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Abstract
Attack forensics is particularly challenging for systems with
restrictive resource constraints, such as IoT systems, because
most existing methods entail logging high frequency events
in the temporal dimension, which is costly. We propose a
novel and cost-effective forensics technique that records infor-
mation in the spatial dimension. It takes regular file-system
snapshots that only record deltas between two timestamps.
It infers causality by analyzing and correlating file changes
(e.g., through methods similar to information retrieval). We
show that in practice the resulting provenance graphs are as
informative as the traditional attack provenance graphs based
on temporal event logging. In the context of IoT attacks, they
are better than those by existing techniques. In addition, our
runtime and space overheads are only 8.08% and 5.13% of
those for the state-of-the-arts, respectively.

1 Introduction

The Internet of Things (IoT) is becoming an integral part of
daily life for many people. Smart devices are widely used
to provide autonomous control of appliances and convenient
human-computer interfaces for various tasks such as online
shopping and entertainment, remote health and safety moni-
toring [23,46,64,65]. These devices are usually connected via
networks and hence vulnerable to cyber-attacks [22,24,30,31].
Many of these attacks are very sophisticated and carried out by
Advanced Persistent Threat (APT) groups. For example, the
VPNFilter incident [51] was a notorious attack in 2018 target-
ing IoT devices. The US Department of Justice has linked the
incident to APT28. The incident affected and damaged over
500,000 devices in at least 54 countries and regions world-
wide. VPNFilter operated in multiple stages that included
the initial infection using backdoor accounts, the command-
and-control communication, and the third stage, in which the
payloads (e.g., stealing credentials) were deployed. Similar
to other APT attacks on traditional computing systems, the
attacks on IoT devices are persistent and stealthy, involving

multiple stages and taking a long time (e.g., weeks) to fulfill
its malicious objective. Due to the increasing popularity of
IoT devices and their roles in many sensitive tasks, ensuring
security of these devices is of prominent importance.

An important defense technique is attack forensics, which
aims to identify root causes of attacks and assess damages.
However, IoT devices usually have limited resources such as
storage and data processing ability, posing new challenges for
forensic analysis. Specifically, audit logging [20, 45, 50, 58–
60,72,73] is a classic technique facilitating attack forensics. It
records events such as process creation, file reads and writes,
socket sends and receives during system execution and then
infers causal relations between these events. During attack in-
vestigation, all events that are causally related to some attack
symptom event are reported (usually in the form of an attack
provenance graph) for human inspection. There are a large
number of extensions to the basic audit logging, addressing
problems such as removing redundant events and causal rela-
tions [38, 42, 52, 56, 74], reducing logging overhead [57, 60],
developing query system [32–34, 55], graph compression [68,
69], and semantic pruning [29, 42, 63, 70]. However, most
existing techniques are rooted in audit logging and record in-
formation in the temporal dimension, where events happen in
a high frequency. These techniques hence require substantial
storage and processing overhead, well beyond the capacity of
IoT devices. For example, simply loading the cnn.com front
page in Firefox incurs millions of audit events.

In this paper, we propose a novel cost-effective forensics
technique. It does not record events in the temporal dimension,
precluding the major factor in resource consumption. Instead,
it records information in the spatial dimension, namely, sys-
tem state information such as file system snapshots. It then
infers provenance by correlating states across multiple snap-
shots. For example, although it does not record file reads and
writes, a file copy operation can be inferred by correlating
the content of the source and destination files. It does not
record process creation events either. However, the execution
of a program can be inferred from the presence of process
file in the “/proc” directory and the behaviors of the exe-
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cution can be determined by analyzing both the content of
the executable file. To reduce storage consumption, system
snapshots are taken in a manner similar to the well-known
copy-on-write strategy [41]. That is, only deltas are being
recorded. The method is particularly devised for the workload
pattern of IoT devices. Compared to a traditional computing
system, an IoT device often serves for a much smaller number
of tasks in a very regular fashion. For example, smart bulbs
turn themselves on regularly when the light is dim, and email
clients regularly ping the server although file system states
only change upon sends/receives. As such, system states of-
ten have small deltas over time although the corresponding
temporal events may be in a much larger number.

Our contributions are summarized as follows.

• We introduce a new content provenance graph (CPG),
where nodes denote stateful entities (e.g., files and sock-
ets) and edges denote their causality. We show that CPG
is equivalent to the traditional attack provenance graph
(APG), in which nodes are processes, files, and sock-
ets and edges denote events in the temporal dimension.
Our novelty lies in tracking and analyzing provenance
from the spatial dimension whereas most existing works
operate at the temporal dimension, requiring logging in-
dividual events. We addressed the entailed challenges,
e.g., inferring causality without using explicit events, and
showed the advantages of this new perspective.

• We propose a cost-effective method to record system
state information and infer causality. The inference is
based on a novel abstraction of files called universal
file model, which allows modeling various types of files
and their forensics related states. A set of Datalog [25]
inference rules is then applied to determine different
kinds of causality such as file copy and execution of an
application file leading to the creation of another file.

• We develop an algorithm to compute weights for CPG
edges and nodes such that a weighted subgraph related
to the attack can be determined.

• We develop a prototype ARTISAN (Cost-effective Attack
Forensics by Recording and Correlating File System
Changes) and evaluate it on five devices (three IoT hubs,
a mobile phone, and a personal computer) and compare
it to three state-of-the-art attack forensics techniques
CLARION [27], ALchemist [74] and eAudit [61]. In the
study of 16 attacks collected from the literature, ARTI-
SAN achieves 93.9% precision and 98.8% recall, outper-
forming the baselines. Our results also show that ARTI-
SAN only incurs 3.68% runtime overhead and consumes
580 MB space for one week, which are only 8.08% and
5.13% of the baselines’ overheads, respectively.

Threat Model. We aim to detect attacks that exploit software
defects or leverage social engineering techniques to intrude
IoT devices and gain certain privileges to deliver their pay-
loads such as exfiltrating confidential data. Similar to many

existing attack forensics works [20,36,38,39,52,60], we con-
sider hardware attacks (e.g., gaining privileges by exploiting
hardware), side channel attacks (e.g., stealing sensitive data
by observing CPU power variation) and cryptographic attacks
(e.g., recovering private keys in the RSA-2048 schema
without extra knowledge) out of the scope of this paper.
ARTISAN relies on file system snapshots to gather provenance
data. Consequently, attacks that do not leave traces in the
file system (e.g., fileless attacks) or that can compromise the
file system are not supported by ARTISAN. We consider the
Linux kernel, file system, and pre-installed applications can
be trusted, and hence file snapshots are part of our trusted
computing base (TCB). It is consistent with the assumptions
in existing literature [20, 53, 74]. Note that although file snap-
shots may be manipulated by attackers after they penetrate the
kernel, there are a large body of existing works that can be uti-
lized to protect file systems and audit logs [20, 21, 52, 60, 71].
These protection techniques are orthogonal to our work and
beyond the scope of this paper. Besides, ARTISAN aims to
perform attack provenance for IoT devices or computing
systems that have a small budget for logging.

2 Motivation

In this section, we use a real attack example [4] to illustrate
how the state-of-the-art forensics techniques work and why
they are sub-optimal for IoT attack forensics. We then moti-
vate our design.

2.1 A Real Attack on NextCloud Box
NextCloud Box is a central IoT Hub which connects various
sensors in a single house. It collects sensory data and sends
commands to devices based on pre-defined action rules (e.g.,
sending a “turn-on” command to smart bulbs when the light
sensor detects a low-light situation). A NextCloud Box has its
own operation system and applications, interacting with end
users and remote devices/hosts through network, just like a
regular machine. It regularly connects to cloud to upload and
download data. NextCloud Collabora is a popular lightweight
online LibreOffice, allowing users to collaborate with others.
As part of its core functionality, files of various types (e.g.,
MP4 and PDF) can be shared among multiple NextCloud Box
users. To share data, the user sends a public link of a local
office file, e.g., project.odt, to other users with the read-only
permission. However, due to a missing privilege check vul-
nerability (CVE-2021-32654 [4]) in Collabora, anyone can
send a POST request to Collabora to change user permis-
sions. In this case, a remote attacker from 172.16.1.1 crafts a
POST request {type:CHANGE_PERMISSION, ip:172.16.1.1,
permission:[read,write,share]} to add the write and share per-
missions for the attacker. Then the attacker inserts a malicious
macro to the original LibreOffice file, i.e., project.odt. Later
when the user opens the compromised project.odt, the macro
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Figure 1: Simplified attack provenance graph generated by
ALchemist. Step annotations are manually added for better
illustration.

is executed. It sends a notification message to the attacker,
drops a malicious script shell.sh to the local device, and then
executes the script. The malicious script collects information
from sensitive files such as Mail.eml and Contacts. The for-
mer contains highly sensitive personal information such as
transaction records and insurance policies. The malware also
saves such information to /tmp/secret.txt, which is later copied
to /shared/secret.txt for external access (from the attacker).
The attack life cycle may span days and even months. The
payload is passive and hence stealthy. Assume after some
time, the user observes the presence of the suspicious file and
resorts to security analysis to understand the root cause and/or
assess the potential damage.

2.2 State-of-the-art Forensics Techniques

Most existing attack forensics methods are based on audit
logging which records system level events in the temporal
domain. An event describes some operation a subject (i.e., a
process) performs on some object (e.g., a file and a socket).
These events are very low level, for instance, denoting a pro-
cess sending and receiving a single packet. As such, events
are generated in a very high frequency, demanding substantial
resources to store and process them. Linux Audit is the most
popular audit logging systems. Since many IoT devices have
their operating systems built on Linux, for instance, Android,
they can be easily configured to support audit logging. Step 1⃝
in Figure 1 denotes an audit event, that is, Collabora handles
a request from an external IP 172.16.1.1. The event yields
two nodes, a socket node (a diamond) and a process node (a
rectangle) and an edge denoting their causality.

The forensics process is started when some suspicious
symptom is observed. The typical procedure entails analyzing
raw audit log events, inferring causal relations across events,
and building an attack provenance graph by including all
events reachable from the symptom event (through causal
relations). Specifically, nodes denote processes, sockets, and
files. An edge is introduced between two nodes if there is
causality. In many cases, an edge corresponds to an audit
event. For example, an event that process A reads from file

F introduces an edge between A and F . The vanilla Linux
Audit and a simple causality inference algorithm introduce a
large number of bogus dependences, causing the so-called de-
pendence explosion problem. For example, in a long running
process like Firefox, any file write may be considered causally
dependent on all the preceding socket receives as long as they
happen within the same process. Such bogus dependences
could be at the scale of millions. There are hence various pro-
posals that leverage program instrumentation [52,53,56], high
level application logs and UI logs [39, 71, 74] and statistical
analysis [37, 38, 43, 55] to address the problem.

