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Abstract
Deadlocking is an unresponsive state of software that

arises when threads hold locks while trying to acquire
other locks that are already held by other threads, re-
sulting in a circular lock dependency. Interrupt-based
deadlocks, a specific and prevalent type of deadlocks
that occur within the OS kernel due to interrupt preemp-
tion, pose significant risks to system functionality, per-
formance, and security. However, existing static analysis
tools focus on resource-based deadlocks without charac-
terizing the interrupt preemption. In this paper, we in-
troduce Archerfish, the first static analysis approach for
effectively identifying interrupt-based deadlocks in the
large-scale Linux kernel. At its core, Archerfish utilizes
an Interrupt-Aware Lock Graph (ILG) to capture both
regular and interrupt-related lock dependencies, reducing
the deadlock detection problem to graph cycle discovery
and refinement. Furthermore, Archerfish incorporates
four effective analysis components to construct ILG and
refine the deadlock cycles, addressing three core chal-
lenges, including the extensive interrupt-involving con-
currency space, identifying potential interrupt handlers,
and validating the feasibility of deadlock cycles. Our
experimental results show that Archerfish can precisely
analyze the Linux kernel (19.8 MLoC) in approximately
one hour. At the time of writing, we have discovered 76
previously unknown deadlocks, with 53 bugs confirmed,
46 bugs already fixed by the Linux community, and 2
CVE IDs assigned. Notably, those found deadlocks are
long-latent, hiding for an average of 9.9 years.

1 Introduction

Deadlocking [7, 15, 21, 33] commonly refers to an unre-
sponsive condition caused by circular lock dependencies,
in which, each thread within a group of threads holds a
lock while also attempting to acquire another lock that is
already held by other threads. In the OS kernel, the inter-
rupt preemption [68] can cause additional lock depen-

dencies, when preempted threads, which have already
acquired locks, attempt to acquire additional locks within
the interrupt handling procedure [4]. In this paper, we
refer to the circular lock dependencies related to the in-
terrupt preemption as interrupt-based deadlocks.

There is abundant evidence that deadlocks can signif-
icantly hurt the functionality, performance [5], and even
security of modern software [50–55]. Furthermore, the
interrupt-based deadlocks within the OS kernel can pose
a more severe danger as they occur within the interrupt
context [43], potentially leading to the entire unrespon-
sive CPU core and even a whole system breakdown [70].
Unfortunately, there are no effective tools for identifying
interrupt-based deadlocks, as both the previous static and
dynamic approaches have certain limitations.

First, existing static approaches [7, 10, 14, 15, 18, 20–
22, 34, 63] primarily focus on detecting resource-based
deadlocks [15] caused by thread interleaving, thus over-
looking interrupt-based deadlocks. Specifically, most
past static analysis tools [14, 15, 18, 34, 35] target dead-
lock detection in userland software without considering
interrupt preemption, a unique feature of the OS kernel.
Also, although a few tools [7] aim to detect deadlocks
in OS kernel, they still use traditional thread interleaving
models by directly treating interrupts as threads, missing
lock dependencies caused by interrupt preemption.

Second, dynamic approaches [11,13,17,30,31,40,57,
84, 85] often suffer from low coverage and reliance on
the runtime execution environment such as external de-
vices. Specifically, although dynamic fuzzing can detect
such deadlocks with the assistance of Lockdep [73], the
built-in Linux kernel lock validator, they require high-
quality seed inputs or configurations to guide the exe-
cution towards a faulty path. Besides, the interrupt pre-
emption [68] significantly enlarges the exploration space
of dynamic concurrent execution, degrading the effec-
tiveness. Moreover, the dynamic triggering of interrupts
heavily depends on signals generated by hardware de-
vices, which sometimes are hard to be properly estab-
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645 static irqreturn_t s5p_mfc_irq(...) {
646 ......
653 /* Reset the timeout watchdog */
654 atomic_set(&dev->watchdog_cnt, 0);
655 spin_lock(&dev->irqlock);
656 ......
763 }

49 void clear_work_bit(...) {
50 struct s5p_mfc_dev *dev = ctx->dev;
51

52 spin_lock(&dev->condlock);
53 __clear_bit(ctx->num, ...);
54 spin_unlock(&dev->condlock);
55 }

1213 static int enc_post_frame_start(...) {
1214 ......
1299 if (!src_ready ...)
1300 clear_work_bit(ctx);
1301

1302 return 0;
1303 }

166 static void s5p_mfc_watchdog_worker(...) {

167 ......

184 spin_lock_irqsave(&dev->irqlock, flags);

185

186 s5p_mfc_clock_off();

187

188 for (i = 0; i < MFC_NUM_CONTEXTS; i++) {

189 ......

195 clear_work_bit(ctx);

196 wake_up_ctx(...);

197 }

198 ......

199 }

Regular 
Lock Dependency:  irqlock condlock

Interrupt 
Lock Dependency: condlock irqlock
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S52

S655

Thread A Thread B

IRQ 
Handler

preempt

Deadlock

preempt ②

①

① ②

(a) 

(b) 

(c) 

49 void clear_work_bit(...) {
50 struct s5p_mfc_dev *dev = ctx->dev;
51

52 spin_lock(&dev->condlock);
53 __clear_bit(ctx->num, ...);
54 spin_unlock(&dev->condlock);
55 }

① ①② ②

Figure 1: An eleven-year-old deadlock detected by Archerfish in Linux media subsystem (s denotes a statement).

lished or available [60].
We use an example shown in Figure 1(a), which was

introduced in Linux kernel [74] v3.7-rc1 eleven years
ago [41] and discovered by us. The example shows an
interrupt-based deadlock caused by circular lock depen-
dencies between two threads, Thread A and Thread B.
First, in the left-hand side of Figure 1(a), Thread A ac-
quires &dev->irqlock ① at Line 184 and then calls
the function clear work bit() at Line 195, which fur-
ther acquires &dev->condlock ② at Line 52. This reg-
ular execution flow, establishes a regular lock depen-
dency from &dev->irqlock ① to &dev->condlock ②.
Second, on the right-hand side of Figure 1(a), Thread
B, in the callback function enc post frame start(),
also calls clear work bit() at Line 300 and ac-
quires &dev->condlock ②. Since the interrupt handler
s5p mfs irq() is not disabled at that moment, there
is a possibility of preemption by the interrupt handler
between Line 52 and Line 54. If the interrupt han-
dler acquires &dev->irqlock ① during this preemp-
tion, it creates an interrupt lock dependency from
&dev->condlock ② to &dev->irqlock ①. Note that
this interrupt lock dependency cannot be captured by ex-
isting static methods [7,14,15] without characterizing in-
terrupt preemption. Consequently, in certain concurrent
scheduling, an interrupt-based deadlock may occur, as
depicted in Figure 1(b), resulting in a system halt.

Our Approach. In this work, we present Archerfish,
the first static analysis approach to characterize the inter-
rupt preemption to detect the interrupt-based deadlocks
in the Linux kernel. At the core, Archerfish is empow-
ered by the extended notion of an Interrupt-Aware Lock

Graph (ILG), which captures both kinds of lock depen-
dencies in the Linux kernel, namely regular lock de-
pendencies and interrupt lock dependencies, caused by
regular execution flow of threads and interrupt preemp-
tion, respectively. By effectively constructing the ILG,
Archerfish can reduce the detection of interrupt-based
deadlocks to the discovery and validation of dependence
cycles. For example, the deadlock in Figure 1(a) can be
detected by finding the cycle shown in Figure 1(c).

However, there are three core challenges of effectively
analyzing the Linux kernel to identify the lock dependen-
cies and refine deadlock cycles. (1) First, identifying the
Interrupt Service Routines (ISRs) is challenging without
domain-specific knowledge, as different subsystems in
the Linux kernel often have their own unique APIs and
callback interfaces for registering ISRs [71]. (2) Second,
the interrupt preemption enlarges the concurrency rea-
soning space of static analysis. As each interrupt-enabled
program location can be potentially interrupted [68], it
is necessary to consider preemption at each statement to
capture all possible interrupt-induced lock dependencies.
However, the large concurrency reasoning space can sig-
nificantly degrade the effectiveness of static analysis. (3)
Third, it is crucial to identify feasible lock dependencies,
taking into account the feasibility of both interrupts and
program paths. However, for example, directly validat-
ing the path-feasibility of numerous lock dependencies
using SMT solving [82] may cause low efficiency.

To address the three challenges, we design four stages
shown in Figure 2 with several tailored techniques.

• First, to address the first challenge, Archerfish
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harnesses the power of Large Language Models
(LLMs) to generate interrupt specifications that
complement manually modeled ones for identifying
interrupts. This is because LLMs have been trained
on a vast amount of online textual data, including
information related to the Linux kernel [61].

