s boundaries. Con-
sequently, when the actual number of items is less than the
reported count, an index out-of-bounds panic is triggered,
leading to the xApp’s crash (issue #19). Attackers can cause

1932 33rd USENIX Security Symposium USENIX Association

Component # Cause Vulnerability Description Exploit Message Impact of Vulnerability Location

O
R

A
N

-S
C

e2t
1 IA Unexpected input causes ’std::invalid_argument’ exception,

leading to termination of E2T. This can be exploited to cause
a DoS of all RIC components and RANs managed by the E2T.

E2SetupRequest Crash & DoS sctpThread-
.cpp:1941

2 SF Unexpected input leads to segmentation fault. This can be
exploited to crash the service, causing a DoS.

E2SetupRequest Crash & DoS sctpThread-
.cpp:2180

3 SF Similar to above, leading to service crash and potential DoS. RICSubscription-
Response

Crash & DoS sctpThread-
.cpp:2451

e2mgr 4 OR Runtime panic due to array index out of range. This can be
exploited to disrupt the service by causing unexpected crashes.

RICServiceUpdate Crash & DoS ric_service_update_-
handler.go:107

5 OR Runtime panic due to index out of range, leading to service
disruption.

E2NodeConfigur-
ationUpdate

Crash & DoS e2_node_config-
uration_update_-
ack.go:279

kpimon-go

6 UR Return value used as size to initialize array without checks.
This may lead to a negative-sized array, which can be exploited
to cause memory corruption or execute arbitrary code.

E2SetupRequest Crash, DoS, & Memory Corruption wrapper.c:L246

7 UR Similar to above, leading to crashes and memory corruptions. E2SetupRequest Crash, DoS, & Memory Corruption wrapper.c:266
8 UR Similar to above, leading to crashes and memory corruptions.. E2SetupRequest Crash, DoS, & Memory Corruption wrapper.c:277
9 UR Similar to above, leading to crashes and memory corruptions. E2SetupRequest Crash, DoS, & Memory Corruption wrapper.c:288
10 OR Index out of range error, which can be exploited to cause

unexpected crashes and disrupt the service.
IndicationHeader Crash & DoS control.go:485

11 OR Index out of range error, similar to above, leading to DoS. IndicationMessage Crash & DoS control.go:530
12 SF Exploit message cause unexpected signal during runtime exe-

cution. This can crash the service, causing a DoS.
IndicationMessage Crash & DoS Not yet identified

SD
-R

A
N

onos-e2t 13 OR Runtime panic due to index out of range. This can be exploited
to cause crashes and disrupt the service.

IndicationMessage Crash & DoS marshal.go:57

14 OR Slice bounds out of range, which can be exploited to corrupt
data and cause crashes.

IndicationMessage Crash & DoS aper.go:140

ric-sdk-go 15 EH Errors not handled properly, which can be exploited to crash
the entire stream and block communication channels.

IndicationMessage Communication Channel Blockage node.go:223

rimedo-ts 16 OR Slice bounds out of range, which can lead to DoS. IndicationMessage Crash & DoS reader.go:36
17 OR Slice bounds out of range, similar to above, DoS. IndicationMessage Crash & DoS reader.go:18

onos-kpimon 18 EH Error channel blocking due to unhandled errors. This can be
exploited to block subsequent messages and disrupt service.

IndicationMessage Communication Channel Blockage monitor.go:207

19 OR Index out of range error, which can lead to DoS. IndicationMessage Crash & DoS monitor.go:133

Table 3: Summary of Discovered Vulnerabilities
All vulnerabilities are exploitable by malicious RAN nodes. Vulnerability Causes: SF: (S)egmentation (F)ault; OR: index/slice bounds (O)ut of (R)ange; EH:

improper (E)rror (H)andling; UR: (U)nhandled (R)eturn value; IA: (I)nvalid (A)rgument error (due to unexpected input formats).

the affected components to crash by sending carefully crafted
requests that exploit these memory issues in memory-safe
languages like Go, leading to service disruptions. For com-
ponents implemented in C/C++, which are not memory-safe,
an attacker may exploit memory issues to trigger component
crashes or even remote code execution.
❏ Improper error handling. Our evaluation uncovers two
error-handling issues (#15, 18) that lead to the disruption of
communication channels. Specifically, ORANalyst identified
a flaw (#15) within the error handling of indication message
streams of onos-sdk-go, an SDK used by xApps in SD-RAN.
xApps employ this SDK to receive indication messages over
gRPC streams. According to the usage of gRPC streams,
any error in the stream requires the abortion of the current
stream and the re-initialization of a new one. However, when
ORANalyst generates inputs that trigger an error in the stream,
the SDK tries to read repeatedly from the same stream. The
read operation is enclosed in an infinite loop, and continuously
trying to read from the aborted stream traps the process in
an endless loop of reprocessing the same error, rendering the
xApp incapable of processing any new messages. All SD-
RAN xApps using onos-sdk-go are vulnerable to this issue.
❏ Attacks and impacts. As shown in Figure 4, an adversary
exploiting the identified vulnerabilities can craft malicious
inputs and send those to the target components from the mali-
cious RAN to trigger crashes. Crashes within the O-RAN’s
RIC components can further lead to substantial DoS impacts