In our attack case, assume the attack symptom is the
suspicious file /shared/secret.txt. Figure 1 shows the attack
provenance graph generated by a state-of-the-art technique
ALchemist [74]. ALchemist combines built-in application
logs and audit logs such that the high-level semantics encoded
in application logs (e.g., tab opens/closes in Firefox’s logs)
helps separating low-level system logs to independent exe-
cution units such that bogus dependences across units can be
precluded. However, while mature applications like Firefox
have well-structured built-in applications logs, applications
in IoT devices often do not support informative logs due to
the limitation of resource consumption. As such, ALchemist
degenerates to a traditional forensics technique that suffers
dependence explosion. In the attack provenance graph
(Figure 1) as well as the rest of the paper, we use diamonds
to represent network nodes, ovals to represent file nodes, and
boxes to represent process nodes. Edges follow the direction
of data flow. Starting from the symptom file secret.txt (on the
right), we can back-trace and identify the relevant subjects
and objects. Specifically, as the file is generated by shell.sh,
a process node denoting shell.sh is included in the graph, and
also all the related objects (e.g., Mail.eml). Furthermore, the
process Collabora, which forks shell.sh, is included. However,
as Collabora reads data from multiple IPs and configuration
files, all these IPs and files are included in the graph. Such
dependence explosion causes substantial difficulty in locating
the root cause IP, i.e., 172.16.1.1. In addition, it misses the
details how Collabora writes to shell.sh, namely, the remote
attacker sends a malicious request, which emits a malicious
macro in an odt file, leading to the drop of the malicious shell.

Note that instrumentation based techniques that generate
additional system events to separate a long running process to
execution units (e.g., emitting additional events denoting tab
creation/switch for Firefox) are hardly applicable in the IoT
context because (1) they entail nontrivial overhead; and (2) in-
strumentation is considered unacceptable in most IoT devices.
For example, NextCloud Box has integrity protection policies
that prevent any efforts tampering with their applications (e.g.,
by routine update checks) [10].

To summarize, state-of-the-art techniques can hardly be
applied to IoT devices because of (1) the substantial raw log
storage requirement and (2) the unique application constraints
that disable advanced forensics methods.
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2.3 Our Approach

The root cause of the aforementioned limitations is that ex-
isting techniques rely on logging high frequency events in
the temporal domain. We observe that attack steps are often
at a low frequency due to the low and slow property [26] of
APT attacks. Existing techniques reconstruct attack prove-
nance by computing the transitive closures of causality among
high frequency events. We propose a new forensics technique
whose basic design is completely different. We propose to
take low frequency snapshots in the spatial dimension, e.g.,
record file system states (at the interval of one minute in this
paper). Due to the limited number of tasks an IoT device is
responsible for, the deltas across snapshots tend to be small.
As such, we only need to record these deltas in order to faith-
fully recover full system states. The challenge lies in how
to precisely infer causality (across attack steps). Inspired by
information retrieval [62], we propose to reverse engineer
causality by correlating state information across snapshots.
For example, data/file copies can be recovered by matching
file contents. Processes reading/writing files can be disclosed
by extracting the file and directory names embedded in the
executable sections of the process files. Therefore, we reduce
the challenge to a content matching and analysis problem.
Since such matching/analysis has inherent uncertainty, just
like in information retrieval, we use confidence values and
ranking to prioritize important dependences. According to
our experiments in Section 4.2, our prototype ARTISAN has
3.68% runtime overhead on the file system benchmark post-
mark, which is only 8% of the overhead of audit logging,
and consumes 82 MB storage per day whereas audit logging
consumes 1.28 GB.

Figure 2 shows the final provenance graph generated by our
system. Our graph has two types of nodes, oval representing
files and diamond representing uniform resource identifiers
(URIs). It has many types of edges. Specifically, a directed
data flow edge denotes information is propagated from a
parent node to a child node. It is often annotated with the
operation that induces the data flow such as “ReadFile” and
“WriteFile”. A directed control edge denotes the access to
a child node. It is often annotated by the access type such
as read (“R”) meaning a parent node has read permission on
a child node, write (“W”) meaning a parent node has write
permission on a child node, and access control (“X”) meaning
that a parent node specifies the permissions to a child node.
An undirected matching edge with annotation “M” denotes
that two files have partial content match.

The graph clearly captures the attack provenance. At step
1⃝, the control edge from config1.cnf to project.odt denotes
that config1.cnf is changed such that the permissions of
project.odt are changed. It is also denoted by the control edge
from 172.16.1.1 to project.odt as the former has both read
and write permissions on project.odt. Note that such changes
can be detected by analyzing file differences. At step 2⃝, the

Network 
Nodes

File 
Nodes

Data Flow Edge Control Edge Content Matching Edge

MR / W / X R: Read Permission
W: Write Permission
X: Access Control

172.16.1.1

R,W

MWriteFile

ReadFile

ReadFile

WriteURI

WriteFileX
1Step

2Step 3Step
4Step

ReadFile

/tmp/secret.txt /share/secret.txtshell.shconfig1.cnf

contactsuser_infomail.eml
172.16.1.1

project.odt

Figure 2: Provenance graph generated by ARTISAN, the graph
has 9 nodes and 9 edges with 100% precision and 100% recall.
Each file is denoted by an oval and an URI by a diamond.

data flow edge between project.odt and shell.sh indicates the
former writes to the latter. ARTISAN determines this relation
by analyzing the executable code sections of project.odt
and observing a file write system API with shell.sh being
the destination. At step 3⃝, shell.sh reads from multiple
other files such as mail.eml and contacts, and writes to
/tmp/secret.txt. These edges are determined by analyzing the
executable shell.sh. At step 4⃝, the copy from /tmp/secret.txt
to /share/secret.txt is disclosed by the content matching
edge between the two. The whole provenance graph has
16,276 nodes and 11,072 edges whereas the subgraph has
close correlations with the attack symptom, as determined by
weight values computed by ARTISAN, has only 9 nodes and
9 edges. It has a precision of 100% and a recall of 100%. In
comparison, the attack provenance graph by ALchemist has
a precision of 52.9% and a recall of 81.8%. In Section 3.3,
we will discuss how to derive the various kinds of edges and
determine their happens-before relations.

3 System Design

The workflow of ARTISAN is shown in Figure 3. For a given
computation system (e.g., an IoT device or a mobile device),
ARTISAN regularly acquires snapshots of file systems gen-
erated by the Zettabyte File System (ZFS) and determines a
list of changed files (step 1⃝). As these files have different
types and hence various formats, we use a universal file model
(UFM) to represent them. The uniformed representation con-
sists of a set of pre-defined (uniform) data types and basic
relations, and the parsing/transformation from a specific file
type to the UFM is based on a set of pre-defined rules (step
2⃝). During attack investigation, given a symptom, ARTISAN
applies a set of pre-defined inference rules to infer the set of
files and sockets that have direct/indirect causal relations with
the symptom and produce a content provenance graph (CPG)
(step 3⃝), from which the attack lineage can be disclosed. To
accurately identify the nodes highly related to an attack, AR-
TISAN assigns a weight to each edge in CPG according to
file content similarities and their semantic couplings (step 4⃝).
Node weights can then be computed starting from the symp-
tom node and based on the edge weights (step 5⃝). Nodes

1708    33rd USENIX Security Symposium USENIX Association



File

Ranked 
Provenance  Graph

Node Weight

Datalog

Engine

Universal  
File Model 

Symptom

Edge Weight

Computation

System

Weighted

Provenance 

GraphCalculation

Content 
Provenance 


Graph Computation
Changed


Files
Snapshot

ZFS

Snapshots

41 2
3

5

Analysis Parsing

Figure 3: ARTISAN’s workflow

with large weights are considered related to the symptom and
part of the attack path.

In the following, we first formally define CPG and com-
pare it with the traditional attack provenance graph. We then
discuss the individual steps of ARTISAN.

3.1 Content Provenance Graph
Our technique records information in the spatial dimension in-
stead of the temporal dimension. It yields a provenance graph
different from the traditional attack provenance graph (APG).
Our provenance graph is formally defined in the following.

Definition 3.1 (Content Provenance Graph (CPG)). A CPG
is defined as G = ⟨N,E⟩, with N the set of nodes and E the
set of edges, N := Nφ | Nχ and E := Ed | Ec | Em. Here, Nφ :=
⟨t1, t2, f ⟩ denotes a delta of file f between two snapshots at t1
and t2, respectively; Nχ := ⟨t, l⟩ denotes a network connection

to URI l at timestamp t; Ed := n1
τd−→ n2 denotes a data flow

edge from node n1 to n2 and τd data flow annotation (e.g.,
file read/write); Ec := n1

τc−→ n2 denotes a control edge from
node n1 to n2 and τc the control annotation (e.g., n1 defines
the permissions for n2 and n1 invokes a function defined in
n2); Em := n1↔ n2 denotes an undirected content matching
edge between n1 and n2.

Our graph has two types of nodes and three types of edges.
Intuitively, a file node for f is created if f is changed at a
timestamp t2, and the node also records the timestamp of the
last delta t1. The timestamp information is used to determine
happens-before relations in causality inference. If f is newly
created, t1 = 0 and t2 is the current timestamp. In Figure 2,
the file node secret.txt denotes that secret.txt has been created.
A network connection node with a URI l is created when
some file is correlated with a download record involving l
(e.g., from the webpage cache file of Firefox), an email is
received from l, which can be determined from the meta
information of the email file, or some configuration file delta
indicates that l has been granted access to some local file (e.g.,
the node 172.16.1.1 in Figure 2). Note that the introduction
of network connection nodes is quite different from that in
traditional audit logging, in which socket nodes are introduced
upon socket creation system calls. Our design is passive and
does not require actively monitoring network level events. It
introduces connection nodes by observing file changes (e.g.,
email files, cache files, and configuration files).

A data flow edge is introduced from a process file node n1
(i.e., a file in directory /proc denoting an active application)
to a data file node n2 if some file write operation to n2 can
be statically found in the body of n1, and n1’s timestamp pre-
cedes n2’s. A control edge is introduced from file n1 to file n2
if (1) n1 configures n2’s access control (e.g., the edge from
config1.cnf to project.odt in Figure 2), or (2) n1 invokes some
function defined in n2, and n1’s timestamp precedes n2’s. A
control edge is introduced between a network connection n1
to a file n2 if the URI denoted by n1 is granted permission(s) to
n2 (e.g., the edge from 172.16.1.1 to project.odt in Figure 2).
An (undirected) content matching edge is introduced between
two files if their contents have similarity and their timestamps
do not disclose any happens-before relation. Later in this Sec-
tion, we will discuss how to assign weight to edges to denote
uncertainty. For now, we assume all edges are deterministic
for discussion simplicity.