• Second, we employ a summary-based data-flow
analysis to compute the lockset [32,81] and the state
of interrupt enabling or disabling at relevant state-
ments. To tackle the second challenge of the vast
reasoning space of the interrupt preemption, we in-
troduce the notion of a preemption unit, clustering
all statements within a critical section. Our key idea
is that a critical section [78] shares the same lockset
so that any interrupts occurring within the region
hold the same set of locks. Thus, separately com-
puting each individual program point within the re-
gion is unnecessary during lockset analysis.

• Third, using the computed data-flow facts, Archer-
fish constructs the ILG and captures both kinds of
lock dependencies as graph edges. In particular, it
identifies dependency cycles within the ILG, each
representing an interrupt-based deadlock.

• Fourth, to overcome the third challenge of expen-
sive deadlock feasibility checking, our key idea is
that not all lock dependencies are related to dead-
lock detection. Thus, we lazily check the feasibility
of both interrupts and paths, deferring the costly
validation for each discovered cycle instead of early
validating each edge during ILG construction.

We have implemented the Archerfish prototype based
on the LLVM framework [36] and evaluated it on the
Linux kernel v6.4. Archerfish can analyze the Linux
kernel (19.8 MLoC) in about one hour with a relatively
low positive (49.7%). More excitingly, we have found
76 new and long-latent interrupt-based deadlocks in the
Linux kernel and reported all of them to the Linux com-
munity. In total, 53 bugs have been confirmed by de-
velopers, and 46 of them have already been fixed in the
mainstream Linux kernel with 2 CVE IDs assigned.

Contribution. We make the following contributions.

• We propose the notion of the Interrupt-Aware Lock
Graph (ILG), which captures both kinds of regular
and interrupt-related lock dependencies as edges,
enabling the reduction of interrupt-based deadlock
detection via graph cycle discovery and refinement.

• We present Archerfish, the first static interrupt-
based deadlock detection for the Linux kernel, ad-
dressing three specific challenges of effectively con-
structing ILG and refining cycles.

• We evaluate Archerfish on Linux kernel v6.4, where
it revealed 76 new interrupt-based deadlocks that
across various subsystems in the Linux kernel.

Bug Reports

2. Typestate
Analysis
Lockset 
Analysis

Preemption-
Point Clustering

Interrupt State 
Analysis

Path-Feasibility 
Checking

Preemption-
Feasibility Checking

4. Lock Cycle Validation

Interrupt 
Lock Edges

Regular 
Lock Edges

3. Lock Graph Construction

Interrupt-Aware 
Lock Graph

OS Kernel

LLVM IR

Lockset

Interrupt
State

Preempt
Units

Prompt Critical Var 
Name/Type

LLM-Assisted
Specifications

Manual-Model
Specifications

1. ISR Identification

Interrupt handlers
Lock Cycles

Figure 2: The design of Archerfish framework.

2 Background

We present the interrupts’ concept, the interrupt-based
deadlocks, the limitations of existing works, and the
threat model in § 2.1, § 2.2, § 2.3, and § 2.4, respectively.

2.1 Interrupts in Linux kernel

Interrupt Handling. An interrupt [43] in the Linux ker-
nel is a special event that alters the regular execution
flow of a program, and such action is also called inter-
rupt preemption [68]. In contrast, the action that one
thread switches to another thread is called thread pre-
emption [72]. Their major difference is that interrupt pre-
emption is asymmetric, indicating that interrupt runs in
higher priority and cannot switch back to the previously
preempted execution flow until the interrupt finishes its
execution [43]. Thus, interrupt preemption could intro-
duce new lock dependencies and cause deadlocks [2].

Interrupt Priority. Interrupts in the Linux kernel
have two categories: hardware interrupts [42] and soft-
ware interrupts [44], also known as hardirqs and softirqs,
respectively. Hardirqs are triggered by interrupt signals
from hardware devices and execute under the context
called the hardirq context. In recent Linux kernel, local
interrupt is disabled inside hardirq context by default, so
hardirqs normally run with the highest priority and can-
not be preempted by any other execution units, including
other hardirqs [43].

Because hardirqs should execute quickly in response
to hardware signals, time-consuming tasks would be de-
ferred to softirqs [44]. Softirqs run in the execution con-
text called the softirq context with lower priority than the
hardirq context and can be preempted by hardirqs [44].
Nevertheless, both the hardirqs and softirqs belong to
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(a) Registered via a structure field interface

(b) Registered via an API call

struct net_device_ops ks_wlan_netdev_ops = {
.ndo_start_xmit = ks_wlan_start_xmit,
.ndo_open = ks_wlan_open,
.ndo_stop = ks_wlan_close,
.ndo_do_ioctl = ks_wlan_netdev_ioctl
……

}

ISR

request_irq(IO_INTERRUPT, do_cio_interrupt, 0, 
"I/O", NULL);

ISR

Figure 3: Examples of ISR registration in Linux.

interrupts and have higher priority than normal kernel
threads executing under the process context [23]. The
priority-based preemption relationship leads to the spe-
cific concurrency model in the Linux kernel. Therefore,
any static analyzer that aims to reason about interrupt
preemption should consider this relationship.

Interrupt Service Routine (ISR) Registration. An
ISR [3] is a function in response to interrupt signals from
hardware devices or software interrupt. In the Linux ker-
nel, an ISR is typically registered in two ways. First, an
ISR can be registered by being assigned to a structure
field. In Figure 3(a), function ks wlan start xmit()

is registered as a softirq ISR by being assigned to
the net device ops.ndo start xmit structure field,
a callback interface responsible for handling network
packet transmission [71]. Second, an ISR can be reg-
istered by being passed as an argument to a specific API
call. For example, as shown in Figure 3(b), the function
do cio interrupt() is registered as a hardirq ISR for
the interrupt line IO INTERRUPT using the standard API
request irq() [3]. The large codebase of Linux con-
tains diverse subsystems, each with its own interfaces or
APIs for ISR registration. The variation presents a chal-
lenge for identifying ISRs and capturing interrupt pre-
emption in static deadlock detection.

2.2 Interrupt-Based Deadlocks
Distinguishing interrupt-based deadlocks from other
types of deadlocks [14, 15] is the presence of lock
dependencies introduced by interrupt preemption [68].
Specifically, interrupt preemption is an asymmetric pro-
cess [43], in which a preempted thread is required to wait
until the ISR completes before it can proceed. Conse-
quently, any locks held by the preempted thread cannot
be released until the ISR finishes its execution. When
the ISR itself attempts to acquire locks, it can give rise
to lock dependencies, potentially resulting in cyclic lock
acquisitions.

For example, consider Figure 4(a), in which lock b is

lock(a)
……
lock(b)

T1

(a) A deadlock program with an interrupt

lock(b)
……

T2

lock(a)
……

ISR
preempt

b

(b) The thread model missing interrupt preemption

lock(a)
……
lock(b)

T1

lock(b)
……

T2

lock(a)
……

T3
a

b

a

Figure 4: (a) shows a deadlock program while (b) shows
its previous thread modeling with one lock edge missed.

held by thread T 2 and the thread is preempted by an ISR
that acquires another lock a. In this scenario, the inter-
rupt lock dependency b ⇝ a appears, as T 2 cannot re-
lease lock b until the ISR finishes. When considering
the regular lock dependency a → b introduced by T 1 to-
gether, an interrupt-based deadlock could happen under
the specific thread and the interrupt interleaving.

Note that the thread switching cannot introduce the
lock dependencies (e.g., b ⇝ a) as interrupt preemp-
tion. This is because if a thread is holding a lock and
is switched out, it could be switched back at any time to
release the lock it acquired. This paper refers to the lock
dependencies introduced by interrupt preemption as in-
terrupt lock dependencies and deadlocks that involve in-
terrupt lock dependencies as interrupt-based deadlocks.

2.3 Limitations of Existing Static Detectors

Existing static deadlock detection techniques [7, 14, 15,
18, 34, 35] do not consider the interrupt lock dependen-
cies and model interrupts in the same way as threads.
As a result, they cannot detect interrupt-based deadlocks.
Consider the example program in Figure 4(b), where the
interrupt in Figure 4(a) is modeled as thread T 3 by the
existing deadlock detectors and then the interrupt pre-
emption is not captured to identify the lock dependency
b ⇝ a. Consequently, the existing static deadlock de-
tectors, which model interrupts as threads, are unable to
detect deadlock situations that arise from interrupts.