on other RANs connected to the same RIC. Restarting the
crashed component and re-establishing communication with
other components and RANs could take several minutes. An
adversary can also repeatedly crash the component after each
restart. E2T is particularly vulnerable, as it serves as the pri-
mary conduit for message distribution from and to RANs,
and its failure could deny all O-RAN services for the con-
nected RANs. For example, a malicious RAN could send
carefully crafted E2Setup messages to exploit vulnerability
#2, triggering segmentation-fault to crash E2T, disrupting all
communications between O-RAN-RIC and connected RANs.
Moreover, the communication channel blockage issues (#15,
18) are undetectable from the RAN, as the affected RAN does
not receive any error messages and can continue transmitting
to the blocked channel. This effectively disables communica-
tion between the xApp and the RAN indefinitely.

7.2 Evaluation of Intermediate Components

Below, we present an evaluation of the correctness and com-
pleteness of ORANalyst’s intermediate components against
manually constructed baselines to provide insights into the
efficacy of these components. Additionally, we conducted
ablation studies of components in ORANalyst in §7.3.
❏ Dynamic tracing (§4.2.1). We instrumented four xApps
and six platform components across two O-RAN RIC imple-
mentations and collected traces of messages that occurred

USENIX Association 33rd USENIX Security Symposium 1933

during a 24-hour operation of O-RAN with benign RANs. We
collected 14 GB of execution traces, containing sequences
of executed basic block and edge identifiers, and 23 GB of
network traces in pcap format. From the collected traces,
we extracted 15 types of messages across the two RICs,
including E2SetupRequest, E2ConfigurationUpdate,
E2ConnectionUpdate, and indication messages of
different service models. However, we did not collect any
traces of resetRequest in SD-RAN as this message only
occurs to reset the connection from an abnormal failure.
Similarly, we did not collect any errorIndication message
trace in O-RAN-SC as this message is only used to report
errors not reportable by other appropriate response messages.
❏ Generic/validating functions classification (§5.3). Mis-
labeling generic functions as validating (i.e., false-positives)
overloads static analysis to process unnecessary functions,
wasting time and resources and risking path explosion if the
false-positive rate is high. Conversely, false-negative cases
might result in missing path conditions, preventing some gen-
erated test inputs from reaching the CUT. Calculating the
false-negative rate is challenging due to the large code base
size of O-RAN implementations. For example, SD-RAN’s
E2T alone contains over 6,000 functions and over 100,000
LoC, excluding imported libraries. However, the results of
static analysis are used to construct input constraints that en-
sure the test inputs generated by ORANalyst can effectively
reach and explore the CUT. Instead of directly finding the
false-negative cases, we monitor the percentage of test inputs
that successfully reach the CUT. If this success rate falls be-
low a threshold (99% in our testing), we manually analyze
rejected inputs to identify any missed validating functions.
We have not experienced the percentage dropping below the
threshold during testing. On the other hand, manually veri-
fying false-positive cases is manageable because, for each
entry/exit pair, only around 30 functions are labeled as vali-
dating in each CUT. During our testing, we identified only 4
false-positive cases. Including these false-positive functions
would not cause path explosion during static analysis.
❏ Generated input constraints (§5.4). To provide insights
into the accuracy of the extracted input constraints, we man-
ually validated the constraints for the E2SetupRequest and
indication messages in SD-RAN’s E2T component. For
an E2SetupRequest to pass through the E2T, ORANalyst
extracts 13 constraints on input fields, which are enforced to
confirm the message type and validate field types and contents.
Although the static analysis encountered a loop iterating over
a list of information elements in the message, this loop was
correctly resolved using the approach discussed in §5.4, as
there were no dependencies between loop iterations. We con-
firmed that all 13 extracted constraints were accurate. For an
indication message to pass through the E2T, ORANalyst
collected three input constraints, which we validated to be
accurate. These constraints specify that the input is of the cor-
rect type (indication message) and that the specified stream

for forwarding the indication message exists. To further com-
plement this evaluation, we evaluate the overall impact of
the input constraints on the efficacy of ORANalyst by con-
ducting ablation studies testing ORANalyst without using the
extracted input constraints in §7.3.