Definition 3.2 (Content-Forensics-Ready Application). We
say an application is content-forensics-ready if it satisfies
the following conditions: (1) its file I/O information such as
file name accessed can be precisely extracted by statically
analyzing its code body or its auxiliary files; (2) its control
transfer to another application or library file can be precisely
extracted by statically analyzing its code body or its auxiliary
file(s); (3) if its network communication with some remote
entity yields any side-effects on the local file system, the URI
of the remote entity is visible in some local auxiliary file.

Here, the concept of application is general. It means a file
or part of a file that is executable, including a software app
from some app stores, a web app in the form of browser exten-
sion, an executable script embedded in some document, and
a library. Intuitively, an application is content-forensics-ready
if its forensics related behaviors leave trails in the file system
and such trails can be extracted by analyzing file system snap-
shots. An application interacts with other applications through
data or control flow. The first condition in the above definition
dictates that such data flow is visible to ARTISAN, whereas
the second condition ensures that control flow is visible. The
third condition specifies that data flow through a network
connection is visible. An application may be completely or
partially content-forensics-ready. In IoT systems, most of
the popular applications are content-forensics-ready. Table 1
shows a list of most popular applications from Nextcloud Box
app store [12] and Google Assistant app store [9]. The sec-
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Table 1: Content forensics readiness for 16 popular applica-
tions used in Nextcloud Box [12] and Google Hub [9]

Application Forensic
Ready

Readiness for Functionality

I/O URI CT+ Description

N
ex

tc
lo

ud
B

ox

Mail fully

● ● ✓ send/receive email
✓ – – fetch/update mailbox
● ● ✓ upload/download attachment
✓ – – add/delete contacts

Chat fully
● ● ✓ create/delete conversation
● ● ✓ send/receive message
✓ – – add/delete participant

Social fully
● ● ✓ send/receive message
● ● ✓ share/delete media
✓ – – create/delete account

PDF Viewer fully
● – – open/close document
– ● ✓ open link
– ● ✓ submit form

Passman partial
✓ – – add/delete password
✗ – – encrypt/decrypt password

Collabora fully
● ● ✓ share/upload/download doc.
✓ – – add/delete participant

Video
Player

fully
● – – open/close video
● ● ✓ download video

Bash fully ● – ● execute command

G
oo

gl
e

H
ub

Firefox fully

– ● – open/close webpages
● ● – download/upload files
● ● – install/uninstall extensions
● – – add/delete bookmarks

Thunderbird fully
● ● – send/receive email
✓ – – fetch/update mailbox
● ● – upload/download attachment

Telegram fully
● ● – create/delete conversation
● ● – send/receive message
✓ – – add/delete contact

Snapchat fully
● ● – send/receive message
● ● – share/delete media
✓ – – create/delete account

Okular
Document

Viewer
fully

● – – open/close document
– ● – open link
– ● – submit form

KeePass partial
✓ – – add/delete password
✗ – – encrypt/decrypt password

LibreOffice fully
● – – open/close document
– ● – open link

VLC Player fully
● – – open/close video
● ● – download video

+CT: control transfer, ✓ : information can be extracted by statically analyzing its
code body, ● : information can be extracted by statically analyzing its auxiliary file,
✗ : information can not be extracted, – : do not contain such information

function fetchMessages() {
  ...
  filepath = ‘/usr/share/
nextcloud/app/mail/mailbox’
  ...
  data = readFile(filepath)
  return data
}

(a) OutboxService.js

1
2
3
4
5
6
7
8

(b) AttachmentService.js

9
10
11
12
13
14
15
16

function uploadLocalAttachment(url, 
file) {
  ...
  data = new FormData()
  data.append(‘attachment’, file)
  ...
  return post(url, data)
}

From: Alice <alice@outlook.com> To: Bob <bob@outlook.com>
Date: Mon, 26 Sep 2022 01:44:35
...
Content-Type: application/pdf; filename=“invoice.pdf"; size=1747375;
creation-date="Mon, 26 Sep 2022 01:44:30 GMT";
modification-date="Mon, 26 Sep 2022 01:44:35 GMT"
...

(c) INBOX.msf

17
18
19
20
21
22
23

Figure 4: Source code and mail summary file for the
NextCloud Box’s mail app

ond column shows if they are fully ready. The sixth column
shows the forensic-related functionalities. The third, fourth,
fifth columns show if each such functionality is File I/O, URI,
and control-transfer forensics ready, respectively. Observe
that 14 out of 16 applications are fully forensic-ready. The
two partially-ready applications utilize encryption and de-
cryption functionalities. As such, the relative auxiliary files
are encrypted and the information can not be recovered. Also
note that we assume most of these benign applications have
plain-text code bodies and auxiliary files. Further discussion
is available in Section 5.
Example. As over 10 billion emails are opened daily on mo-
bile/IoT devices [1], the attacker tends to utilize emails to
deliver malicious payloads. In this example, we study the
forensics-readiness of Nextcloud Box’s mail application. Fig-
ure 4(a) shows a code snippet from OutboxService.js, which
specifies how to read/write the local mailbox. In particular,
the location of mailbox is specified in line 3. Static analysis
can easily derive the set of constant values for the parameter
of file I/O API readFile() at line 6. Figure 4(b) shows another
snippet from AttachmentService.js, which specifies how to
upload/download attachments. In particular, the parameters
of an attachment upload API post() depends on user input
(e.g., which attachment the user chooses). Hence the file ac-
cessed cannot be statically extracted by analyzing the source
code. However, it can be extracted from the mail summary file.
Figure 4(c) shows the mail summary file INBOX.msf. Line
17 shows the target URL bob@outlook.com and line 20 the
uploaded attachment invoice.pdf.

Definition 3.3 (Content-Forensics-Ready File). We say a
(document) file is content-forensics-ready if it satisfies the
following conditions: (1) it is not encrypted and (2) its content
can be properly parsed.

Content-forensics-ready data files allow us to correlate
their contents. Any encrypted files or files whose formats are
not public are not forensics ready. Most popular files on IoT
devices are content-forensics-ready. Table 2 shows a list of
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Table 2: 25 popular file types for IoT systems

File Type Metadata Keyword Callable
Structure

# of APIs
modeled

Firefox Extension ✓ ✓ ✓ 64
Chrome Extension ✓ ✓ ✓ 56

HTML ✓ ✓ ✓ 37
Microsoft Mail (MSG) ✓ ✓ ✓ 21
Apple Mail (EMLX) ✓ ✓ ✓ 17

RTF ✓ ✓ - -
XML ✓ ✓ - -
JSP ✓ ✓ ✓ 20
PHP ✓ ✓ ✓ 26
DEB ✓ ✓ - -
PDF ✓ ✓ ✓ 34

Microsoft Excel ✓ ✓ ✓ 40
Microsoft PowerPoint ✓ ✓ ✓ 27

Microsoft Word ✓ ✓ ✓ 42
Office Document ✓ ✓ ✓ 54

Office Presentation ✓ ✓ ✓ 54
Office Slide ✓ ✓ ✓ 54

DSL ✓ ✓ - -
GZIP ✓ ✓ - -

Calendar ✓ ✓ - -
TAR ✓ ✓ - -

Office Spreadsheet ✓ ✓ ✓ 54
Flash ✓ ✓ ✓ 23
RAR ✓ ✓ - -

Shell Script ✓ ✓ ✓ 14

popular document types on IoT devices [22]. All of them can
be properly parsed by our system. Furthermore, ARTISAN’s
architecture is designed to reduce the manual effort required
to integrate new file types. A detailed discussion is available
in Section 5.

Comparison between CPG and APG. Assume all files have
a life span longer than our snapshot interval, meaning that
they are not created and then immediately removed within an
interval. If all applications and files are forensics ready, any
edge/node in an APG denoting true causality corresponds to
some edge/node in the CPG. In other words, CPG is at least
as informative as APG. Specifically, process nodes in APG
correspond to process file nodes in CPG. Socket nodes in APG
have the corresponding network connection nodes in CPG if
the packets received from these sockets are eventually saved
to some files (e.g., downloaded files and emails). Some APG
socket nodes only lead to behaviors in the memory and thus
do not have correspondence in CPG. However, memory read
and write operations are invisible to audit logging either [20,
38,50,56], and hence attack steps through memory are beyond
the scope of APG as well. Similarly, we can infer APG edges
denoting real causality have correspondence in CPG. Detailed
discussions are elided.

In many cases, CPG has better precision than APG because
it has better handling of dependence explosion. Specifically,
audit events do not consider contents. For example, packet
message bodies or bytes read-from/written-to a file are in-
visible in audit events. As a result, existing techniques have
difficulty determining if some output event (e.g., a file write
by Firefox) is causally related to a preceding input event (e.g.,
a socket received by Firefox) from audit logs. As such, they

often assume the output event is dependent on all preceding
input events. In contrast, ARTISAN relies on content analysis
and matching, precluding such bogus dependences. Our ex-
ample in Section 2 illustrates the advantage. In the APG in
Figure 1, process Collabora has 86 dependence edges with
various sockets such that the write event to project.odt is de-
pendent on all the preceding socket receives, including those
regular server pings. In contrast, in the CPG in Figure 2, only
the edge between the root cause IP 172.16.1.1 and project.odt
is introduced. Hence a lot of bogus dependence can be pruned.
Our results in Section 4.4 also demonstrate the advantage.

A caveat is that attackers may hide their trails by immedi-
ately deleting files after payload delivery. As we will discuss
later in the section, the file system has built-in support for
accessing deleted files.

3.2 Snapshots and File Normalization
In this subsection, we discuss the first two steps of ARTISAN
(Figure 3), namely, taking regular snapshots of file system
and normalizing file contents for downstream analysis.
Taking File System Snapshots Using ZFS. ARTISAN is
built on ZFS [18], which is an advanced next-generation file
system designed to support large and safe data storage. It
leverages copy-on-write and periodical snapshots to roll back
and recover files when a system crashes. According to [11], it
is among the top-5 most widely used file systems, and many
believe that it will replace EXT4 in a few years. The reason
why ZFS is not integrated into the Linux kernel and has not
become popular is due to license compatibility issues [19].
We leverage the built-in ZFS auto-snapshot tool Sanoid [15]
to take a snapshot every minute, Due to the copy-on-write
strategy, a snapshot essentially records only the file system
delta within the interval. According to our evaluation in Sec-
tion 4.2, ARTISAN only incurs a negligible runtime overhead
and a small space overhead.