Some works [38, 75] detect other specific interrupt-
related concurrency bugs like data race [46, 75, 80] or
atomicity violation [28, 38]. However, the challenges
associated with modeling and detecting these types of
bugs differ from those encountered in deadlock detec-
tion. Therefore, their approaches cannot be directly ap-
plied to identify interrupt-based deadlocks effectively.
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2.4 Security Impacts of Interrupt-Based
Deadlocks in the Linux Kernel

Threat Model. We characterize the deadlock vulnerabil-
ity as potential lock acquisitions that can be exploited by
local or remote adversaries. These adversaries have the
capability to trigger specific deadlock-introducing ISRs
through various means, such as remote network packets,
local system call execution, or physical hardware access,
manipulating the control flow. When these deadlock-
introducing ISRs in the system are periodically activated
and happen to preempt the execution of code involving
vulnerable and cyclic lock acquisitions, a deadlock sit-
uation can arise. Once this deadlock is exploited, the
corresponding ISRs can seize CPU cores, causing them
to remain indefinitely stuck [2,4,5] and leading to issues
like lockup [70] or system crashes. A concrete instance
of the deadlock (CVE-2023-0160) [56] was reported in
the BPF subsystem, allowing low-privileged local attack-
ers to exploit the deadlock and crash the system.

Conventional deadlocks primarily impact blocked
threads, allowing other threads to continue execution [7,
15]. In contrast, interrupt-based deadlocks pose a more
severe impact by monopolizing the CPU with deadlock-
introducing ISRs, resulting in a complete blockage of the
entire system’s execution and halting further progress.

3 Archerfish in a Nutshell

We present the problem formulation, the challenges, and
our solutions to interrupt-based deadlock detection.

3.1 Problem Formulation and Challenges

In essence, interrupt-based deadlocks are cyclic lock de-
pendencies that occur due to interrupt preemption. To
identify and address these deadlocks, we introduce ILG
by extending the conventional notion of lock graphs [15,
33], which incorporate both interrupt lock dependencies
and regular lock dependencies as lock edges. As a re-
sult, the problem of interrupt-based deadlock detection is
formulated as the construction of ILG and the discovery
of feasible deadlock cycles within the graph. However,
three challenges hinder the precise and efficient ILG con-
struction and deadlock cycle validation.

C1: Lack of ISR Registration Specifications. Vari-
ous methods exist to register interrupt handlers in Linux,
a complex and feature-rich OS kernel containing many
subsystems [74]. As shown in Figure 3 (a), without any
domain-specific knowledge, it is difficult to identify that
net device ops.ndo start xmit is a callback inter-
face executed under the softirq context. However, iden-
tifying functions executed under interrupt contexts is the
prerequisite for capturing interrupt preemption and inter-

rupt lock dependencies. Thus, lacking domain-specific
knowledge about ISR registration poses a significant
challenge for interrupt-based deadlock detection.

C2: Large Interrupt-Involving Reasoning Space.
The concurrency reasoning space of thread interleaving
already grows exponentially with the number of state-
ments [19, 65], and this complexity is further amplified
by the presence of interrupt preemption. In particular,
efficiently and precisely capturing lock dependencies be-
comes challenging when considering the interrupt en-
abling/disabling state at each statement, and the state
could vary under different calling contexts, which require
expensive context-sensitive analysis [79]. For example,
in the Figure 1(a), clear work bit() could be pre-
empted by the ISR s5p mfs irq() when called by func-
tion enc post frame start(), but not when called
by function s5p mfc watchdog worker() because
hardirq is already disabled by spin lock irqsave()

at Line 184. Worse still, the large codebase of the
Linux kernel also further complicates the interruption-
involving concurrency reasoning space.

C3: Validation of Feasible Lock Dependencies. Fi-
nally, not all lock dependencies are feasible during run-
time execution. First, the interrupt preemption leading
to some lock dependencies may be infeasible as the pre-
emption cannot happen before the corresponding ISR is
registered [3]. Second, the path conditions of certain
lock dependencies could also be infeasible. However,
the large number of lock dependencies to validate and
the high overhead (e.g., SMT solving [82]) of feasibility
checking make efficient validation challenging.

3.2 Four Core Stages in Archerfish

The architecture of Archerfish is shown in Figure 2, con-
sisting of four main stages to address these challenges.

S1: Interrupt Service Routine Identification (§5.1).
Public LLMs like ChatGPT-4.0 are trained with vast on-
line textual data, including those of Linux kernel [61].
Thus, we can consider LLMs as Linux experts and ex-
tract domain-specific knowledge about subsystem ISR
registration from them. The subsystem specifications
generated by LLMs would complement a set of standard
ISR registration specifications modeled by humans.

S2: Lockset and Interrupt-State Analysis (§5.2).
To effectively reason about the interrupt preemption and
capture interrupt lock dependencies, our basic idea is
that statements inside the same critical section share the
same lockset. Consequently, instead of enumerating the
possibility of interrupt preemption at each program lo-
cation, we treat all statements in a critical section as a
preemption unit, calculating a unified state of interrupts
for the unit and reducing the preemption reasoning space.
Furthermore, we propose a compositional and summary-
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based data-flow analysis to compute the lockset and in-
terrupt state at interesting statements.

S3: ILG Construction (§5.3). By inspecting the com-
puted data-flow facts, both Interrupt Lock Edge (ILE)
and Regular Lock Edge (RLE) are captured to construct
an ILG. Specifically, we capture RLEs by examining
the lockset on statements of interest, while we cap-
ture ILEs by pairwise checking between several pre-
computed summaries on preempted threads and ISRs.
After constructing ILG, a standard cycle detection algo-
rithm [29] is run to identify potential deadlock cycles.

S4: Deadlock Cycle Validation (§5.4). Instead of
performing heavyweight feasibility checking on each
identified lock dependency edge, we delay the analysis
by only performing feasibility checking on those form-
ing a deadlock cycle. At this stage, Archerfish per-
forms happen-before analysis [45,83] regarding ISR reg-
istration to examine the preemption feasibility and path-
feasibility checking on each potential deadlock-leading
dependency edge. Finally, deadlock reports are gener-
ated on validated interrupt-based deadlock cycles.

4 Preliminary

In this section, we introduce the definitions used in the
paper and formulate the problem we aim to solve.

Abstract Domain. Figure 5 shows the basic abstract
domain, where the symbol s ∈ S represents each state-
ment in a standard LLVM-like language. Specifically,
lock- and interrupt-related API call sites are modeled
during static analysis. The symbol o ∈O represents each
lock object, and a cyclic dependency among them forms
a deadlock. The symbol t ∈ T represents a kernel thread
executing under the process context, while isr ∈ R rep-
resents an ISR [3] executing under the interrupt context,
including both hardirq and softirq. Note that identifica-
tion of ISRs is important for Archerfish to capture inter-
rupt lock dependencies and perform deadlock detection.
We give more details of ISR identification in § 5.1.

The LS and RS represent the lockset and the interrupt
states computed by typestate analysis. Lockset LS main-
tains whether a specific lock o∈O is Acquired, Released
or its state is Unknown (⊥). Interrupt state RS maintains
whether a specific isr ∈ R is Enabled, Disabled or its
state is Unknown (⊥). To reach flow-sensitivity, we com-
pute a unique lockset LS and interrupt state RS at each
statement s ∈ S. For example, at Line 186 of the program
in Figure 1(a), we identify that LS = (irqlock,A) and
RS = (s5p m f c irq(),D), indicating irqlock is Acquired
and s5p m f c irq() is Disabled. Both LS and RS are de-
rived from a compositional typestate analysis described
in § 5.2, forming the foundation of deadlock detection.

Next, we formally define the notion of ILG.

Statements s ∈ S Locks o ∈O
Threads t ∈ T Interrupt Handlers isr ∈ R
Lockset LS := S→ (O, TY ),

where TY = {Acquired, Released, ⊥}
Interrupt State RS := S→ (R, ST ),

where ST = {Enabled, Disabled, ⊥}

Figure 5: Basic abstract domain.

Definition 1. The Interrupt-Aware Lock Graph (ILG) is
defined as a three-tuple, G = (N, ES, EI).
• N denotes the set of vertices in ILG, where each

vertex represents a unique lock object o.
• ES represents a set of regular lock edges with the

form o1 → o2, indicating that during thread or ISR
execution, lock o2 could be acquired with o1 held.

• EI represents a set of interrupt lock edges with the
form o1 ⇝ o2, indicating that at certain program
points, lock o1 is held while an ISR preempts the
execution and subsequently acquires o2.

At a high level, interrupt lock edges are constructed by
pairwise matching between preemption units and sum-
maries of lock acquisition inside ISRs, both of which are
constructed in § 5.2. We give more details of ILG con-
struction in § 5.3. With the definition of ILG, we further
define the concept of Interrupt-Based Lock Cycle (ILC).

Definition 2. An Interrupt-Based Lock Cycle (ILC) is
a cycle on ILG where at least one of the edges on the
cycle belongs to EI, representing a potential deadlock in-
troduced by interrupt preemption.