7.3 Benchmark with State-of-the-Art

❏ Benchmark tools adaptions. We test state-of-the-art tools
to benchmark against ORANalyst. However, none of these
tools can support O-RAN implementations off-the-shelf. We
discuss the adaptations made to these tools below.
(a) AFLNET [70]. AFLNET, an adaptation of AFL [2] for
network protocol fuzzing, uses response messages to extract
state information that guides mutations. It requires complete
control over the server binary for forking, execution, and termi-
nation. To use it with O-RAN, we developed an intermediate
program to manage remote coverage feedback and forward
it to AFLNET. Since inputs sent to the RIC often yield no
response messages, AFLNET infers incorrect state transitions
for these messages, which negatively impacts its performance.
Hence, we disabled AFLNET’s stateful testing.
(b) BooFuzz [4]. As a successor to Sulley [33], BooFuzz is
a generation-based, extensible network protocol fuzzer used
in several recent protocol fuzzing research [76, 82]. Unlike
feedback-driven fuzzers, BooFuzz relies on predefined mes-
sage grammars to generate test inputs. Constructing these
grammars is manual and error-prone, especially for complex
protocols like E2AP and E2SM. For our analysis, we simplify
this by allowing BooFuzz to directly generate test inputs from
the initial corpus by treating each message as a byte array.
The corpus column for BooFuzz in Table 4 represents the
number of total test inputs generated by BooFuzz. In addition,
BooFuzz does not accept any feedback. To prevent input over-
lap, a brief delay between tests is introduced for BooFuzz,
which highlights its inefficiency. Completing the testing of all
BooFuzz-generated inputs required just under 22 hours out
of the allocated 24 hours of testing budget.
(c) Frizzer [9]. Frizzer is a coverage-guided black-box fuzzer
based on the Frida [8] instrumentation toolkit. It can remotely
connect to the Frida instance running on the target program’s
host, making it suitable for testing remote targets like O-RAN
components directly. However, it requires manual identifi-
cation of the address of the main network protocol handler
function in the target server. We manually identified this ad-
dress by inspecting the CUT binary. During testing, we found
that Frizzer’s Frida injections frequently caused segmentation
faults in the E2T, resulting in crashes unrelated to the test in-
puts and generating numerous false positives. These crashes
also triggered E2T restarts, with each restart taking consid-
erable time, significantly reducing testing efficiency. After
reviewing all crashes discovered by Frizzer, we confirmed
that they were all false positives. Consequently, we have not
included Frizzer’s results in Table 4.

1934 33rd USENIX Security Symposium USENIX Association

O-RAN-SC Component E2T Kpimon

Fuzzer crashes corpus cover % decoded crashes corpus bb cover edge cover % reaching xApp % decoded

ORANalyst 3 2149 4326 72.35 3 73 1838 910 100/100 55.64
ORANalyst w/o input constraints 3 2149 4326 72.35 1 47 1828 907 47.27/59.01 53.50
ORANalyst w/o grammar 0 1433 4647 3.9 1 59 1831 906 40.64/80.81 16.76
AFLNET 0 245 3663 21.78 0 41 1824 901 32.81/97.83 12.37
BooFuzz 1 427033* 3655 81.96 1 427033* 1824 899 10.71/11.65 33.40
Radamsa 0 1323 3916 3.76 0 66 1827 901 11.39/78.20 4.40
Radamsa-filter 0 137 3467 100 1 35 1820 896 62.54/62.54 86.13

Table 4: Comparative Testing Results

(d) Radamsa [31]. Radamsa is used by Frizzer for message
mutation. To avoid the instability caused by Frizzer’s Frida in-
strumentation, we replace Frida with our coverage collection
mechanism and evaluate Radamsa’s effectiveness.
(e) Radamsa with filter. Our evaluation shows that most
inputs generated by Radamsa fail to pass the initial decoding
checks, and Radamsa struggles to generate meaningful test
inputs that can thoroughly explore the CUT. To address this,
we implement a pre-filter to examine the format of generated
messages. Only those messages that successfully passed the
decoding checks were forwarded to the target in this mode.
❏ Benchmark CUTs. To evaluate ORANalyst’s perfor-
mance under O-RAN’s multi-language environment, we se-
lected two components as benchmark targets: (i) the ORAN-
SC’s E2T component, developed in C++, and (ii) the kpimon-
go xApp, implemented in Go. We perform the testing in
the post-connection to the RIC state, i.e., after RIC’s accep-
tance of a successful E2SetupRequest as part of the testing
setup. In this testing state, ORANalyst identifies 3 crashes for
kpimon-go (i.e., #10-12 in Table 3), as opposed to 7 discov-
ered in both states. For fairness, we evaluated all benchmark
tools, along with ORANalyst on the same hardware setup,
using identical initial corpus sets for a 24-hour period on each
target. We conducted the testing of two targets separately by
accepting code coverage feedback from the corresponding
target component. Inputs aimed at testing E2T may also flow
to the xApp, and any inputs targeting the xApp must first
pass through and be routed by E2T. Since BooFuzz [4] is a
generation fuzzer and does not accept feedback to guide its
input generation during test-time, testings of both E2T and the
xApp use the same set of test inputs generated by BooFuzz
from the provided initial corpus set.
❏ Metrics. We collect the following statistics for each test,
summarized in Table 4: (i) The number of issues found by
each tool. (ii) The number of interesting corpora generated. In
mutation fuzzers, an input is saved as a corpus if it explores
previously uncovered code regions, so this metric roughly rep-
resents the fuzzer’s ability to generate diverse inputs exploring
different code regions. For BooFuzz, the corpus column re-
flects the total test cases generated. (iii) The number of basic
blocks and edges covered by test inputs. Given that the afl-
clang tool used for instrumenting C++ components is limited
to edge coverage, for E2T, we only collect the edge coverage.
(iv) The percentage of inputs successfully decoded by the