Although ZFS’s snapshots contain only deltas, ZFS can
internally reconstruct the complete file system state at any
timestamp such that users can query. Given two consecu-
tive snapshots, ARTISAN leverages ZFS’s command “ZFS
diff” to identify a set of changed files {⟨File,Op⟩}, in which
Op indicates how the file is changed. The change can
be create,modify,delete, or rename. For the create,
modify, and delete types of changes, ARTISAN further com-
putes the changes, parses and normalizes them. For rename
changes, ARTISAN unifies the old and file names to a new
unique identity, which is used for further analysis. To avoid
quick creation and deletion (used by the attacker to remove
his trails), we set the nounlink attribute in ZFS, which means
that when a file is deleted by syscalls like unlink, ARTISAN
can still access the file.
Parsing and Normalizing Files. ARTISAN supports 25 pop-
ular file types as shown in Table 2. Besides, it supports native
application files, including Linux ELF executables and Dalvik
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File f := (Metadata | Keyword | CallableStructure |
API | RawData)∗

Metadata e := ⟨DataSource,Permission,Location, ...⟩
Keyword k := IP | Mail | File | · · ·
CallableStructure s := Button | Sidebar | Context Menu | · · ·
API m := Function
RawData d := (Byte)∗

Figure 5: Universal file model

applications (i.e., mobile apps). According to [22], they are
the most popular kinds of files on IoT devices. For files that
we do not understand their format, we simply treat them as
raw bytes. For application files, ARTISAN leverages existing
analysis engines Androguard [2], Ghidra [8], and Frida [7] to
parse them to their intermediate representations. We further
develop program analysis to extract file accesses and external
function invocations. These analyses are standard [16,67] and
hence their details are elided. For document files, we mainly
build on open-source parsers. The parsed application and doc-
ument files are further normalized to a universal file model
that provides a uniform abstraction to simplify downstream
analysis, analogous to how intermediate representation (IR)
simplifies downstream analysis inside a compiler.
Universal File Model. We parse all files to a uniform repre-
sentation called universal file model (UFM), whose definition
is in Figure 5. Each file f is parsed to a finite number of
records of five different types. The first type of record is meta-
data e that holds summary information of a file. It includes
the data source (e.g., who created it), access permissions, etc.,
which are useful in forensics. Specifically, we acquire these in-
formation based on a widely used metadata parser ExifTool [6].
A keyword record k contains a value of some pre-defined
general type, such as IP and email address. Keywords are
recognized using a set of pre-defined regular expressions. An
API record is a standard interface function invocation by a file
to carry out some tasks (e.g., requesting some web resource).
These records are mostly present in application type of files.
Specifically, all function invocations are extracted by the cor-
responding analysis tools. ARTISAN only focuses on external
functions as they can be invoked beyond a file. A callable
structure s denotes a piece of semi-structured data which im-
plies some API invocations. Consecutive bytes that cannot be
parsed by ARTISAN are considered a raw data record. Note
that UFM is proposed based on expert domain knowledge
and our substantial manual efforts in understanding various
file types. Our model is customized for the forensic-related
states in ZFS. Better designs may exist, and we will explore
these in future work. In Appendix A, we use a PDF example
to illustrate the abstract types used in UFM.

3.3 Content Provenance Graph Construction
After parsing and normalizing files, the next step is to con-
struct content provenance graph (CPG) from the normalized
UFM records. This entails two sub-steps. The first one is to

Atoms
/* Network API */
(A1) readURI(m,URI) : API m accesses remote resource URI
(A2) writeURI(m,URI) : Write to a remote URI
/* File system API */
(A3) readFile(m, f ) : API m reads a local file f
(A4) writeFile(m, f ) : API m writes to a local file f
/* Access control */
(A5) filePermit( f1, f2) : File f1 configures the access permission for f2
(A6) uriPermit(URI, f ) : URI can access file f
/* Invocation */
(A7) implicitCall(m1,m2) : invocation of m1 implies invocation of m2
(A8) binding(s,m) : Structure s invokes m under some event
(A9) structAccess( f ,s) : File f gains access to a callable structure s
/* Inclusion */
(A10) contain( f ,e) : File f contains meta information e
(A11) contain( f ,k) : File f contains keyword k
(A12) contain( f ,m) : File f contains an API invocation m
(A13) define( f ,m) : File f defines a function m
(A14) contain( f ,s) : File f contains a callable structure s
(A15) contain( f ,d) : File f contains raw data d
/* Content matching */
(A16) match(e1,e2) : Metadata e1 matches with e2
(A17) match(k1,k2) : Keyword k1 matches with k2
(A18) match(d1,d2) : Raw data segment d1 matches with d2
/* Timestamp */
(A19) earliest(e/k/d) : Record e, k, or d has the smallest timestamp

compared to all its matches
Inference Rules

(R1) UndirectedMatch( f1, f2) :- match(k1,k2) & contain( f1,k1)
& contain( f2,k2)

(R2) DF_ReadURI( f , l) :- readURI(m, l) & contain( f ,m)
(R3) DF_WriteURI( f , l) :- writeURI(m, l) & contain( f ,m)
(R4) DF_ReadFile( f1, f2) :- readFile(m, f2) & contain( f1,m)
(R5) DF_WriteFile( f1, f2) :- writeFile(m, f2) & contain( f1,m)
(R6) CTRL_Exec( f1, f2) :- contain( f1,m) & define( f2,m)
(R7) CTRL_Exec( f1, f2) :- implicitCall(m1,m2) &

contain( f1,m1) & define( f2,m2)
(R8) CTRL_Exec( f1, f2) :- binding(s,m) & contain( f1,s)

& define( f2,m)
(R9) CTRL_Exec( f1, f2) :- structAccess( f1,s) & contain( f2,s)
(R10) CTRL_Access( f1, f2) :- filePermit( f1, f2)
(R11) CTRL_Access(l, f ) :- uriPermit(l, f )

Figure 6: Datalog rules to correlate files

derive a set of primitive relations called atoms. The second
is to derive CPG edges by iteratively correlating atoms. The
correlation is driven by a set of datalog rules [47].

Atoms. Atoms are in the form of p(x1,x2, · · · ,xn), with p
denoting a predicate (or a relation), and x1, · · · , xn data fields
of the UFM types. The set of atoms ARTISAN considers are
listed in the top of Figure 6. Atoms (A1) - (A4) represent
relations between API invocations and URI/File. Atom (A1)
denotes requesting a remote URI through an API invocation
(e.g., invocation of fetch(URI) in a Firefox extension). Atom
(A2) denotes writing data to a remote URI (e.g., invocation
of storeToURL(URI) in Office files). A3 denotes reading data
from a local file (e.g., Launch(file) in PDF). A4 denotes writ-
ing data to a local file (e.g., openFileWrite(file) in Office files).
A5 and A6 represent the access control relations. A5 denotes
file f1 configures the access permission for file f2 (e.g., Fire-
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fox extension manifest file specifying the access permission
for content.js). A6 denotes URI has the permission to access
f . Atoms (A7) - (A9) denote the invocation relations. A7
denotes that the invocation of m1 implies the invocation of
m2. For example, the presence of addListener(m2) inside the
code body of m1 indicates that m2 will be invoked once m1 is
executed. A8 denotes the binding relation. For example, a but-
ton is usually bound with an OnClick() API. An application
file may acquire the handle of a callable structure, through
which it may interact with the structure. This is modeled by
A9. Atoms (A10) - (A15) denote the inclusion relations. For
example, Atom (A10) contain( f ,e) states that a meta infor-
mation record e is contained in file f . Atoms (A16) - (A18)
denote the match relation. For example, Atom (A17) means
that Keyword K1 matches with Keyword K2. A19 denotes a
UFM record has the earliest timestamp (among all the match-
ing records). These atoms can be derived by post-processing
the UFM records and simple program analysis.
CPG Construction by Datalog Inference. CPG is con-
structed by iteratively applying a set of datalog inference
rules to derive additional relations from atoms. The derived
relations denote edges in CPG. Nodes are also implicitly
introduced. Inference rules are in the following format.

H :− B1 & B2 & · · · & Bn

Specifically, H is the target relation, and Bt is an atom or
a relation derived previously. It means that the presence of
atoms/relations B1, B2, · · · , Bn leads to the introduction of H.
The ultimate goal of these inference rules is to derive relations
between two files or between a file and a URI. The set of rules
used in ARTISAN are presented in the lower half of Figure 6.
Rule R1 introduces an undirected match edge between two
files when the two share a common keyword. Rules to match
files by matching meta information and raw bytes are similar
and hence elided. R2 introduces a directed match edge denot-
ing dataflow between two files when the files have matching
keywords k1 and k2 and k1 has the smallest timestamp (i.e.,
the origin). Intuitively, the copies of a record must come from
the original record. Here, the prefix DF_ denotes a dataflow
edge. R2 and R3 introduce dataflow edges between a file and
a URI, when the file contains a method that accesses the URI.
Similarly, R4 and R5 introduce dataflow edges between two
files. Besides data flow edges, there may be control edges.
Rules R6-R11 denote such edges (with the prefix CTRL_).
Specifically, R6-R9 denote that file f1 causes the execution of
f2. R6 says that f1 causes the execution of f2 when f1 invokes
a function defined in f2. R7 says that the invocation could be
implicit (like an invocation of a message send function in f1
causing the execution of an event handler function defined
in f2). R8 captures the execution relation introduced by a
callable structure, e.g., a button and its event handler. R9 de-
notes that f1 may acquire the handler of a callable structure s,
which indicates f1 may cause execution of f2 that contains s.
R10 and R11 introduce the access configuration type of con-
trol edges. They are directly derived from atoms A5 and A6.

Demand-driven Datalog Inference. ARTISAN relies on the
underlying Datalog Souffle inference engine [47] to infer
relations between files. However, according to our experiment
in Section 4, on average one hundred thousand atoms can be
generated everyday with a regular workload. Complex attacks
may span days, weeks and even months. It is infeasible for
the engine to operate on the atoms from such a long period.
We leverage the observation that although an attack life cycle
may be long, the attack behaviors may only be relevant to a
very small portion of the atoms. Hence the construction of
CPG is demand-driven. Particularly, for a backward forensic
task that tries to identify the root cause of an attack, ARTISAN
starts with the whole set of atoms (for a long period of time)
and the symptom file. Only edges (and implicitly nodes) that
are directly or transitively correlated with the symptom file
are introduced.