Figure 1(c) shows an example of ILC constituting an
interrupt lock edge ②⇝① and a regular lock edge ①→②.
Note that an ILC does not necessarily represent a real
interrupt-based deadlock in practice, so further valida-
tion is required to reduce false positives. We give a de-
tailed illustration in § 5.4. In addition, this paper focuses
on detecting interrupt-based deadlocks, despite Archer-
fish being capable of detecting conventional deadlocks.

5 The Approach of Archerfish

In this section, we detail each core stage in Archerfish.

5.1 ISR Identification
Prompt queries with LLMs allow us to automatically ex-
tract ISR registration specifications in Linux subsystems,
which supplement manually modeled standard specifica-
tions with a complete list shown in appendix A.3.

6172    33rd USENIX Security Symposium USENIX Association



Prompt Template 1

Query: In the Linux kernel, is a function registered by interface 
[multi-layer type] typically executed under “process context”, 
“hardirq context” or “softirq context”?

Prompt Template 2

Query: In the Linux kernel, is a function registered by API 
[function name] via [index] ’th argument typically executed under 
“process context”, “hardirq context” or “softirq context”?

LLM: One of {hardirq context, softirq context, process context}

(a) Prompt template for ISR registration interface

(b) Prompt template for ISR registration API

LLM: One of {hardirq context, softirq context, process context}

Figure 6: Prompt templates for LLM-assisted specs.

To construct a prompt query [66], Archerfish performs
static analysis to trace each address-taken function along
its def-use chain until reaching one of the two cases:
• Registration Interface: If the function pointer

f ptr is used as ∗p= f ptr, we take the struct type of
p as a potential ISR registration interface. The type
would be used to construct a prompt query via the
example template shown in Figure 6(a) to determine
under which context the interface is executed.

• Registration API: If the function pointer f ptr is
used as call bar(..., f ptr, ...), we extract the callee
function name and its argument index, treating them
as a potential ISR registration API. Similarly, these
information would be used to construct a prompt
query via the template in Figure 6(b).

LLMs can act as a classifier for the execution context
of queried APIs or interfaces. With such specifications,
we can identify whether a function is an ISR or a kernel
thread by inspecting whether it is passed to these APIs
or interfaces. Specifically, if an address-taken function is
classified as hardirq or so f tirq, it would be identified as
an isr ∈ R, otherwise it would be identified as t ∈ T.

Example 5.1. To determine whether the function
ks wlan start xmit() in Figure 3(a) is an ISR or a
thread, Archerfish traces its def-use chain and reaches
the structure field net device ops.ndo start xmit.
This structure field is an interface commonly used by
Linux network developers for NET TX SOFTIRQ softirq
registration. In our experiment, LLM can correctly rec-
ognize that it is executed under the so f tirq context.

5.2 Lockset and Interrupt-State Analysis
Next, we perform a flow- and context-sensitive types-
tate analysis for computing lockset and interrupt states.
Specifically, Archerfish runs forward data-flow analyses

s : lock(o)
LS(s) ∪ {o %→ A}

(1)
s : unlock(o)

LS(s) ∪ {o %→ R}
(2)

s : disable irq(isr)

RS(s) ∪ {isr %→ D}
(3)

s : enable irq(isr)

RS(s) ∪ {isr %→ E}
(4)

s : merge(s1,s2)
(o %→ ty1) ∈ LS(s1), (o %→ ty2) ∈ LS(s2)

(isr %→ st1) ∈ RS(s1), (isr %→ st2) ∈ RS(s2)

LS(s) ∪ {o %→ LSmerge(ty1, ty2)}
RS(s) ∪ { isr %→ RSmerge(st1, st2)}

(5)

LSmerge(ty1, ty2) =

!
"#

"$

A if ty1 = A or ty2 = A
R if ty1 = R and ty2 = R
⊥ other cases

RSmerge(st1, st2) =

!
"#

"$

E if st1 = E or st2 = E
D if st1 = D and st2 = D
⊥ other cases

Figure 7: Intra-procedural abstract operations

for each function following the reverse topological or-
der on Call Graph (CG) [12, 16] and computes function
summaries. These summaries can be inlined by callers to
achieve efficient inter-procedural context-sensitive anal-
ysis and to be used for efficient ILG construction.

5.2.1 Intra-Procedural Data-Flow Analysis

At the entry of an analyzed function, the state of each
lock o and isr are initialized as ⊥. Next, Archerfish pro-
ceeds forward along the control flow graph to analyze
each instruction sequentially until the function returns.
The state at each instruction is initialized as a merge of
states at its predecessors, and then the corresponding ab-
stract operation shown in Figure 7 is used. A concrete
list of modeled APIs can be found in appendix A.2.

Next, we provide a detailed illustration of the abstract
operations. Note that the strong update [25], denoted by
the %→ operator, is applied to achieve flow-sensitivity.
• Lock Acquisition and Release: At each lock-

acquisition API call lock(o), Archerfish applies (1)
o %→ A on the current lockset, indicating the state
of lock o is updated as Acquired. A similar op-
eration (2) is applied at each lock-release API call
unlock(o).

• Interrupt Disabling and Enabling: At each ISR-
disabling API call disable irq(isr), Archerfish per-
forms the operation (3) isr %→ D on the current inter-
rupt state to mark isr as Disable. The opposite op-
eration (4) is performed at ISR-enabling API calls.

• Merging. The (5) merge operation first retrieves
the lockset and interrupt states at predecessor in-
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Preempt Summary M1 :=(O, S)→ (R, ST ),

where ST = {E, D}
Locking Summary M2 :=(O, S)→O

Return Summary M3 :=(RS, LS)

Figure 8: Three function summaries

structions, and then performs LSmerge and RSmerge to
conservatively merge these states. Specifically, may
analysis is used to determine whether a lock o could
be Acquired or whether an isr could be Enabled.

Example 5.2. If the typestate from one incoming branch
is {(o, A), (isr,⊥)} and that from the opposite branch
is {(o, R), (isr, E)}, the merged results would be
{(o, A), (isr, E)}, indicating lock o could be acquired
and isr could be enabled at the branches confluence.

5.2.2 Function Summary Construction

Figure 8 shows the definition of three function sum-
maries constructed along the data-flow analysis.
• Preemption Unit Summary (M1): This summary

forms the units of interrupt preemption. Each sum-
mary item represents a critical section, denoted by
a lock object and a lock statement (o, s). The item
also maintains a set of conservative interrupt states,
representing the set of ISRs that could preempt this
critical section. To do so, we record must-Disabled
and may-Eabled state of each already analyzed ISR.

• Lock Acquisition Summary (M2): This summary
represents lock acquisitions inside a function. Each
summary item is also denoted by a lock object and
a lock statement (o, s). Different from M1, the item
in M2 records a set of locks that must have been
Released before this lock acquisition.

• Return State Summary (M3): This summary
caches the lockset and interrupt states at the end of
a function, which can be inlined by caller functions
to update the typestate at call sites.

Summary Construction. Algorithm 1 shows how to
construct the three summaries. First, for each encoun-
tered lock-acquisition API call s : lock(o), we construct a
new item of M1, recording the set of ISRs that must have
been Disabled and cannot preempt the current critical
section (Line 3). Similarly, we construct a new item of
M2, recording the set of locks must have been Released
before lock o is acquired (Line 4). Second, for each ISR-
enabling API call s : enable irq(isr) (including those in-
lined from callee’s summary), we first retrieve the set of
locks (o, s′) guarding s, and update corresponding items
of M1 to mark that isr may be Enabled inside the criti-
cal sections (Lines 5-7). Finally, at the function return,

Algorithm 1: Function Summary Construction
1 Function SummaryConstruction(s):
2 case s : lock(o) do
3 M1[ (o, s) ] := {(isr, D) : (isr, D) ∈ RS [s ]};
4 M2[ (o, s) ] := {o′ : (o′, R) ∈ LS [s ]};

5 case s : enable irq(isr) do
6 foreach o : (o, A) ∈ LS[s ], acquired at s′ do
7 M1[ (o, s′) ] ∪ (isr, E)

8 case s : return do
9 M3 := (RS[s ], LS[s ] )

Algorithm 2: Function Summary Inlining
1 Function SummaryInlining(s : call bar()):
2 Retrieve M1

′, M2
′ and M3

′ from bar
3 foreach isr : (isr, D) ∈ RS[s ] do
4 foreach (o′, s′) : (isr, E) /∈M1

′[ (o′, s′) ] do
5 M1

′[ (o′, s′) ]∪ (isr, D)

6 foreach o : (o, R) ∈ LS[s ], (o′, s′) ∈M2
′ do

7 M2
′[ (o′, s′) ] ∪ {o}

8 Append M1
′, M2

′ to M1, M2
9 Update RS, LS by M3

′

LS and RS would be cached as M3 (Lines 8-9), used by
callers to update typestates at call sites.