CUT and thus reaching its processing logic is also computed.
We manually identify the start point of the input processing
logic and record the number of inputs reaching this point. In
this testing setup, E2T decodes the E2AP layer, while the
xApp decodes the E2SM layer of inputs. (v) For the kpimon
xApp, which is not directly connected to the fuzzer, we record
the percentage of all test cases that can reach the xApp. The
first value represents the percentage of all inputs that reach
the xApp, and the second value represents the percentage of
inputs successfully decoded by E2T that reach the xApp.

Figure 5: Discovered Edges Over Time by Evaluated Fuzzers

❏ Ablation study. We conduct an ablation study and present
the results in Table 4. This study evaluates ORANalyst with-
out extracted input constraints but still employing message
grammar, as well as disabling the grammar-aware mutation
entirely (also no input constraints). Since all inputs sent by
ORANalyst through the E2 interface reach E2T, no input
constraints are required to test E2T. Therefore, we directly
use the evaluation results for ORANalyst to demonstrate
the outcome of testing the E2T without input constraints.
While ORANalyst without grammar-aware mutation achieves
higher coverage for E2T, most of the test cases fail the de-
coding checks, indicating that the increased coverage likely
comes from exploring the decoding logic. ORANalyst with-
out grammar also cannot find any issues in E2T, and only finds
one crash in the xApp. When testing the xApp, ORANalyst
without input constraints performs only slightly better than
ORANalyst with no grammar at all in terms of test inputs
reaching the xApp or decoded by the xApp. This demon-
strates that ORANalyst without input constraints struggles to
generate inputs that efficiently reach and explore the xApp.
❏ Benchmark results. Comparative evaluation results of
other tools is also presented in Table 4. All identified issues

USENIX Association 33rd USENIX Security Symposium 1935

are crashes. Figure 5 visualizes the number of covered unique
edges by the benchmark tools. ORANalyst significantly out-
performs all other tools, achieving both the highest cover-
age and the most discovered crashes. As discussed in §4.2.2,
ORANalyst probabilistically applies byte-level mutations on
well-formed inputs generated by the grammar-aware mutator
to produce slightly malformed inputs, to test the decoding
logic in addition to the processing logic. These malformed
inputs that reach previously unexplored code regions are then
added to the corpus for further mutations. As illustrated in
Listing 3, carefully mutated malformed inputs can uncover
vulnerabilities that strictly valid inputs cannot expose. During
the evaluation, we configured the probability for a byte-level
mutation at 10%, which explains why a subset of inputs gener-
ated by ORANalyst fails to be decoded. Setting this byte-level
mutation probability to 0% would ensure all inputs generated
by ORANalyst pass the decoding checks.

Although Radamsa with filter results in less coverage than
Radamsa without filter in both components, it finds more
issues due to its focus on input processing logic rather than
decoding logic. Not all inputs generated by Radamsa-filter are
decoded by the xApp because the E2SM layer contains some
byte fields with encoded data that the filter does not validate,
leading to possible decoding errors when the xApp tries to
decode those bytes. BooFuzz identifies issues #1 in the E2T
and #12 in the xApp. Both ORANalyst without grammar and
Radamsa-filter identify issue #10 in the xApp. ORANalyst
without input constraints is the same as ORANalyst when
testing the E2T, and it finds issue #12 in the xApp.