3.4 Weighted Content Provenance Graph
Up to this point, our CPG is unweighted. However, a CPG
may contain a large number of edges with many irrelevant
to the attack. In this section, we discuss how to assign initial
weights to edges and propagate these weights to nodes. As
such, we could focus on the subgraph with large node weights.
Assigning Importance Values to UFM Records. First, AR-
TISAN assigns importance values to all UFM records. Inspired
by importance value assignment in information retrieval [62],
we use TF-IDF for importance of UFM records. Intuitively,
the importance of a record r for its enclosing file f is propor-
tional to r’s occurrences in f and the uniqueness of r across
all files. That is, it measures how representative r is for f . Its
formal definition is as follows.

TF(r, f ) =
fr, f

∑r′∈ f fr′, f

IDF(r,F) =
|F |

|{ f ′ ∈ F : r ∈ f ′}|
TF-IDF(r, f ) = TF(r, f )∗ IDF(r,F)

TF(r, f ) denotes the frequency of a UFM record r appearing
in file f compared with other records of the same type. Specif-
ically, fr, f is the count of r in f . For example, assume a file
f contains two API invocations m1 and m2; fm1, f is 1 and
∑r′∈ f fr′, f is 2.

F is the universal set of files in a CPG G. IDF(r,F) is the
inverse document frequency for r. It evaluates how rare is
r. Suppose the value for |F | is 10000. Only two files con-
tain m1 and fifty files contains m2. IDF(m1,F) is 5000 and
IDF(m2,F) is 200.

Take the product of these two, TF-IDF(r, f ) indicates the
importance of r for f , which is r’s importance value as well.
TF-IDF(m1, f ) is hence 25 times of TF-IDF(m2, f ).
Assigning Weights to CPG Edges. Each edge in a weighted
CPG or WCPG has a weight in the range of (0,1]. Data flow
or control edges always have a weight value of 1, meaning
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Figure 7: Weight Propagation

that they are always important and hence the attack inspection
tool shall traverse them. For undirected match edges, ARTI-
SAN assigns some initial weights that are smaller than 1.0.
Intuitively, an edge has a large weight if the two files involved
in the edge share similar important UFM records. For exam-
ple, the match edge between f1 and f2 has the largest edge
weight if both files share the same set of important records.
The formal definition is the following.

MatchWeight( f1, f2) =

∑
r∈ f1∩ f2

TF-IDF(r, f1)+TF-IDF(r, f2)

∑
r1∈ f1

TF-IDF(r1, f1)+ ∑
r2∈ f2

TF-IDF(r2, f2)

The weight of a match edge between two files is calculate by
the importance of their overlapping records divided by the
importance of all the records in the two files.
Example. Assume f1 = {r1,r2}, f2 = {r1}, and f3 = {r2},
|F | = 10000, two files containing r1 and fifty files con-
taining r2. TF-IDF(r1, f1) = TF(r1, f1) ∗ IDF(r1,F) = 0.5 ∗
5000 = 2500. Similarly, we can get TF-IDF(r2, f1) = 100,
TF-IDF(r1, f2) = 5000, TF-IDF(r2, f3) = 200. We hence
have MatchWeight( f1, f2) = 0.98 and MatchWeight( f1, f3) =
0.1 following the above formula. Intuitively, f1 and f2 are
very similar as only these two files share some unique record
r1. In contrast, although f1 and f3 share r2, they do not have
much similarity as r2 is present in a large number of files.
Computing Weights for CPG Nodes. Different from edge
weights that denote the confidence of correlations, node
weights in CPG denote the likelihood that nodes are part
of the attack. Such likelihood is determined by not only cor-
relation weights, but also connections to attack symptoms.
Intuitively, assume a node f2 is known to be part of the attack
and there is an edge between f1 and f2. If the edge weight is
small, the likelihood of f1 being part of the attack is low. On
the other hand, even if an edge between f1 and f2 has a large
weight, if neither node is part of the attack, the edge is not
part of the attack. Therefore, node weights are computed by
starting from an attack symptom node, which has the largest
weight 1.0, and traversing the CPG along the important edges.

Algorithm 1 presents the node weight computation
procedure. At the beginning, undirected match edges
undirectedEdge(u,v) in CPG are first replaced with two di-

Algorithm 1: Get Ranked Provenance Graph
Input: Weighted Provenance Graph Gw,

Symptom Node s,
Convergence Threshold τc,
Weight Threshold τd

Output: Ranked Graph Gw′

1 for ∀ undirectedEdge(u, v) ∈ Gw do
2 Gw ← Gw \ undirectedEdge(u,v)
3 Gw ← Gw ∪ directedEdge(u,v)
4 Gw ← Gw ∪ directedEdge(v,u)

5 for ∀ u ∈ Gw do
6 directedEdge(u,v).weight =

directedEdge(u,v).weight
∑

directedEdge(u,v′)
directedEdge(u,v′).weight

7 s.weight ← 1
8 while change > τc do
9 for ∀ u ∈ Gw do

10 if u ̸= s then
11 value← 0
12 for ∀ v ∈ directedEdge(u, v) do
13 value += v.weight *

directedEdge(u,v).weight

14 u.weight ← value

15 rank nodes in Gw′ based on their node weights
16 return Gw′ with nodes weights larger than τd

rected edges directedEdge(u,v) and directedEdge(v,u) (lines
1-4). For a directed edge directedEdge(u,v), we normalize
its weight by dividing the sum of weights of all outgoing
edges from the source node u (lines 5-6). The weight com-
putation procedure is iterative, guarding by a convergence
threshold. It means that the computation terminates if the
maximum change in one round of computation is smaller
than the threshold. We use τc = 1e− 8 as it gives robust re-
sults from our evaluation. In each iteration, the weight of each
node (except the symptom node) is the weighted sum of its
child nodes’ weights (line 11-14). Finally, ARTISAN only
reports the subgraph that has nodes with weights larger than
τd = 0.05, i.e., the ranked provenance graph.

Example. Figure 7(a) shows the CPG with edge weights for
the previous example. Assume file f1 is detected as an attack
symptom. Recall that the undirected edges are match edges
and the directed edge is a dataflow edge. The match edge
between f1 and f2 can be replaced by two directed edge ( f1,
f2) and ( f2, f1). We hence get Figure 7(b). The sum of weights
of all outgoing edges from f1 is greater than 1. Hence we need
to normalize it to ensure the sum equals to 1.0. We hence get
Figure 7(c). The weight for the symptom node is 1.0 to begin
with and will not be changed during the computation. For a
node f , its weight is the weighted sum (using normalized edge
weights) of the node weights of all parents. In Figure 7(d), the
weight for node f2 is the edge weight 0.47 multiplied by the
node weight of its parent f1. Hence the weight of f2 is 0.47.
The node weights are iteratively updated till convergence.
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Table 3: Attack overview

No. Device Duration Scenario Name Attack Reference

1 NextCloud Box 1d0h SMTP Command Injection CVE-2022-24838
2 NextCloud Box 0d23h Attachment Header Injection CVE-2021-32679
3 NextCloud Box 0d19h Configuration Attack CVE-2021-32654
4 NextCloud Box 0d3h Command Injection CVE-2019-12739
5 NextCloud Box 0d10h Code Injection CVE-2020-8180

6 OpenHAB Hub 0d8h XXE Attack CVE-2021-21266
7 OpenHAB Hub 0d3h Binding Attack CVE-2020-5242
8 OpenHAB Hub 0d20h Credential Leak CVE-2021-33024
9 OpenHAB Hub 0d10h Denial-of-Service CVE-2018-7580
10 OpenHAB Hub 1d23h Password Cracking CVE-2021-33020

11 Google Hub 1d2h Unauthorized Access CVE-2020-24441
12 Google Hub 0d8h Cross Site Scripting CVE-2021-29953

13 Android Phone 0d23h RCE Attack CVE-2021-40724
14 Android Phone 1d0h HTML Injection CVE-2021-29944

15 Personal Computer 0d5h Phishing Email Link TC [5] Case 4.5
16 Personal Computer 1d23h Phishing Email Exec TC [5] Case 4.8

4 Evaluation

The evaluation addresses the following research questions:
RQ1: What is the logging overhead of ARTISAN, including
both space and runtime (Section 4.2)?
RQ2: What is the efficiency of weighted content provenance
graph construction (Section 4.3)?
RQ3: What is ARTISAN’s effectiveness in attack forensics
and how does it compare to existing techniques (i.e., AL-
chemist, CLARION and eAudit), with respect to the precision,
recall, and efficiency (Section 4.4)?

4.1 Experiment Setup
Environment. The experiments are conducted on five differ-
ent devices, including three IoT hubs, a mobile phone, and a
personal computer. For IoT hubs, we choose three mainstream
smart home platforms, i.e., a Nextcloud VM Appliance [13]
running on Raspberry equipped with a 950MHz ARM Cortex-
A53 CPU and 1G RAM, an OpenHAB Hub on Raspberry
equipped with a 1GHz ARM Cortex-A57 CPU and 512MB
RAM, and an emulated Google Hub running on Raspberry
equipped with a 1.2 GHz quad-core ARM Cortex-A53 and
2G RAM. They are connected with several home devices
(e.g., Philip lighting device). In addition to IoT devices, AR-
TISAN can also be used in mobile phone attack forensics, in
which the resource constraints are similar. We hence include
an Android phone with a 2.0GHz Qualcomm Snapdragon and
4GB RAM. Although ARTISAN is designed for IoT devices or
computing systems with a small budget for logging, to further
show the generality of ARTISAN and compare with baselines,
we also include a laptop equipped with an Intel i7-9700 CPU
4.7GHz, 64GB memory, and an up-to-date Ubuntu 20.04. All
these systems are continuously run for a month. Within the
period, these systems handle regular benign workloads, and
we occasionally launch remote attacks from different attacker
IPs. That is, the systems are dealing with normal workloads,

e.g., as the primary machine/phone for daily usage, in most
of the time.