5.2.3 Function Summary Inlining.

At a call site of an already analyzed function, constructed
summaries inside the callee function can be inlined by
the caller for context-sensitive inter-procedural analysis.
Algorithm 2 shows the detail of the inlining process.

Summary Inlining. Archerfish first retrieves the three
summaries M1

′, M2
′ and M3

′ constructed in callee func-
tion (Line 2). Before inlining the summary, we take two
steps. First, if some ISRs have already been disabled
at the call site and are not enabled inside the callee’s
preempt unit, Archerfish will update the summary item
in M1

′ by marking the state as Disabled. (Lines 3-5).
Second, some locks have already been Released before
the call site, so Archerfish needs to insert these released
locks into each item of callee’s M2

′ (Lines 6-7). After
these, callee’s M1

′ and M2
′ would be inlined (Line 8),

and the current lockset and interrupt states are updated
by callee’s Return State Summary M3

′ (Line 9).

Example 5.3. Figure 9 shows partial analysis results of
Figure 1. Once clear work bit() is analyzed, its sum-
mary M1 contains a preemption unit {(condlock, s52) :
{}}, indicating that the critical section (condlock, s52)
does not execute with any ISR explicitly enabled or
disabled. Next, the summary is inlined by two caller
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<clear_work_bit(), s55 >  
 !!	= {(condlock, s52) : {}}
 !" = {(condlock, s52) : {}} 
 !# = {(condlock, R)}

<s5p_mfc_irq(), s763 >  
 !! = {(s5p_mfc_irq(), D)}
 !"	= {(irqlock, s655) : {}} 

<enc_post_frame_start(),  s300>
!! = {(condlock, s52) : {}}

	 !" = {(condlock, s52) : {}} 
 #$ =  {(condlock, R)}
 ℝ$ = {(s5p_mfc_irq(), ⊥)}

<s5p_mfc_watchdog_worker(),  s195>
 !! = {(condlock, s52) : {(s5p_mfc_irq(), D)},  
               (irqlock, s184) : {(s5p_mfc_irq(), D)}}
 !" = {(condlock, s52) : {},  (irqlock, s184) : {}} 
    #$  = {(irqlock, A),  (condlock, R)}
    ℝ$  = {(s5p_mfc_irq, D)}

inlined

Figure 9: The analysis result for code in Figure 1.

functions. For caller s5p mfc watchdog worker(),
since the hardware ISR s5p mfc irq() is already dis-
abled at Line 184, the summary M1 is updated to
{(condlock, s52) : {(s5p mfc irq(), D)}}, indicating
that all statements inside the critical section cannot
be preempted by s5p mfc irq(). On the contrary,
no ISR is explicitly disabled or enabled inside the
caller enc post frame start(), so the summary item
{(condlock, s52) : {}} is inlined without being updated.

5.3 Interrupt Lock Graph Construction

In this stage, Archerfish proceeds to perform ILG con-
struction. The core algorithm is shown in Algorithm 3.

Interrupt Lock Edge Construction. Interrupt lock
dependencies are captured as interrupt lock edges (EI).
As shown in InterruptLockEdgeAnalysis(), pair-
wise matching is run between each preemption unit (M1)
of lock o inside a function f and each higher priority isr
(Lines 2-5). If the isr is not disabled inside the preemp-
tion unit, for each lock acquisition (M2) of o′ inside isr,
an interrupt lock edge o ⇝ o′ is constructed (Lines 6-10).

Regular Lock Edge Construction. Regular lock de-
pendencies are captured as regular lock edges (ES). As
shown in RegularLockEdgeAnalysis(), for a lock
statement on lock o and each already acquired lock o′,
a regular lock edge o′ → o is constructed (Lines 12-14) ;
while for a call statement, Archerfish performs pairwise
matching between each already acquired lock o and each
acquisition of lock o′ inside the callee function. If o is not
released before o′ is acquired inside the callee, a regular
lock edge o → o′ is constructed (Lines 15-20).

Once ILG is constructed, we use a standard cycle-

Algorithm 3: ILG Construction
1 Function InterruptLockEdgeAnalysis():
2 foreach f ∈ T∪R, isr ∈ R do
3 if isr has higher priority than f then
4 Retrieve M1 from f ;
5 foreach (o, s) ∈M1 do
6 if (isr, D) ∈M1[ (o, s) ] then
7 continue;

8 Retrieve M2
′ from isr;

9 foreach (o′, s′) ∈M2
′ do

10 add o ⇝ o′

11 Function RegularLockEdgeAnalysis(s):
12 case s : lock(o) do
13 foreach (o′, A) ∈ LS[s ] do
14 add o′ → o ;

15 case s : call bar() do
16 Retrieve M2 from bar;
17 foreach o : (o, A) ∈ LS[s ] do
18 foreach (o′, s′) ∈M2 do
19 if o /∈M2[ (o′, s′) ] then
20 add o → o′

detection algorithm [29] to identify an initial set of ILCs.
Example 5.4. In Figure 9, by running pairwise matching
between summaries M1 of enc post frame start()

and M2 of s5p mfc irq(), we can construct an interrupt
lock edge condlock ⇝ irqlock. By performing pairwise
matching between M2 of clear work bit() and LS of
s5p mfc watchdog worker() at s195, we can construct
a regular lock edge irqlock → condlock. As a result, the
two lock edges form an ILC, as shown in Figure 1(c).

5.4 Lazy Deadlock Cycle Validation
Finally, each detected ILC is validated in terms of both
the happen-before relationship and path feasibility.

5.4.1 Interrupt Happen-Before Validation

Synchronization between threads and ISRs should be
characterized to ensure a true deadlock. Specifically,
since interrupt preemption cannot happen before it is reg-
istered, all statements before ISR registration cannot be
preempted. To this end, we perform a static happen-
before analysis to validate the feasibility of an interrupt
lock edge o ⇝ o′ in terms of ISR registration. Specif-
ically, we perform a forward search from the last state-
ment of the preemption unit of o, following the context-
sensitive control flow graph. Once the registration state-
ment of the ISR acquiring o′ is found during the graph
traversal, the interrupt lock edge is considered invalid.
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Figure 10: Path-feasibility constraints of an ILC

5.4.2 Interrupt Path-Feasibility Validation

Figure 10 shows the path constraints Φ(◦) of an ILC (de-
noted by ◦), which consist of two parts: path constraints
on regular lock edges, denoted as ΦS(e) and the path con-
straints on interrupt lock edges, denoted as ΦI(e′). The
Z3 SMT solver is used to determine path feasibility.

Regular Lock Edge. At a high level, the path con-
straints ΦS(e) of a regular lock edge represent that at
least one path starting from the entry point could lead
to lock dependency o → o′. To do so, we first collect the
disjunctive path conditions of each path from the entry to
the first lock acquisition site s of o, as shown in Figure 10
(1). Second, we collect the disjunctive path conditions of
each path from s to the second lock acquisition site s′ of
o′, as shown in Figure 10 (2).

Interrupt Lock Edge. The path condition ΦI(e) of an
interrupt locking edge o ⇝ o′ is more complicated, as the
preemption at each statement inside the preemption unit
with target ISR enabled (denoted by Sp) should be con-
sidered. Consequently, the disjunctive path conditions of
each path from entry to each statement s in Sp are en-
coded, as shown in Figure 10 (3). Finally, the disjunctive
path conditions of each path from ISR entry to lock ac-
quisition site s′ are encoded, as shown in Figure 10 (4).

Example 5.5. Figure 11 depicts the path conditions on
the interrupt lock edge s lock ⇝ r lock when the crit-
ical section of s lock in the vq alloc() function is
preempted by the vq heartbeat() ISR. With two valid
preemption points within the critical section, the first part
constraint (Figure 10 (3)) is formulated as the disjunctive
conditions of these two preemption points (① ∨ ②). The
second part constraint (Figure 10 (4)) consists of the dis-
junctive conditions on program paths from the entry of
vq heartbeat() to the lock acquisition site of r lock

(③). By evaluating the conjunction of these two parts
using an SMT solver, the constraints are satisfied, as the
second preemption point ② is feasible along the path.

( dev->vq = 0  ∨ dev->vq = new_o ) ∧ ( dev->vq ≠ 0 )

preempt

①

②

③

① ② ③

void vq_heartbeat(...) {
...
if (!dev->vq)

return;
spin_lock(dev->r_lock);
...

}

void vq_thread(...) {
dev->vq = nullptr;
...
spin_lock(dev->s_lock);
dev->vq = kmalloc(...);
spin_unlock(dev->s_lock)
...