8 Discussion and Limitations

Manual efforts. To prepare an O-RAN implementation for
testing, we manually modify the original Dockerfile for each
component to incorporate the instrumentation tool during the
build process. We then build the instrumented Docker image
and replace the original one in the O-RAN deployment. To
collect network traces for dynamic tracing, communications
between components must be unencrypted, or the encryption
key must be saved to decode the collected traffic. We opt
for saving the encryption key to decrypt the network traffic.
While ORANalyst’s components are mostly automated, some
steps involve manual intervention. For example, transferring
outputs from one component to another, such as inserting
identified input constraints from static analysis into input gen-
eration, is currently manual. Automating these steps through
scripting is primarily an engineering effort. Furthermore, we
manually triage and diagnose the root cause of each issue.
Generalizability of ORANalyst. There are only two widely-
used, commercially-adopted O-RAN implementations avail-
able, and we demonstrate ORANalyst’s generalizability by
testing both. While our input generation currently sup-
ports only ASN.1-specified messages, ORANalyst’s testing
methodology can be extended to other protocol implemen-

tations and microservice systems. Our observations about
the limited use of complex loops and pointers discussed in
§5 are based on common characteristics typical of protocol
implementations in general, not just O-RAN.
ORANalyst assumes the availability of source code or inter-

mediate representation (IR) for two reasons: (i) to instrument
the components and collect execution traces to understand
component dependencies, and (ii) to dynamically monitor test
input execution and collect coverage data as testing feedback.
For scenarios where only program binaries are available, ad-
ditional methodologies and toolkits are required to perform
these tasks. This can be achieved through reverse engineer-
ing [10, 14], binary instrumentation [55], or runtime analy-
sis [36]. When even the binaries are unavailable, dependency
analysis and feedback collection can be conducted through
network traffic analysis [34, 37] or log analysis [38].
Monitoring multiple components simultaneously. Al-
though our approach utilizes insights about component depen-
dencies and the complex communication traversal of inputs,
the testing focuses on a single component at a time, while also
taking into account components’ inter-dependencies and in-
teractions. Extending our monitoring to multiple components
simultaneously could uncover more complex vulnerabilities
stemming from the interplay of components.

9 Related Work

Protocol testing. Several protocol fuzzers focus on perform-
ing state-aware testing from response codes [70], state track-
ing graphs [56] and dynamic queries to server [52, 60], but
they cannot be applied to testing service-based systems. Also,
many approaches use grammar-guided fuzzing to generate se-
mantically valid inputs, either through manually constructed
state and input message models [4, 11, 80] or through infor-
mation extracted from source code [57, 75]. However, they
either require manual work or assume specific source code
formats, and cannot be applied to O-RAN.
Testing leveraging source code analysis. Several approaches
leverage lightweight static analysis or concolic execution to
guide fuzzers in generating interesting inputs [44, 48, 58, 69,
77]. Driller [77] leverages concolic execution to solve path
constraints to reach deeper code branches and unexplored
compartments. However, its concolic execution cannot avoid
path explosions nor guarantee comprehensive component cov-
erage. ORANalyst’s dynamic and static analysis combination
sidesteps path explosion and guarantees test input’s reachabil-
ity to all components. Peng et al. [69] adopt lightweight static
analysis to extract an abstract state machine of the implemen-
tation and guide the fuzzer to generate inputs exploring new
states and transitions. However, all of the previous works fo-
cus on monolithic programs and cannot handle inter-program
communications between components in O-RAN RIC.
O-RAN security. The O-RAN Security Work Group has con-
ducted several threat models, risk assessment, and security

1936 33rd USENIX Security Symposium USENIX Association

studies of O-RAN components [62–65], but they only offer
broad guidelines. Polese et al. [71] outline general research
directions for O-RAN, including its security aspects. Shen et
al. [73] explores the possibility of authentication and autho-
rization attacks in the O1 interface of O-RAN, and Dik et al.
[47] assess security threats at the transport layer of O-RAN’s
open fronthaul interface. Existing research on the emerging
O-RAN technology has been concentrated on theoretical se-
curity issues or potential research avenues. This study is the
first effort aiming at identifying actual security vulnerabilities
within O-RAN implementations.

10 Conclusion

We propose the first systematic testing framework designed
for O-RAN implementations, ORANalyst. By integrating effi-
cient static analysis with dynamic trace analysis, ORANalyst
resolves complex component dependencies in O-RAN RIC.
It applies these insights to generate test inputs that can pass
the initial decoding and validation checks to effectively ex-
plore deeply rooted components. Evaluation of ORANalyst
on two major open-source O-RAN implementations yields
the discovery of 19 previously uncovered vulnerabilities.

Acknowledgments

We thank the anonymous reviewers and the shepherd for their
feedback and suggestions. We also thank O-RAN RIC de-
velopers for cooperating with us during responsible disclo-
sure. This work has been supported by the NSF under grants
2145631, 2215017, 2226447, 1801534, and 1900873, the De-
fense Advanced Research Projects Agency (DARPA) under
contract number D22AP00148, the NSF and Office of the
Under Secretary of Defense Research and Engineering under
grant ITE 2326898, and National Telecommunications and
Information Administration (NTIA)’s Public Wireless Supply
Chain Innovation Fund.

References
[1] 3GPP - The Mobile Broadband Standard. www.3gpp.org.