To support ARTISAN, the ZFS system is deployed on all five
devices. To support eAudit, the BCC toolkit [3] is deployed
on all devices as well. These devices are used exclusively
by the authors of this paper. Before using the collected data,
we anonymize the identity related information including user
accounts, private file names, and private domain names.
Attack Selection and Ground Truth. To faithfully repro-
duce IoT attacks, we searched all the attacks in recent 3 years
with detailed steps and reproducible PoCs. In Table 3, we
covered a broad range of IoT attack types. For the attacks on
PCs, we downloaded the ground-truth reports with descrip-
tions of attack steps from the DARPA TC dataset. We strictly
followed these steps to reproduce the attacks. We followed
the literature [5] to set up the experiments and compare with
the baselines. Similar to previous work [75], we understood
the attack workflow, and manually labeled nodes and edges
in all the CPGs and APGs as the ground truth, considering
their relations to attacks.
Baselines and Fair Comparison. We chose CLARION and
ALchemist as they are the most recent work on whole sys-
tem provenance. Both systems are built upon SPADE [35]
for data collection and management. They implemented new
components to collect additional provenance events (e.g., ap-
plication events for ALchemist) and integrated the events into
APGs. For a fair comparison, the same symptom event is
provided, and we strictly followed their settings to obtain the
final APGs. Both works do not require instrumentation and are
thus applicable to various Linux based devices including An-
droid, IoT Hub and PC. Existing IoT provenance systems (e.g.,
ProvThing [66] for SmartThings platform) instrument plat-
form applications to collect provenance information. Hence
they require intensive manual efforts to instrument applica-
tions when deploying on different platforms. Besides, there
is a recent work eAudit which leverages eBPF framework to
develop an efficient data collection system. However, our sys-
tem is different from eAudit. Our system records information
in the spatial dimension whereas eAudit records information
in the temporal dimension. Besides, we had optimized the
configuration of the underlying Linux audit system (on which
CLARION and ALchemist ran) and eAudit system, in or-
der for them to run efficiently on the IoT devices. For each
device, we ran the audit subsystem and eAudit system with
different workloads to collect statistics (e.g., backlog, rate and
event losses). These statistics were used to optimize config-
urations (e.g., buffer size). Our goal was to achieve optimal
performance without losing events, ensuring the tools con-
tinued collecting the intended data. Therefore, we carefully
optimized the configuration (of linux audit system) to main-
tain the original tools’ effectiveness. Note that for efficiency,
these tools had already optimally limited the types of recorded
syscalls to only those forensic related. Customizing their set-
tings might be impractical (e.g., SPADE cannot capture file
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Table 4: Space overhead (one week)

System Applications
NextCloud Box OpenHAB Hub Google Hub Android Phone Personal Computer

Items(#) Space(MB) Items(#) Space(MB) Items(#) Space(MB) Items(#) Space(MB) Items(#) Space(MB)

Overall 1560531 580.17 2143183 796.55 1781169 687.90 686104 265.33 6197367 3456.04
Browser 1092373 394.51 1455459 540.57 1295851 490.69 510019 189.28 4340488 2350.72

ARTISAN PDF Reader 815 17.40 1092 23.32 733 16.28 631 13.99 1965 41.97
Video Player 268 9.85 275 10.14 330 12.16 202 7.38 412 15.21
Mail 2484 46.41 3247 62.23 1676 32.48 1124 21.78 2548 44.88
Chat - - - - - - 296 11.07 917 34.31

Overall 30324995 1921.52 44272206 2810.54 32973105 2092.75 11650230 1042.66 95025743 8504.38
Browser 22683096 1433.58 32785379 2143.34 22402571 1424.34 7932071 709.90 54969114 4914.63

eAudit PDF Reader 454809 41.48 619810 53.88 495515 44.86 175284 15.86 1153979 103.16
Video Player 900521 56.90 796898 72.66 793700 71.84 280808 25.42 1846366 170.68
Mail 1411727 89.22 1155266 85.80 621944 60.41 338906 41.30 2161962 199.85
Chat - - - - - - 822165 100.64 5420404 450.83

Overall 69747489 11303.44 94283403 17472.65 75837495 13236.76 18976552 3312.44 154783293 73113.60
Browser 47428292 7686.04 61284212 11352.68 51504538 9540.46 9865121 1722.46 90984138 42977.01

CLARION PDF Reader 1046212 169.54 1319967 244.60 1136218 210.55 424623 74.11 1731796 818.02
Video Player 2071500 339.09 1697101 314.49 1806680 334.27 1192896 208.19 2434246 1149.84
Mail 3347879 542.25 2451368 454.27 1285024 237.99 1444076 252.03 9423088 4451.15
Chat - - - - - - 1978557 345.31 10759276 5082.26

Overall 20232268 3229.85 26135359 4893.56 20788919 3892.05 9109955 1589.97 34861730 16806.71
Browser 13757870 2195.78 19019638 3497.22 1530365 2865.03 5209476 892.05 20917038 10084.02

ALchemist PDF Reader 303334 48.27 373200 69.86 327620 61.32 207586 36.28 390038 190.87
Video Player 594828 94.86 479836 89.83 580790 107.72 583487 101.77 547866 274.33
Mail 970173 154.83 693106 129.76 413582 78.17 706917 123.85 2334557 1023.12
Chat - - - - - - 967804 170.46 2423198 1168.16

content as we do) or suboptimal (e.g., potentially missing nec-
essary information). We hence refrained from altering their
default settings. We acquire the implementations of baseline
techniques from their authors and follow the original settings
to set up the environment. Specifically, to enable CLARION
and ALchemist, we deploy the audit logging systems on five
devices. To support eAudit, BCC toolkit [3] is deployed on all
five devices. We additionally enable the application logging
modules for ALchemist.
Provenance Data. CLARION, ALchemist, and eAudit cap-
tures the syscall interactions between system subjects (e.g.,
process) and system objects (e.g., file or network socket). The
CLARION captures all syscall types while eAudit only cap-
tures 80 syscalls and ALchemist only captures 66 syscalls.
Besides, ALchemist also record the interactions between ap-
plication internal structures (e.g., tabs in firefox) and system
subjects/objects. In contrast, ARTISAN record forensic re-
lated content changes between file system snapshots.

4.2 RQ1: System Overhead

Affordable runtime and space overhead is crucial for attack
provenance systems since they usually operate in a long-term
setting and are active during users’ daily uses. In this section,
we study the overhead of ARTISAN and compare it with that of
baseline techniques. To measure the runtime overhead, we use
the postmark benchmark [48], a file system benchmark that
simulates the behavior of a mail server. Note that this bench-
mark is widely used by existing works [28, 61]. Following
eAudit’s configuration, we set it to run 4500 transactions with

file sizes ranging from 4KB to 50KB across 10 sub-directories.
We obtain the configurations from eAudit and run it on five de-
vices. Similar to many existing work [28,59,61], when evaluat-
ing the time overhead, we run the same workload with/without
ARTISAN/eAudit/ALCHEMIST/CLARION. The overhead is
calculated as the ratio of the CPU time used by the provenance
collection system to that of the benchmark. To measure the
space overhead, we measure the additional auxiliary files cre-
ated during a one-week period (although the systems run for a
month). Specifically, we collect file change records for ARTI-
SAN, system logs for eAudit and CLARION, and both system
logs and application logs for ALchemist. Table 4 presents
the space overhead. The first column denotes the forensic
techniques and the second column the subject applications.
Columns 3-4, 5-6, 7-8, 9-10, and 11-12 denote the space over-
head on the five testing devices, respectively, where we first
present the number of log items and then the consumed space.
Items mean the number of file changes for ARTISAN, and the
number of log entries for the three baselines. The “overall”
rows indicate the total space usage and the other rows list the
dominating applications’ space consumption. Observe that
ARTISAN is the most space-friendly. Specifically, it consumes
around 1157MB on average (on the five devices), In contrast,
eAudit consumes roughly three times more resources, while
CLARION and ALchemist require about six to twenty-four
times more resources. With further inspection, we find that
ARTISAN performs much better on applications with large
workloads, e.g., web browsers. This is mainly because that
ARTISAN is file-based and does not need to record a sheer
quantity of system events.
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Table 5: Runtime overhead

System Nextcloud OpenHAB Google Android Personal
Box Hub Hub Phone Computer

ARTISAN 3.82% 3.98% 3.41% 3.67% 3.54%
eAudit 5.58% 5.86% 5.34% 5.60% 5.16%

CLARION 45.84% 48.46% 46.38% 44.25% 42.68%
ALchemist 43.96% 45.81% 44.61% 42.13% 40.54%

Table 5 depicts the runtime overhead. On average, the run-
time overhead of ARTISAN is 3.68%, smaller than the state-of-
the-art eBPF based provenance system eAudit (5.50%). The
overhead for two auditd based baselines CLARION and AL-
chemist are 45.52% and 43.41%, respectively. The underlying
reason is that the runtime overhead of ARTISAN originates
from taking the ZFS snapshots, which is efficient by design.
In comparison, CLARION and ALchemist need to frequently
record file read/write system events. The eAudit also incurs
small overhead due to its efficient encoding method that re-
duces the cost of user-kernel communication within the eBPF
framework. We also observe that CLARION has larger over-
head compared to ALchemist. It is because CLARION needs
to record and process all kinds of audit log while ALchemist
only focuses on a selected subset (66 syscalls). The results
are consistent with the reported results in [61].

4.3 RQ2: Efficiency of CPG Construction

The overhead of CPG construction are dominated by the data-
log inference time and weight propagation. Recall that ARTI-
SAN is demand-driven and only performs inference on atoms
related to attacks. Table 6 presents the statistics of datalog
inference. The first column shows the attacks. The second col-
umn shows that how many atoms are processed, without and
with demand-driven analysis. For instance, 65.6K/10.8K (1st
row) means that without demand-driven, 65.6K atoms have
to be processed, and with demand-driven, they are reduced
to 10.8K. The third column reports the number of applica-
tions of inference rules (without and with demand-driven).
The fourth column shows the number of derived relations;
the fifth column time consumed and the last column memory
consumed. The results indicate the necessity of the demand-
driven strategy. Observe that in the complex attack 15 (involv-
ing complex Firefox behaviors), the inference engine applies
over 400 thousand rules, deriving 128 thousand new relations.
The corresponding runtime overhead is only 21.7 seconds
while the space overhead is only 166MB, demonstrating the
practicality of ARTISAN in attack forensics.

The weight propagation time is shown in the 7th column
in Table 6. On average, it takes 612.5 seconds to propagate
weights. Note that in the most complex attack 15, the corre-
sponding runtime overhead is less than one hour, demonstrat-
ing the practicality of ARTISAN.