}

Figure 11: An example of path-feasibility validation.
The symbol new o is the return value of kmalloc().

6 Implementation

Archerfish is implemented on LLVM [36] (4,034 Loc)
and uses Z3 [82] as its path condition solver. Several
Python scripts (354 Loc) are implemented to perform
network interaction with the OpenAI RESTful API [49].
For the pointer aliasing information, we use a standard
pointer analysis, following the previous work [21, 48].

Lockset and Interrupt-State Analysis. Archer-
fish performs analysis by modeling a set of locking
and interrupt-related APIs in the Linux kernel. Ap-
pendix A.2 shows the whole set of these APIs. To avoid
these APIs being inlined during compilation, we attach
attribute ((noinline)) attribute on these func-

tions before compilation. We model several heavily used
lock types in the Linux kernel, such as spin lock and
rw lock [69], and model both the hardware and software
interrupts (e.g., timer and tasklet [44]).

LLM-Assisted Specification Generation. The pro-
gram data for constructing prompt queries, including the
struct types [47] and function names, are extracted from
compiled LLVM IR. Since the LLVM type system does
not contain the name of the structure field types, we
compile the Linux kernel with the “-g” option and parse
LLVM metadata to extract such information. To con-
struct prompt queries, we use RESTful APIs provided
by Azure OpenAI Service and ChatGPT-4.0 model [49].

Path Conditions Solving. Path feasibility is validated
with Z3 SMT solver, where each variable in the LLVM
IR is modeled as a bit vector, on top of which arithmetic
computation and guarded constraints can be modeled and
solved. Following existing works [7, 14], the conditions
solving is under-constrained, losing the bounds of exter-
nal values (e.g., those derived from hardware IO opera-
tions or input arguments of root functions). As a result,
false positives are possible due to the presence of under-
constrained values.
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7 Evaluation

This section presents the evaluation results of Archerfish,
through investigating the following research questions:

• RQ1: How effective is Archerfish in detecting
interrupt-based deadlocks? (§ 7.1)

• RQ2: How do the stages contribute to enhancing
the effectiveness of Archerfish? (§ 7.2)

We also discuss other points, such as the false nega-
tives and generalizability of our approach in § 7.3.
Experiment Setup. We built the source code of Linux to
LLVM IR using clang-12 and evaluated the latest version
Linux (v6.4) at the time of the experiment. Following the
conventional setup, we used the built-in allyesconfig

setting during compilation. To generate subsystem speci-
fications, Archerfish relies on the Azure OpenAI Service
APIs [49] and uses the ChatGPT-4.0 model for evalua-
tion. While performing the prompting, we set the tem-
perature as 0.1 and set Top-p as 0.2, to achieve relatively
stable and accurate results. All experiments were con-
ducted on an Ubuntu server with two 20-core Intel(R)
Xeon CPU@2.20GHz and 256GB of physical memory.

Note that Archerfish is the first static tool for detecting
interrupt-based deadlocks in Linux kernel. To the best
of our knowledge, no other open-source tools are avail-
able that can serve as a basis for comparison. Crucially,
Archerfish is specific to detect interrupt-based deadlocks
that previous static methods have overlooked.

7.1 Effectiveness on Bug Detection

The Archerfish’s effectiveness in detecting interrupt-
based deadlocks is evaluated and summarized in Table 1.

Performance. Archerfish finished analysis of Linux
v6.4 in 68.6 minutes with a peak memory of 38.3G.
We inspected the time consumption of each step and
found that the specification generation (Stage I), the data-
flow analysis (Stage II), ILG construction (Stage III), and
ILCs validation (Stage IV) consumes 31.0 mins, 28.4
mins, 1.3 mins, and 7.9 mins, respectively. The high
proportion of time consumption in Stage I is mainly due
to network communication with OpenAI, and the gener-
ated specifications can be reused for later analysis. These
results demonstrate that Archerfish can scale up to large
software like Linux within an acceptable timeframe.

False Positive Analysis. Archerfish reported 151 bugs
with 75 false warnings, resulting in a 49.7% false posi-
tive rate. Specifically, we spent roughly 10 - 60 minutes
examining each bug report, which depends on the com-
plexity of the bug report and the corresponding source
code. Two key reasons lead to false positives. First,
the misidentification of ISRs or threads causes 34 of the
false alarms. Specifically, out of these 34 false alarms,

Table 1: Analysis results on the Linux kernel v6.4
Description Results

Linux kernel
statistics

Lines of source code 19.8M
Number of functions 798.3K

Performance

Peak memory 38.3G
Time spend on Stage I (Spec. generation) 31.0 mins
Time spend on Stage II (Data-flow analysis) 28.4 mins
Time spend on Stage III (ILG construction) 1.3 mins
Time spend on Stage IV (ILC validation) 7.9 mins
Total time (Stages I - IV) 68.6 mins

Precision Validated ILCs (detected bugs) 151
Real interrupt-based deadlocks (real bugs) 76

ISR and
thread
identification

Kernel threads 136,207
Softirq ISRs by manual-model specifications 689
Hardirq ISRs by manual-model specifications 1,226
Softirq ISRs by LLM-assisted specifications 578
Hardirq ISRs by LLM-assisted specifications 1,151
Total tokens used for prompt query 752,666

ILG
construction

Preempt units 309,821
Preempt units with ISRs enabled 234,547
Total ISRs 3,644
ISRs containing lock acquisitions 1,449
Lock acquisition inside ISRs 5,957
Regular lock edges 1,507,760
Interrupt lock edges 3,962,932

Interrupt-
based
deadlocks
detection

Detected ILCs 353
Invalid ILCs 202
ILCs pruned by happen-before analysis 67
ILCs pruned by path-feasibility validation 135
Validated ILCs brought by hardirq preemption 52
Validated ILCs brought by softirq preemption 99

21 are due to the case that an ISR cannot be identi-
fied and is misclassified as a kernel thread. Such mis-
classification leads to infeasible preemption scenarios,
where the misclassified ISR is deemed able to be pre-
empted by other ISRs. In the remaining 13 cases, a
kernel thread is misidentified as an ISR due to incor-
rect specifications generated by LLMs, also leading to
infeasible preemption scenarios. The high proportion
of false alarms in this category indicates that correctly
identifying ISRs is important to interrupt-based deadlock
detection. Second, complex path conditions involving
under-constrained values cause 25 false alarms. For ex-
ample, Archerfish reports a false alarm on the function
gmc v10 0 process interrupt(), which could be ex-
ecuted under both interrupt context and process context,
depending on an under-constrained hardware status value
received from IO operators. Since the actual execution
path is directly controlled by the hardware status, such
path constraints cannot be identified by static analysis.
The remaining cases are associated with false alias rela-
tionships, which are inherent static analysis problems.

Real-World Impacts. We manually reviewed all the
detected interrupt-based deadlocks and identified 76 of
them as genuine and new bugs. These interrupt-based
deadlocks are difficult to detect, as they have remained
hidden for an average of 9.9 years. We wrote 37 patches
to fix these bugs and sent the patches to the correspond-
ing Linux kernel subsystem developers. Currently, 53
of these bugs have been confirmed by the Linux kernel
developers, and most of the bug-fixing patches have al-
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Table 2: Accuracy of LLM-Assisted Specifications

Hardirq Softirq
Precision Recall Precision Recall

78.6 87.3 80.6 88.0

ready been merged into the mainstream Linux kernel or
corresponding subsystem development branch, resulting
in 46 bugs already fixed.

The detected interrupt-based deadlocks cover numer-
ous subsystems of Linux kernel, including various device
drivers, network stack, and filesystems. Linux kernel de-
velopers highly appreciated our bug-reporting and patch-
submitting efforts and demonstrated high interest in our
tool with comments like “Will this tool be available for
general use? It’s obviously quite handy.”, “Your experi-
mental tool looks really promising.”, “Interesting.”. Fur-
thermore, two bugs inside the SCTP and TIPC network
subsystems are assigned 2 CVEs. Details of these de-
tected bugs can be found in appendix A.4.

7.2 Effectiveness on Each Stage
Next, we investigate the key stages of Archerfish.

7.2.1 ISR Identification

We study how LLMs address the first challenge by in-
ferring subsystem ISR registration specifications auto-
matically. As shown in Table 1, among all the 3,644
ISRs identified by Archerfish, 1,729 (47.1%) are de-
rived from the LLM-assisted subsystem specifications.
During the process, Archerfish spent 752,666 tokens in
prompting with the GPT-4 model, with 1,292 APIs and
19,172 interfaces collected and used in prompting.

Out of all the identified ISRs, 1,267 are softirq ISRs,
while 2,377 are hardirq ISRs. ISRs only account for a
small portion (2.6%) of all routines, compared to a large
number of kernel threads (136,207). Despite their rela-
tively small number, ISRs play a crucial role and lead to
many interrupt-based deadlocks.