[2] American fuzzy lop. https://github.com/google/AFL.

[3] ASN.1 Project. https://www.itu.int/en/ITU-T/asn1/Pages/
asn1_project.aspx.

[4] boofuzz. https://boofuzz.readthedocs.io/en/stable/.

[5] CVE-2021-45462. https://nvd.nist.gov/vuln/detail/CVE-
2021-45462.

[6] Docker. https://www.docker.com/.

[7] EvoMaster. https://github.com/EMResearch/EvoMaster.

[8] Frida: A dynamic instrumentation toolkit. https://frida.re.

[9] Frizzer. https://github.com/demantz/frizzer.

[10] Ghidra. https://ghidra-sre.org/.

[11] Gitlab’s protocol fuzzing framework. https://gitlab.com/gitlab-
org/security-products/protocol-fuzzer-ce.

[12] go-fuzz. https://github.com/dvyukov/go-fuzz.

[13] gRPC: a high-performance RPC framework. https://grpc.io/.

[14] IDA-Pro. https://hex-rays.com/ida-pro/.

[15] Intelligent Private 5G Solution Based on Near-RT RIC.
https://stage-o-ran-v2.azurewebsites.net/classic/
generation/2023/category/intelligent-ran-control-
demonstrations/sub/intelligent-control/251.

[16] kpimon xApp of O-RAN-SC. https://gerrit.o-ran-sc.org/r/
admin/repos/ric-app/kpimon-go,general.

[17] Kubernetes. https://kubernetes.io/.

[18] libFuzzer. llvm.org/docs/LibFuzzer.html.

[19] Libprotobuf-mutator-asn1. https://github.com/google/
libprotobuf-mutator-asn1.

[20] Linux Foundation. https://www.linuxfoundation.org/.

[21] O-RAN ALLIANCE. www.o-ran.org.

[22] O-RAN in the news. https://www.o-ran.org/in-the-news.

[23] O-RAN Software Community. https://o-ran-sc.org/.

[24] ONF and Deutsche Telekom demonstrate fully disaggregated Open
RAN. https://opennetworking.org/news-and-events/press-
releases/onf-and-deutsche-telekom-demonstrate-fully-
disaggregated-open-ran-with-open-ric-platform/.

[25] ONOS Project: Rimedo Lab Traffic Steering xApp. https://
github.com/onosproject/rimedo-ts/tree/master.

[26] Open AI Cellular. https://www.openaicellular.org/.

[27] Open Networking Foundation. https://opennetworking.org/.

[28] OpenAPI. https://www.openapis.org/.

[29] ORANalyst. https://github.com/SyNSec-den/ORANalyst.

[30] Protocol Buffers. https://protobuf.dev/.

[31] Radamsa. https://gitlab.com/akihe/radamsa.

[32] SD-RAN. https://opennetworking.org/open-ran/.

[33] Sulley. https://github.com/OpenRCE/sulley.

[34] tcpdump. https://www.tcpdump.org/.

[35] The ASN.1 Compiler. https://github.com/vlm/asn1c.

[36] Valgrind. https://valgrind.org/.

[37] Wireshark. https://www.wireshark.org/.

[38] Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin.
Android SmartTVs vulnerability discovery via Log-Guided fuzzing.
In 30th USENIX Security Symposium (USENIX Security 21), pages
2759–2776. USENIX Association, August 2021.

[39] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler:
Stateful rest api fuzzing. In Proceedings of the 41st International
Conference on Software Engineering, page 748–758. IEEE Press, 2019.

[40] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. Select—a formal
system for testing and debugging programs by symbolic execution.
SIGPLAN Not., 10(6):234–245, apr 1975.

[41] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. Bap: A binary analysis platform. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Computer Aided Verification, pages
463–469, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[42] Thomas Byrd, Vuk Marojevic, and Roger Piqueras Jover. Csai: Open-
source cellular radio access network security analysis instrument. In
2020 IEEE 91st Vehicular Technology Conference, pages 1–5, 2020.

[43] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted
and automatic generation of High-Coverage tests for complex systems
programs. In 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 08), December 2008.