Table 6: Datalog inference details of attacks

Attack Atoms(#) Rules(#) Relations(#) Time(s) Memory(MB)
1 65.6K/10.8K 733.5K/31.8K 163.0K/11.9K 19.8 / 0.5 78 / 12
2 93.1K/16.5K 1.27M/73.4K 302.6K/48.8K 67.1 / 3.5 138 / 35
3 36.2K/5.9K 411.5K/17.9K 85.8K/6.6K 11.4 / 0.3 43 / 7
4 51.0K/8.3K 693.3K/34.6K 160.4K/27.2K 25.0 / 1.9 75 / 19
5 35.8K/6.8K 409.7K/17.1K 87.5K/6.5K 10.3 / 0.3 52 / 16
6 26.5K/4.1K 356.8K/13.4K 72.6K/5.9K 16.7 / 0.4 88 / 4
7 167.4K/28.0K 1.9M/81.2K 423.7K/31.0K 148.9 / 5.6 298 / 60
8 113.8K/20.3K 1.2M/52.5K 291.4K/21.3K 135.2 / 5.0 258 / 42
9 31.9K/5.4K 367.6K/15.1K 79.3K/5.6K 10.9 / 0.3 39 / 6
10 146.7K/23.2K 1.7M/67.8K 370.6K/26.2K 146.5 / 5.2 307 / 67
11 49.2K/8.8K 533.3K/24.0K 123.2K/9.1K 14.2 / 0.4 61 / 10
12 124.5K/19.7K 1.4M/58.3K 296.3K/21.6K 124.8 / 4.1 280 / 46
13 16.4K/2.5K 188.2K/8.0K 41.9K/3.1K 4.8 / 0.1 18 / 3
14 12.3K/1.8K 140.9K/6.0K 29.1K/2.2K 3.7 / 0.1 15 / 2
15 425.6K/71.4K 5.6M/408.2K 1.3M/128.5K 644.8 / 21.7 1288 / 166
16 502.8K/97.6K 5.3M/240.5K 1.2M/94.2K 632.5 / 16.4 1165 / 135

4.4 RQ3: Effectiveness in Attack Forensics

We evaluate the effectiveness of ARTISAN in real-world at-
tack provenance. Specifically, we utilize ARTISAN and the
three baselines to construct provenance graphs and compare
them with the ground truth. Note that eAudit, ALchemist
and CLARION construct attack provenance graphs (APGs),
which are composed of system events instead of files and URI
nodes in CPGs by ARTISAN. To make a fair comparison, we
project all the network event nodes in APGs to their corre-
sponding URIs and non-network events to the corresponding
file nodes. Specifically, process nodes in APGs are projected
to process file nodes. Process creation edges are projected to
control edges (in CPGs). File reads and writes in APGs are di-
rectly translated to CPG file nodes and data flow edges. After
translation, we compute the precision and recall of graphs. Ta-
ble 7 presents the forensic results. The first column presents
the attack ids. Columns 2-3 show the ground truth, where
column 2 denotes the number of attack relevant nodes and
column 3 the normal nodes. Note that the benign nodes are
dominant, making attack forensics challenging. Columns 4-7,
8-11, and 12-15 present the results of ARTISAN, ALchemist,
and CLARION, respectively. We present the number of false
positives (FP), the number of false negatives (FN), precision,
and recall. Precision is defined as the percentage of nodes
in the APG/CPG that are related to the attack. Recall is de-
fined as the percentage of attack nodes that are covered in the
APG/CPG. For example, a precision of 80% indicates 80%
percent of nodes in final APG/CPG are relevant to attack. A
recall of 80% indicates 80% of the attack nodes are contained
in APG/CPG. Observe that ARTISAN performs the best in
terms of precision (93.9%) and recall (98.8%). It is worth not-
ing that ARTISAN achieves 100% recall for the first 14 attacks
on IoT devices, indicating all the attack nodes are success-
fully identified by ARTISAN, while ALchemist, CLARION
and eAudit miss a few. ARTISAN also outperforms the base-
line techniques in term of precision, for the first 14 attacks,
indicating ARTISAN involves fewer attack-irrelevant nodes in
the graph. The two attacks (#15 and #16) from the DARPA
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Table 7: Forensic results (in |File|)

Attack
No.

Ground Truth ARTISAN ALchemist CLARION eAudit

Attack Normal FP FN Precision Recall FP FN Precision Recall FP FN Precision Recall FP FN Precision Recall

1 19 23532 2 0 90.5% 100% 16 0 54.3% 100% 24 0 44.2% 100% 24 0 44.2% 100%
2 30 40724 3 0 90.9% 100% 22 0 57.7% 100% 28 0 51.7% 100% 28 0 51.7% 100%
3 9 16276 0 0 100% 100% 8 2 52.9% 81.8% 8 2 52.9% 81.8% 8 2 52.9% 81.8%
4 70 20947 4 0 94.6% 100% 27 0 72.2% 100% 39 0 64.2% 100% 39 0 64.2% 100%
5 15 15143 1 0 93.8% 100% 10 3 60.0% 83.3% 12 3 55.6% 83.3% 12 3 55.6% 83.3%
6 17 11635 0 0 100.0% 100% 7 5 70.8% 77.3% 11 5 60.7% 77.3% 11 5 60.7% 77.3%
7 50 67537 7 0 87.7% 100% 34 2 59.5% 96.2% 42 3 54.3% 94.3% 42 3 54.3% 94.3%
8 40 47483 0 0 100% 100% 0 0 100% 100% 0 0 100% 100% 0 0 100% 100%
9 24 14051 0 0 100% 100% 0 0 100% 100% 0 0 100% 100% 0 0 100% 100%

10 43 59250 0 0 100% 100% 0 0 100% 100% 0 0 100% 100% 0 0 100% 100%
11 28 19872 3 0 90.3% 100% 6 0 82.3% 100% 6 0 82.3% 100% 6 0 82.3% 100%
12 45 54127 6 0 88.2% 100% 14 0 76.2% 100% 17 0 72.5% 100% 17 0 72.5% 100%
13 31 6961 2 0 93.9% 100% 7 0 81.6% 100% 10 0 75.6% 100% 10 0 75.6% 100%
14 34 5138 0 0 100% 100% 5 0 87.2% 100% 5 0 87.2% 100% 5 0 87.2% 100%
15 55 174142 8 6 87.3% 90.2% 0 4 100% 93.2% 0 4 100% 93.2% 0 2 100% 96.5%
16 62 205303 10 6 86.1% 91.2% 0 4 100% 93.9% 0 4 100% 93.9% 0 2 100% 96.8%

Avg. 35 48882 3 0 93.9% 98.8% 10 1 78.4% 95.3% 18 2 75.1% 95.2% 18 2 75.1% 95.6%

TC engagement aim to escalate privileges after gaining ac-
cess to the victim’s computer. Subsequently, they attempt to
compromise running applications such as sshd to maintain
persistence. ARTISAN loses information about in-memory
process injection, resulting in lower precision and recall com-
pared to the baseline. In such scenarios, the log tampering
window is crucial. eAudit implements a smaller tampering
window, allowing more provenance data to be collected be-
fore the audit is turned off. Therefore, eAudit achieves better
results compared to ALchemist and CLARION.
Why our result is better than baselines. With further in-
spection, we observe that these attacks exploit vulnerabilities
(e.g., alter configuration files) to perform malicious behaviors
such as delivering payload, executing malicious commands
or exposing sensitive data. And we observe that the function-
alities involved in attacks are provenance ready. ARTISAN
hence captures all the necessary information. In contrast to
ARTISAN, both eAudit, CLARION and ALchemist might
miss nodes and edges introduced by control flow (e.g., permis-
sion changes in Section 2) and dataflow. As demonstrated in
Section 2, they lack an understanding of the application-level
semantics. For example, in attack #5, ARTISAN can infer the
dataflow edge from attack’s IP to local file by analyzing API
invocation record from Talk, while eAudit, CLARION and
ALchemist missed such edges. Besides, eAudit, CLARION
and ALchemist cannot distinguish between internet connec-
tions triggered by APIs from input files and those from regular
application server connections or benign activities (e.g., chat-
ting with friends in attack #5). Consequently, many benign
connections are mistakenly considered malicious without un-
derstanding the contents of application input files.

5 Discussion and Limitations

Obfuscation. As mentioned in Section 3.2, the efficacy of
ARTISAN hinges on the robustness of the file parsing and

normalizing processes, which are susceptible to adversarial
interference by obfuscating the file content. It is important
to note that these obfuscation techniques are not challenges
unique to ARTISAN, but are indeed prevalent issues faced
by existing techniques [38, 56, 71, 74]. Specifically, methods
of dynamic obfuscation [49] possess the capability to inject
numerous redundant behaviors during runtime. This could
result in a high number of false positives for existing works,
rendering the provenance graph meaningless. We further con-
firmed with the authors of UIScope [71] and ALchemist [74]
that their systems can also be adversely impacted by obfusca-
tion methods. In addressing obfuscated files, ARTISAN may
potentially overestimate the files as being related to all others,
or conversely, underestimate their relevance, depending on
the analytical context. We argue the task of de-obfuscation is
orthogonal to our work, and, thus, leave it as future works.

Fileless Attacks in IoT Context. ARTISAN cannot handle
attack steps that do not leave trails in the file system, namely
fileless attacks. One typical failure case involves attacks using
inter-process communication (IPC). However, IPC is less of
a problem for IoT devices because they enforce strict access
controls, preventing a process from an application from di-
rectly sending messages to another process or reading/writing
files possessed by another process by default [40]. Although
attackers can exploit vulnerabilities to add malicious pro-
cesses to the trust list of the target application process for
future intrusions, such manipulation is recorded in the access
configuration file of the target application. Thus, the initial
intrusion can still be identified. On the other hand, attack-
ers could use evasion techniques like memory injection and
launch adaptive attacks to intentionally evade forensic track-
ing by ARTISAN. Note that directly tampering with other pro-
cesses’ memory usually requires strong permissions, which
could allow an attacker to corrupt most audit systems. That is,
most existing forensic tracking techniques [27, 61, 74] share
this limitation and would fall short of these evasion techniques.
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Solving this problem may require finding a Trusted Comput-
ing Base (TCB) in the lower part of the system stack, such as
hardware, which is orthogonal to ARTISAN. We hence leave
it as future work.
One-minute Interval. ARTISAN relies on file system snap-
shots, which means attackers may evade detection by hiding
their activities within a one-minute interval. For example, an
attacker could frequently rewrite the payload file within this
interval, making the changes invisible to ARTISAN. To under-
stand the prevalence of such attacks in real world, we test our
system on commonly used attack dataset including DARPA
TC [5] and previous literature [38, 60, 74], we find out that
typical attacks do not involve such behavior. Note that in this
dataset, some attacks can indeed delete the original payload
within the snapshot interval. However, our system can still
capture these attacks. This is because we set the nounlink
attribute in ZFS (Section 3.2), which ensures that when a file
is deleted, ZFS retains the file content. Nevertheless, as pre-
viously mentioned, attackers can potentially launch adaptive
attacks to exploit the one-minute interval. We leave the de-
tection of adaptive attacks within the one-minute interval as
future work, as adaptive attacks remain a threat to all forensic
tracing techniques.
Extensibility and Adaptability to New File Types. Inte-
grating new file types into ARTISAN primarily necessitates
that analysts provides a parser to translate file contents into
UFM, a task that generally constitutes a one-time effort. For
many file types, existing analysis tools are available, mak-
ing the integration process relatively straightforward and not
overly time-consuming. For example, employing the Office
Analyzer [14] enabled a senior analyst to integrate Microsoft
Excel into ARTISAN within approximately two hours. Con-
versely, for file types that lack publicly available analysis
tools, especially proprietary formats, the integration process
may be more time-consuming. Implementing deep-learning-
based methods has the potential to reduce these efforts, and
we plan to explore this approach in our future work.
Limited Set of Rules. Given new systems and attacks, we
need to study if the applications and file types involved in the
attacks are content-forensic ready (Section 3.1). If so, CPG is
equally capable as APG. If not, ARTISAN may conservatively
flag them as all related to attacks.