Accuracy of LLM-Assisted Specifications. To ex-
amine the precision of the LLM-assisted specifications,
we randomly sampled 150 hardirq and 150 softirq ISRs
from the generated specifications and manually inspected
their correctness. Additionally, to examine the re-
call, we collected 150 real hardirq and 150 real softirq
ISRs (the ground truth) from subsystem API documen-
tation, code comments, or manual code reviewing, and
checked whether they are covered by the LLM-assisted
specifications. Table 2 shows that the overall precision
and recall are 79.6% and 87.6%, respectively.

Ablation Study 1: LLM-Assisted Specifications.
We further performed end-to-end ablation evaluation to

4127

w/ GPT-Assisted
Specification
(FP rate: 49.7%) 

w/o GPT-Assisted 
Specification

(FP rate: 53.3%) 

110

Reduced bugs 
(FP rate: 100.0%) 

New bugs 
(FP rate: 70.7%) 

Figure 12: Bug reports of Archerfish with (denoted as
w/) or without (denoted as w/o) the assistance of GPT.

examine the direct effect of LLM-assisted subsystem
specifications on bug detection. As shown in Figure 12,
with the LLM-assisted specifications, Archerfish detects
41 new bugs and misses 27 originally detected bugs,
compared to Archerfish without the help of LLMs.

We manually examined all the 27 missed bugs and
confirmed they are false warnings. The false warnings
arise from situations of infeasible preemption, where an
ISR is not correctly identified and mistakenly classified
as a kernel thread, thus allowing the ISR to be preempted
by other ISRs incorrectly. With the LLM-assisted sub-
system specifications, more real ISRs can be identified,
thus reducing such infeasible preemptions.

Out of the 41 additionally reported bugs with the
help of LLM-assisted specifications, 12 are true posi-
tives. The false positive rate of these additionally re-
ported bugs is a bit higher (70.7% vs 53.3%) because
the LLM-assisted specifications contain some fake ISRs.
When considering together the 27 reduced bugs brought
by infeasible preemption, the overall false positive rate
remains similar (49.7% vs 53.3%). In conclusion, the
specifications help Archerfish capture new preemption
and reduce infeasible preemption with high precision,
resulting in 12 more real bugs detected while remain-
ing comparable FP rate shown in our evaluation. A case
study of a real bug can be found in appendix A.1. To sum
up, the effect of LLM-assisted specifications in Stage I of
Archerfish is highly effective.

7.2.2 Lockset and Interrupt-State Analysis

We first present some statistical data in data-flow anal-
ysis (Stage II). During typestate analysis, 309,821 pre-
empt units are constructed, and 234,547 among them
have at least one ISR enabled. On the other hand, 5,957
lock acquisition summaries are constructed inside 1,449
ISRs. These lock acquisitions and preempt units can in-
troduce interrupt lock dependencies, represented by in-
terrupt lock edges on the ILG. Specifically, a total of
3,962,932 (72.4%) interrupt lock edges and 1,507,760
(27.6%) regular lock edges are constructed. This result
indirectly indicates that, despite the number of ISRs be-
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ing much smaller than kernel threads, interrupt preemp-
tion is a noteworthy source of deadlocks in the Linux ker-
nel that existing deadlock detection tools have ignored.

Ablation Study 2: Preemption Unit. Next, we study
the effectiveness of the interrupt preemption unit to ad-
dress the large concurrency reasoning space. Impor-
tantly, the preemption unit can significantly reduce the
time costs for interrupt preemption analysis, as only crit-
ical sections need to be checked instead of all statements.
To demonstrate the importance of this design, we cre-
ated an ablation group called Archerfish−, where each
statement is considered a unique preemption point, and
executed Archerfish− with the same experiment setup.
Our evaluation results indicate that Archerfish− takes
166.7 minutes to complete the analysis, resulting in a
time overhead that is 2.43 times greater than before. The
peak memory usage is also up to 130.2G (3.39x), as we
require more memory resources to maintain enormous
summaries for each statement during typestate analysis.
In summary, using the preemption unit can significantly
reduce the overhead regarding both time and memory.

7.2.3 Lazy Circular Lock Dependency Validation

We first demonstrate the effectiveness of deadlock cycle
validation (Stage IV) to reduce false positives. By per-
forming cycle detection on the ILG, we initially detected
353 ILCs. In total, 202 (57.2%) ILCs are pruned away
during validation. Specifically, 67 ILCs are pruned by
the interrupt happen-before validation, and 135 ILCs are
dropped due to infeasible paths.

Ablation Study 3: Lazy Validation. We next explore
the effectiveness of the lazy validation strategy in im-
proving efficiency. As shown in Table 1, the number of
lock edges (5,470,692) significantly exceeds the num-
ber of finally detected ILCs (353). Consequently, it is
inefficient to validate the feasibility of every edge, high-
lighting the need for the lazy validation strategy.

7.3 Discussion

False Negative Study. We collected the past interrupt-
based deadlocks and examined whether Archerfish can
find them. Specifically, we searched the commit history
of the Linux kernel using keywords, including “inter-
rupt” and “deadlock”, and examined each relevant com-
mit message. We then identified 16 existing interrupt-
based deadlocks in the past five years. These deadlocks
were detected by Lockdep [73] or manual code review,
14 of which can be initially detected by Archerfish in
their corresponding historical versions. We manually
checked the two missed bugs and found that their crit-
ical ISRs cannot be identified with LLMs, resulting in
the missed corresponding interrupt lock dependencies.

By manually modeling those ISRs, Archerfish can finally
detect those two bugs without inducing false negatives.

Generalizability. Archerfish aims to detect interrupt-
based deadlocks on spin lock and rwlock [69] inside
the Linux kernel. However, the lockset analysis, ILG
construction, and cycle validation are general to model
various locks. We believe that, with further engineering
effort, Archerfish can be extended to model other lock-
ing mechanisms (e.g., completion variables and waiting
queues) or detect interrupt-aware deadlocks in other OS
kernels [1]. We leave the extension as our future work.

8 Related Work

Concurrency bug detection in the OS Kernel is an impor-
tant problem [6,8,9,24,27,80]. Among the diverse types
of concurrency errors [15, 26, 37, 38, 67, 75], including
data races [46, 75, 80], atomicity violation [28, 38] and
deadlocks [7, 14], we focus on presenting the previous
deadlock detection work in this section.

Static Deadlock Detection. Archerfish is specialized
for detecting interrupt-based deadlocks and is orthogonal
to existing works [7,14,15,21,34], which generally focus
on deadlocks under thread interleaving and do not con-
sider interrupt preemption. Recently, a few works were
proposed for deadlock detection in specialized domains.
For example, DeadWait [63] focuses on detecting dead-
locks in asynchronous C# programs. Also, the work [58]
proposes approaches for static communication deadlock
detection in Go programs. Recently, DLOS [7] proposes
a deadlock detection tool for OS kernel; however, their
algorithm still does not consider interrupt preemption.

Dynamic Deadlock Detection. Dynamic tools like
Lockdep [73] and ThreadSanitizer [64] can perform pro-
gram instrumentation and monitor the runtime locking
behaviors for deadlock detection. However, dynamic and
static approaches have been separate realms for bug find-
ing, having different merits. For thoroughly interrupt-
based deadlocks detection with higher code coverage, a
static bug detector has its advantages since there is no
reliance on test cases or runtime environment like con-
currency fuzzing [8, 11, 17, 27, 80] or controlled concur-
rency testing [57, 77]. As an illustration of its effective-
ness, Archerfish has uncovered 76 previously unknown
and long-latent interrupt-based deadlocks in the Linux
kernel despite subjecting the system to stress testing and
extensive fuzzing.

Finally, we are the first to use LLMs to infer interrupt
specifications. Using LLMs for dynamic or static pro-
gram analysis is an interesting recent trend [39,59,62,76]
on it. We believe that using LLMs for specification gen-
eration would bring new inspiration for combining LLMs
into security analysis and solving practical problems.
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9 Conclusion

We have presented Archerfish, a static and effective
approach for interrupt-based deadlock detection in the
Linux kernel. Evaluation shows that Archerfish effec-
tively analyzes the Linux kernel in around one hour, un-
covering 76 previously unknown interrupt-based dead-
locks, with 53 confirmed and mostly fixed (with two as-
signed CVE IDs), demonstrating its real-world impact.
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A Appendix

A.1 Case Study of a Real Bug Detected
with LLM-Assisted Specification

preempt

42 static int timbgpio_update_bit(...) {
43 struct timbgpio *tgpio = ...
44 ...
45

46 spin_lock(&tgpio->lock);
47 ......
48 }

101 static void timbgpio_irq_disable(...) {

102 ...