USENIX Association 33rd USENIX Security Symposium 1937

www.3gpp.org
https://github.com/google/AFL
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
https://boofuzz.readthedocs.io/en/stable/
https://nvd.nist.gov/vuln/detail/CVE-2021-45462
https://nvd.nist.gov/vuln/detail/CVE-2021-45462
https://www.docker.com/
https://github.com/EMResearch/EvoMaster
https://frida.re
https://github.com/demantz/frizzer
https://ghidra-sre.org/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://github.com/dvyukov/go-fuzz
https://grpc.io/
https://hex-rays.com/ida-pro/
https://stage-o-ran-v2.azurewebsites.net/classic/generation/2023/category/intelligent-ran-control-demonstrations/sub/intelligent-control/251
https://stage-o-ran-v2.azurewebsites.net/classic/generation/2023/category/intelligent-ran-control-demonstrations/sub/intelligent-control/251
https://stage-o-ran-v2.azurewebsites.net/classic/generation/2023/category/intelligent-ran-control-demonstrations/sub/intelligent-control/251
https://gerrit.o-ran-sc.org/r/admin/repos/ric-app/kpimon-go,general
https://gerrit.o-ran-sc.org/r/admin/repos/ric-app/kpimon-go,general
https://kubernetes.io/
llvm.org/docs/LibFuzzer.html
https://github.com/google/libprotobuf-mutator-asn1
https://github.com/google/libprotobuf-mutator-asn1
https://www.linuxfoundation.org/
www.o-ran.org
https://www.o-ran.org/in-the-news
https://o-ran-sc.org/
https://opennetworking.org/news-and-events/press-releases/onf-and-deutsche-telekom-demonstrate-fully-disaggregated-open-ran-with-open-ric-platform/
https://opennetworking.org/news-and-events/press-releases/onf-and-deutsche-telekom-demonstrate-fully-disaggregated-open-ran-with-open-ric-platform/
https://opennetworking.org/news-and-events/press-releases/onf-and-deutsche-telekom-demonstrate-fully-disaggregated-open-ran-with-open-ric-platform/
https://github.com/onosproject/rimedo-ts/tree/master
https://github.com/onosproject/rimedo-ts/tree/master
https://www.openaicellular.org/
https://opennetworking.org/
https://www.openapis.org/
https://github.com/SyNSec-den/ORANalyst
https://protobuf.dev/
https://gitlab.com/akihe/radamsa
https://opennetworking.org/open-ran/
https://github.com/OpenRCE/sulley
https://www.tcpdump.org/
https://github.com/vlm/asn1c
https://valgrind.org/
https://www.wireshark.org/

[44] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Tao Wei, and Long Lu. Savior: Towards bug-driven hybrid
testing. In 2020 IEEE Symposium on Security and Privacy (SP).

[45] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lte security disabled: Misconfiguration in commercial networks. In
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec ’19, page 261–266, New York, NY, USA,
2019. Association for Computing Machinery.

[46] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic
dynamic taint analysis framework. In Proceedings of the 2007 Inter-
national Symposium on Software Testing and Analysis, page 196–206,
New York, NY, USA, 2007. Association for Computing Machinery.

[47] Daniel Dik and Michael Stübert Berger. Open-ran fronthaul transport
security architecture and implementation. IEEE Access, 2023.

[48] Trevor Dunlap, Seaver Thorn, William Enck, and Bradley Reaves. Find-
ing fixed vulnerabilities with off-the-shelf static analysis. In 2023 IEEE
8th European Symposium on Security and Privacy. IEEE, 2023.

[49] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, jul 1987.

[50] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies, August 2020.

[51] Eduardo Gonzalez, Stan McClellan, and Wuxu Peng. Rtomin as a
balancing parameter between fast retransmissions and timeouts within
stream control transmission protocol (sctp). In The 2014 2nd Interna-
tional Conference on Systems and Informatics, pages 687–691, 2014.

[52] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. Dynsql: Stateful fuzzing
for database management systems with complex and valid sql query
generation. In Proceedings of USENIX Security Symposium, 2023.

[53] Hema Kadia. Current State of Open RAN. https:
//tecknexus.com/5g-network/5g-magazine-open-ran-june-
2021/current-state-of-open-ran-countries-operators-
deploying-trialing-open-ran/, June 2021.

[54] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang. Syst., 1979.

[55] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, page
190–200. Association for Computing Machinery, 2005.

[56] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang,
Ting Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: packet
sequence oriented fuzzing for protocol implementations. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 4481–4498.

[57] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Ji-
aguang Sun. Polar: Function code aware fuzz testing of ics protocol.
ACM Transactions on Embedded Computing Systems, 18:1–22, 2019.

[58] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In 29th
International Conference on Software Engineering (ICSE’07).

[59] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti.
Avatar 2: A multi-target orchestration platform. In Proc. Workshop
Binary Anal. Res., volume 18, pages 1–11, 2018.

[60] Cheolwoo Myung, Gwangmu Lee, and Byoungyoung Lee. Mundo-
Fuzz: Hypervisor fuzzing with statistical coverage testing and grammar
inference. In 31st USENIX Security Symposium (USENIX Security 22),
pages 1257–1274, Boston, MA, August 2022. USENIX Association.

[61] O-RAN Working Group 1. O-RAN Architecture Description 11.0 .
www.o-ran.org/specifications.

[62] O-RAN Working Group 11. O-RAN Security Test Specifications 5.0.
www.o-ran.org/specifications.