6 Related Work

IoT Security. There has been an increasing amount of re-
search [22–24, 46, 64–66] on IoT security and more broadly
IoT safety. These works mostly focus on vulnerability detec-
tion, integrity protection, and authentication. ProvThings [66]
instruments security-sensitive application APIs to track data
assignments and method invocations. ARTISAN does not re-
quire instrumentation, and considers both the application and
file type APIs to build up system-level data provenance.

Provenance Collection. Various systems have been devel-
oped to collect provenance data. Audit log-based systems such
as Spade [35] and Trace [44] utilize existing logging mech-
anisms to gather provenance information. In contrast, some
approaches involve direct instrumentation of the OS kernel
to enhance the granularity and security of the data collected.
Examples of such systems include LPM [20], HiFi [60] and
CamFlow [59]. PROVBPF [54] and eAudit [61] both leverage
the Linux eBPF framework, with the former adapting Cam-
Flow’s methods for efficient provenance in container environ-
ments, and the latter introducing novel encoding techniques
that reduce communication overhead, enabling the handling
of significantly heavier workloads. While these systems pri-
marily focus on tracking and analyzing provenance from a
temporal perspective, our work focuses on the collection and
analysis of the spatial dimension of provenance data.
Forensics analysis. Causality analysis played a critical role
in forensics analysis [55, 59, 60]. When an attack symp-
tom is identified, the analyst can utilize the provenance data
to perform backward and forward tracking to identify the
root cause and ramifications. Existing works focus on ad-
dressing problems such as removing redundant events and
causal relations [38, 42, 52, 56, 74], reducing logging over-
head [57, 60], developing query system [32–34, 55], graph
compression [68, 69], and semantic pruning [29, 42, 63, 70].

7 Conclusion

We propose a novel cost-effective attack forensics technique
that is based on spatial logs instead of events in the temporal
dimension. It features a novel representation called content
provenance graph, which is equally informative as traditional
attack provenance graphs. Our technique is much more effi-
cient than the state-of-the-arts while having better precision
and recall in IoT attack forensics.
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Soufflé: On synthesis of program analyzers. 2016.

[48] Jeffrey Katcher. Postmark: A new file system bench-
mark. TR3022, 1997.

[49] Danny Kim, Amir Majlesi-Kupaei, Julien Roy, Kapil
Anand, Khaled ElWazeer, Daniel Buettner, and Rajeev
Barua. Dynodet: Detecting dynamic obfuscation in
malware. In DIMVA, 2017.

[50] Samuel T King and Peter M Chen. Backtracking intru-
sions. SOSP, 2003.

[51] William Largent. New vpnfilter malware targets at
least 500k networking devices worldwide. https://
blog.talosintelligence.com/vpnfilter/, 2018.

[52] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
High accuracy attack provenance via binary-based exe-
cution partition. In NDSS, 2013.

[53] Bo Li, Phani Vadrevu, Kyu Hyung Lee, Roberto Perdisci,
Jienan Liu, Babak Rahbarinia, Kang Li, and Manos An-
tonakakis. Jsgraph: Enabling reconstruction of web at-
tacks via efficient tracking of live in-browser javascript
executions. In NDSS, 2018.

[54] Soo Yee Lim, Bogdan Stelea, Xueyuan Han, and
Thomas Pasquier. Secure namespaced kernel audit for
containers. In SoCC, 2021.

[55] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun
Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. To-
wards a timely causality analysis for enterprise security.
In NDSS, 2018.

[56] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xi-
angyu Zhang, and Dongyan Xu. Mpi: Multiple perspec-
tive attack investigation with semantics aware execution
partitioning. In USENIX Security, 2017.

[57] Shiqing Ma, Xiangyu Zhang, Dongyan Xu, et al. Pro-
tracer: Towards practical provenance tracing by alternat-
ing between logging and tainting. In NDSS, 2016.

[58] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri
Braun, and Margo I Seltzer. Provenance-aware storage
systems. In ATEC, 2006.

[59] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam
Bates, Olivier Hermant, David Eyers, Jean Bacon, and
Margo Seltzer. Runtime analysis of whole-system prove-
nance. In CCS, 2018.

[60] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel,
and Kevin Butler. Hi-fi: collecting high-fidelity whole-
system provenance. In ACSAC, 2012.

[61] R Sekar, Hanke Kimm, and Rohit Aich. eaudit: A fast,
scalable and deployable audit data collection system. In
S&P, 2023.

[62] Amit Singhal et al. Modern information retrieval: A
brief overview. IEEE Data Eng. Bull., 2001.

[63] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook
Jee, Xusheng Xiao, Zhenyu Wu, Junghwan Rhee,
Fengyuan Xu, and Qun Li. Nodemerge: Template based
efficient data reduction for big-data causality analysis.
In CCS, 2018.

USENIX Association 33rd USENIX Security Symposium    1721

https://blog.talosintelligence.com/vpnfilter/
https://blog.talosintelligence.com/vpnfilter/


[64] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang,
Blase Ur, Xianzheng Guo, and Patrick Tague. Smartauth:
User-centered authorization for the internet of things. In
USENIX Security, 2017.

[65] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A Gunter. Charting the attack surface of trigger-
action iot platforms. In CCS, 2019.

[66] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
NDSS, 2018.

[67] Wolfgang Wögerer. A survey of static program analysis
techniques. Technical report, 2005.

[68] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng,
Yan Li, and Darrell DE Long. Evaluation of a hybrid
approach for efficient provenance storage. ACM Trans-
actions on Storage (TOS), 2013.

[69] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Darrell DE
Long, Ahmed Amer, Dan Feng, and Zhipeng Tan. Com-
pressing provenance graphs. In TaPP 11, 2011.

[70] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee,
Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining
Wang, and Guofei Jiang. High fidelity data reduction for
big data security dependency analyses. In CCS, 2016.

[71] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang,
and Yan Chen. Uiscope: Accurate, instrumentation-free,
and visible attack investigation for gui applications. In
NDSS, 2020.

[72] Attila A Yavuz, Peng Ning, and Michael K Reiter. Ef-
ficient, compromise resilient and append-only crypto-
graphic schemes for secure audit logging. In FC, 2012.

[73] Attila Altay Yavuz and Peng Ning. Baf: An efficient
publicly verifiable secure audit logging scheme for dis-
tributed systems. In ACSAC, 2009.

[74] Le Yu, Shiqing Ma, Zhuo Zhang, Guanhong Tao, Xi-
angyu Zhang, Dongyan Xu, Vincent E Urias, Han Wei
Lin, Gabriela Ciocarlie, Vinod Yegneswaran, et al. Al-
chemist: Fusing application and audit logs for precise
attack provenance without instrumentation. In NDSS,
2021.

[75] Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen,
Zhenkai Liang, Tat-Seng Chua, and Zheng Leong Chua.
Shadewatcher: Recommendation-guided cyber threat
analysis using system audit records. In S&P, 2022.

INVOICE

Total Amount:  

(a) INVOICE.pdf (b) source of INVOICE.pdf

DataSource: add0n.com/pdf.html

Object 1  << /Type /Catalog >>
/OpenAction /Launch /F bill.js

Object 2
<< /Type /EmbeddedFile bill.js >>
...
app.launchURL(http://nato.com/
payload.php)

Object 3 <</Type /AA>>
/Keystroke /SubmitForm
/URL (http://nato.com/upload.php)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14

Phone Number:  

bill.js

(a)

(a) (a)

Figure 8: A PDF file and its source

Appendix

A UFM Abstract Types: A PDF Example

PDF is one of the most widely used types of document. It has
a large number of advanced features (e.g., 3D animations) and
allows embedding different kinds of objects (e.g., Flash) and
script code blobs (e.g., Javascript). While these embedded
objects and script code snippets provide exceptional expres-
siveness and functionalities, they may have severe security
problems. Based on a recent report [17], thousands of PDF
CVEs are originating from these auxiliary features. For exam-
ple, many PDF malwares leverage JavaScript APIs.

Figure 8(a) shows a malicious PDF sample INVOICE.pdf.
It pretends to be a benign invoice file and deceives the user
to enter sensitive information. When the file is opened, the
malicious code in embedded file bill.js will be executed. It
loads a remote URL http://nato.com/payload.php. Besides,
when it detects keystrokes, which contain sensitive infor-
mation, it sends the keystrokes through a form to a remote
URL http://nato.com/upload.php. Figure 8(b) shows a part
of the internals of INVOICE.pdf. In particular, line 1 speci-
fies the data source (add0n.com/pdf.html). Lines 3-4 show a
Catalog object which is the root object for a PDF file. The
OpenAction label (line 4) indicates an open event (of the
PDF file) and Launch indicates the JS file invoked. The two
lines mean that when the PDF file is opened, it automati-
cally launches the embedded file bill.js, which is defined in
lines 7-10. It contains an API invocation to launchURL to
load http://nato.com/payload.php. Lines 12-14 define an ad-
ditional action: when a keystroke event is detected, it will
submit a form to http://nato.com/upload.php.

Line 1 in Figure 8(b) is parsed to a meta-
data record. All the file paths (bill.js) and URLs
(add0n.com/pdf.html, http://nato.com/payload.php, and
http://nato.com/upload.php) are parsed to keywords records.
The invocation of app.launchURL(...) is parsed to an API
record.

1722    33rd USENIX Security Symposium USENIX Association


	Introduction
	Motivation
	A Real Attack on NextCloud Box
	State-of-the-art Forensics Techniques
	Our Approach

	System Design
	Content Provenance Graph
	Snapshots and File Normalization
	Content Provenance Graph Construction
	Weighted Content Provenance Graph

	Evaluation
	Experiment Setup
	RQ1: System Overhead
	RQ2: Efficiency of CPG Construction
	RQ3: Effectiveness in Attack Forensics

	Discussion and Limitations
	Related Work
	Conclusion
	UFM Abstract Types: A PDF Example