103 unsigned long flags;

104

105 spin_lock_irqsave(&tgpio->lock, flags);

106 }

107

207 static struct irq_chip timbgpio_irqchip = {

208 .name = "GPIO",

209 .irq_enable = timbgpio_irq_enable,

210 .irq_disable = timbgpio_irq_disable,

211 .irq_set_type = timbgpio_irq_type,

212 };

Figure 13: A new interrupt-based deadlock detected after
applying LLM-assisted specification.

Figure 13 shows one of the newly detected bugs
after applying LLM-assisted specification. Since
the function timbgpio update bit() acquires
tgpio→lock under process context at Line 46,
timbgpio irq disable() could preempt the execu-
tion and acquire the lock again under interrupt context
at Line 105. In such a scenario, the CPU would spin
on the lock infinitely, resulting in a system hang. The
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key to detecting this bug is the expert knowledge that
timbgpio irq diable() could be executed under the
interrupt context, which is ignored by manual modeling.
As timbgpio irq diable() is registered via the
interface irq chip→irq disable, ChatGPT-4.0 can
infer that this callback interface is executed during
interrupt handling, enabling Archerfish to detect this
self-cyclic interrupt-based deadlock.

A.2 Details of APIs used in Static Lockset
and Interrupt-State analysis

Table 3 shows the list of APIs modeled for the lockset
and interrupt-state analysis. Next, we illustrate some de-
tails of the implementation to model these APIs.
• Lock/Unlock: We model three kinds of commonly

used locks inside the interrupt context, including
spin lock, read lock, and write lock. One
special case in modeling is that read lock operations
allow concurrent accesses, whereas write lock oper-
ations require exclusive accesses. As a result, two
read lock acquisitions do not introduce lock depen-
dency, and we model these special cases in our tool.

• Hardirq Enable/Disable: There are several spe-
cial cases in the API modeling. First, differ-
ent APIs could disable/enable different sets of
ISRs. The APIs * lock/unlock irq() and
* local irq disable/enable() operate on all
the hardirq ISRs in the system, while APIs
enable/disable irq() only operate on a desig-
nated hardirq specified by an irq line number. As a
result, we perform different operations on different
APIs to model these differences. Second, APIs end
with irqsave() or irqrestore() suffix would
store/load the interrupt state into/from a local flag
variable. Thus, we perform a local data-flow analy-
sis to track the interrupt state stored inside the flag
variable.

• Softirq Enable/Disable: Compared with hardirq,
the modeling for softirq is relatively simple. Specif-
ically, each one of these APIs would disable/enable
all the softirq ISRs in the system.

A.3 Details of Manually Modeled ISR Reg-
istration APIs in the Linux Kernel

Table 4 shows some standard APIs used by all the sub-
systems in Linux. Since there are well-defined documen-
tations [42, 44], we can manually model them in the im-
plementation.
• Hardirq: Standard APIs such as request irq() are

used for hardware interrupt handler registration, and
they are well-defined in the documentation of Linux

Table 3: List of manually modeled APIs for the lockset
and interrupt-state analysis.

Category APIs

Lock

spin/read/write lock()
spin/read/write lock irq()
spin/read/write lock irqsave()
spin/read/write lock bh()

Unlock

spin/read/write unlock()
spin/read/write unlock irq()
spin/read/write unlock irqrestore()
spin/read/write unlock bh()

Hardirq Enable

spin/read/write unlock irq()
spin/read/write unlock irqrestore()
enable irq nosync()
local irq enable(), enable irq()

Hardirq Disable
spin/read/write lock irq()
spin/read/write lock irqsave()
disable irq nosync()
local irq disable(), disable irq()

Softirq Enable spin/read/write unlock bh()
local bh enable()

Softirq Disable spin/read/write lock bh()
local bh disable()

Table 4: Manually modeled APIs for ISR registration.

Category APIs

Hardirq Registration

devm request irq()
devm request threaded irq()
request irq(), request threaded irq()
request percpu irq()

Softirq Registration tasklet init(), timer setupt()
irq poll init(), open softirq()

Kernel [42]. Thus, we can manually model these
commonly used hardware ISR registration APIs.

• Softirq: The timer, tasklet, and polling are well-
known types of software interrupt handlers in the
Linux kernel, and corresponding registration APIs
are well-defined in the Linux Kernel documenta-
tion [44]. We also manually model the correspond-
ing APIs.

For subsystem APIs or interfaces that are not well-
defined, we resort to LLM-assisted specifications.

A.4 Detected Deadlocks
Table 5 presents a list of all the bugs detected. Two bugs
detected inside SCTP and TIPC subsystems are assigned
CVE-2024-0639 and CVE-2024-0641, respectively.

USENIX Association 33rd USENIX Security Symposium    6183



Table 5: List of 76 interrupt-based deadlocks detected by
Archerfish on Linux kernel v6.4. Each row displays the
subsystem name, the preempted function that introduces
the deadlock, whether the bug is detected with the help
of LLM-assisted specifications, and the status of the bug.
! denotes the corresponding bug-fixing patch is already
merged into Linux, "# denotes developers already con-
firmed the bug by adding “Acked-by” or “Reviewed-by”
tags under the patch and prepared to accept the patch,
and # denotes the patch is still under review.

System Function LLM? Status

i2c iproc i2c rd reg() ✘ !
i2c iproc i2c wr reg() ✘ !
atm console show() ✘ !
atm pclose() ✘ !
gpio timbgpio update bit() ✔ !
dma sun6i dma pause() ✘ #
dma sun6i dma terminate all() ✘ #
dma pd tx submit() ✘ #
dma pdc desc get() ✘ #
dma pdc desc put() ✘ #
dma pd issue pending() ✘ #
dma pdc desc get() ✘ #
dma milbeaut hdmac chan config() ✘ "#
dma milbeaut hdmac chan pause() ✘ "#
dma milbeaut hdmac chan resume() ✘ "#
dma plx dma process desc() ✘ "#
dma xgene dma cleanup descriptors() ✘ "#
dma k3 dma terminate all() ✘ #
dma k3 dma transfer pause() ✘ #
dma mtk hsdma free active desc() ✘ #
staging hostif sme work() ✔ !
staging rtsx exclusive enter ss() ✘ #
char kcs bmc handle event() ✘ !
IB read mod write() ✔ !
IB ib device get netdev() ✔ #
media enc post frame start() ✘ !
media dvb dmxdev ts callback() ✘ #
media dvb dmxdev section callback() ✘ #
mfd pm8xxx config irq() ✔ !
mfd pm8xxx irq set type() ✔ !
misc bcm vk reset() ✘ !
misc bcm vk blk drv access() ✘ !
misc bcm vk get ctx() ✘ !
misc bcm vk free ctx() ✘ !
isdn hfcpci softirq() ✘ !
watchdog s3c2410wdt stop() ✘ !

watchdog s3c2410wdt keepalive() ✘ !
watchdog s3c2410wdt start() ✘ !
tty imx uart dma rx callback() ✘ "#
tty slgt compat ioctl() ✘ !
scsi mvs slot complete() ✔ #
scsi mvs slot complete() ✔ #
scsi qedi cpu offline() ✘ !
scsi megaraid reset handler() ✘ #
scsi qedi tmf resp work() ✘ #
scsi ips eh abort() ✘ #
scsi hisi sas release task() ✘ #
scsi hisi sas slot task free() ✘ #
scsi hisi sas task deliver() ✘ #
scsi hisi sas slot index free() ✘ !
scsi hisi sas slot index alloc() ✘ !
scsi hisi sas alloc dev() ✘ !
scsi fcoe ctlr flogi send() ✔ !
scsi fcoe ctlr flogi retry() ✔ !
scsi fcoe ctlr announce() ✔ !
scsi fcoe ctlr els send() ✔ !
scsi mvs find dev mvi() ✘ #
ocfs2 o2quo make decision() ✘ !
ocfs2 o2quo hb up() ✘ !
ocfs2 o2quo hb down() ✘ !
ocfs2 o2quo hb still up() ✘ !
ocfs2 o2quo conn up() ✘ !
ocfs2 o2quo conn err() ✘ !
ocfs2 o2net debug add nst() ✘ !
ocfs2 o2net debug del nst() ✘ !
ocfs2 nst seq start() ✘ !
ocfs2 nst seq next() ✘ !
ocfs2 nst seq show() ✘ !
ocfs2 o2net debug add sc() ✘ !
ocfs2 o2net debug del sc() ✘ !
ocfs2 sc seq start() ✘ !
ocfs2 sc seq next() ✘ !
ocfs2 sc seq show() ✘ !
sctp sctp auto asconf init() ✘ !
ax25 ax25 check dama slave() ✘ "#
tipc tipc crypto key revoke() ✘ !

Total 76
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