[63] O-RAN Working Group 11. O-RAN Security Threat Modeling and
Risk Assessment 1.0. www.o-ran.org/specifications.

[64] O-RAN Working Group 11. O-RAN Study on Security for Near Real
Time RIC and xApps 4.0. www.o-ran.org/specifications.

[65] O-RAN Working Group 11. O-RAN Study on Security for O-Cloud 4.0.
www.o-ran.org/specifications.

[66] O-RAN Working Group 3. O-RAN E2 Application Protocol (E2AP)
4.0. www.o-ran.org/specifications.

[67] O-RAN Working Group 3. O-RAN E2 Service Model (E2SM) 4.0.
www.o-ran.org/specifications.

[68] O-RAN Working Group 3. O-RAN Near-RT RIC Architecture 5.0
Technical Specification. www.o-ran.org/specifications.

[69] Hui Peng and Mathias Payer. USBFuzz: A framework for fuzzing USB
drivers by device emulation. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, August 2020.

[70] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: A
greybox fuzzer for network protocols. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification, 2020.

[71] Michele Polese, Leonardo Bonati, Salvatore D’oro, Stefano Basagni,
and Tommaso Melodia. Understanding o-ran: Architecture, interfaces,
algorithms, security, and research challenges. IEEE Communications
Surveys & Tutorials, 2023.

[72] Corina S. Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic
execution of java bytecode. In Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering, page
179–180. Association for Computing Machinery, 2010.

[73] CT Shen, YY Xiao, YW Ma, JL Chen, Cheng-Mou Chiang, SJ Chen,
and YC Pan. Security threat analysis and treatment strategy for oran.
In 2022 24th International Conference on Advanced Communication
Technology (ICACT), pages 417–422. IEEE, 2022.

[74] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok: (state of) the art of war:
Offensive techniques in binary analysis. In Security and Privacy (SP),
2016 IEEE Symposium on, pages 138–157. IEEE, 2016.

[75] Juraj Somorovsky. Systematic fuzzing and testing of tls libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1492–1504, 2016.

[76] Congxi Song, Bo Yu, Xu Zhou, and Qiang Yang. Spfuzz: A hierarchical
scheduling framework for stateful network protocol fuzzing. IEEE
Access, 7:18490–18499, 2019.

[77] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS, volume 16, pages 1–16, 2016.

[78] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960,
September 2007.

[79] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference
on compiler construction, pages 265–266, 2016.

[80] Andreas Walz and Axel Sikora. Exploiting dissent: towards fuzzing-
based differential black-box testing of tls implementations. IEEE
Transactions on Dependable and Secure Computing, 17:278–291, 2017.

[81] Wentao Wang, Faryn Dumont, Nan Niu, and Glen Horton. Detecting
software security vulnerabilities via requirements dependency analysis.
IEEE Transactions on Software Engineering, 48(5):1665–1675, 2022.

[82] Yingchao Yu, Zuoning Chen, Shuitao Gan, and Xiaofeng Wang. Sgp-
fuzzer: A state-driven smart graybox protocol fuzzer for network pro-
tocol implementations. IEEE Access, 8:198668–198678, 2020.

[83] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue.
White-box fuzzing rpc-based apis with evomaster: An industrial case
study. ACM Trans. Softw. Eng. Methodol., 32(5), jul 2023.

1938 33rd USENIX Security Symposium USENIX Association

https://tecknexus.com/5g-network/5g-magazine-open-ran-june-2021/current-state-of-open-ran-countries-operators-deploying-trialing-open-ran/
https://tecknexus.com/5g-network/5g-magazine-open-ran-june-2021/current-state-of-open-ran-countries-operators-deploying-trialing-open-ran/
https://tecknexus.com/5g-network/5g-magazine-open-ran-june-2021/current-state-of-open-ran-countries-operators-deploying-trialing-open-ran/
https://tecknexus.com/5g-network/5g-magazine-open-ran-june-2021/current-state-of-open-ran-countries-operators-deploying-trialing-open-ran/
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications
www.o-ran.org/specifications

	Introduction
	Background
	Threat Model & Motivation
	Threat Model
	Limitations of Existing Testing Methods
	Motivation for End-to-End Testing
	Scope of Testing

	Challenges & Methodology
	Challenges of End-to-End O-RAN Testing
	ORANalyst's Methodology
	Dependency Analysis Through Dynamic Tracing
	Runtime Analysis

	Input Constraints Generation
	Critical Path Conditions
	Extracting Path Conditions
	Selective Function Processing
	Path Conditions To Input Constraints

	Implementation
	Evaluation
	Identified Issues & Potential Exploits
	Evaluation of Intermediate Components
	Benchmark with State-of-the-Art

	Discussion and Limitations
	Related Work
	Conclusion

