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Abstract
Audio adversarial perturbations are imperceptible to humans

but can mislead machine learning models, posing a security

threat to automatic speech recognition (ASR) systems. Exist-

ing methods aim to minimize perturbation values, use acous-

tic masking, or mimic environmental sounds to render them

undetectable. However, these perturbations, being audible fre-

quency range sounds, are still audibly detectable. The slow

propagation and rapid attenuation of sound limit their tem-

poral sensitivity and attack range. In this study, we propose

LaserAdv, a method that employs lasers to launch adversarial

attacks, thereby overcoming the aforementioned challenges

due to the superior properties of lasers. In the presence of vic-

tim speech, laser adversarial perturbations are superimposed

on the speech rather than simply drowning it out, so LaserAdv
has higher attack efficiency and longer attack range than Light-

Commands. LaserAdv introduces a selective amplitude en-

hancement method based on time-frequency interconversion

(SAE-TFI) to deal with distortion. Meanwhile, to simultane-

ously achieve inaudible, targeted, universal, synchronization-

free (over 0.5 s), long-range, and black-box attacks in the

physical world, we introduced a series of strategies into the

objective function. Our experimental results show that a sin-

gle perturbation can cause DeepSpeech, Whisper and iFlytek,

to misinterpret any of the 12,260 voice commands as the tar-

get command with accuracy of up to 100%, 92% and 88%,

respectively. The attack distance can be up to 120 m.

1 Introduction

With rapid advances in artificial intelligence, ASR systems

have become an integral part of our daily life. These systems

are the driving force behind popular technologies such as digi-

tal assistants (e.g., Alexa and Open AI Whisper), transcription

services and voice-controlled applications, improving the user

experience by providing convenient and hands-free control.

However, as these systems become more pervasive, they also
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Figure 1: Attack Scenarios.

become attractive targets for adversaries [1, 2]. Adversaries

are often motivated by the ability to bypass security mech-

anisms, gain unauthorized access to systems, or disrupt ser-

vices. Such attacks facilitate unauthorized access to sensitive

information and control over physical security mechanisms,

such as unlocking doors, which pose a direct threat to per-

sonal safety. Moreover, adversaries can remotely set devices

to airplane mode, precipitating denial-of-service attacks, etc.

Previous researchers have increasingly focused on attack-

ing ASR systems using audio adversarial attacks. Traditional

methods for generating adversarial perturbations have pri-

marily revolved around constraining the perturbation to a

certain limit [3]. In parallel, some studies have gone a step

further, which combined human perceptual models and music

or ambient noise as a means of constraining the adversarial

perturbation while ensuring quality masking [4–9, 11].

Unfortunately, existing research efforts have primarily con-

centrated on creating adversarial perturbations within the au-

dible frequency range, which poses a significant challenge

to achieving complete imperceptibility. In addition, the in-

herently slow speed of sound propagation results in longer

transmission times, preventing effective synchronisation with

the victim’s voice command. Combined with the rapid atten-

uation of sound over distance, this can result in significant
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perturbation distortion. Taken together, these factors reduce

the effectiveness of the attack and may even cause it to fail

over long distances. In contrast, the speed of lasers far ex-

ceeds that of sound, and they experience slower attenuation

over the air. As a result, the laser is time-insensitive and may

attack from greater distances. Thus, this is a significant leap

from the limited attack distance and imperceptibility of tra-

ditional methods, allowing for more practical and extensive

adversarial attack scenarios.

In this work, we are trying to answer the following ques-

tions: Is it possible to launch an adversarial attack on ASR
with laser beams? And is the attack efficacy of laser adversar-
ial perturbation superior to that of laser commands [10] in
the presence of victim speech?

Inspired by LightCommands [10], we propose LaserAdv,

a method that leverages laser beams to inject adversarial per-

turbations into VCSs (Voice Control Systems), as shown in

Fig. 1. Compared to LightCommands, LaserAdv effectively

reduces the signal-to-noise ratio (SNR) required for success-

ful attacks. This reduction in SNR has several notable benefits:

1) Broader range of vulnerable devices: Although micro-

phones can detect laser signals due to the photoacoustic effect,

not all devices have high sensitivity to these signals, resulting

in lower SNRs. The reduction in SNR means that LaserAdv
is applicable to a wider range of device types; 2) Improved
power efficiency and attack stealth: Requiring a lower SNR

not only reduces power consumption but also increases the

stealthiness of the attack signals when the perturbation has

been received; 3) Longer attack range.
Even though ASR can successfully recognize voice com-

mands injected via lasers, the utilization of lasers to inject

adversarial perturbation still faces serious challenges. ASR

systems typically undergo pre-processing, such as noise re-

duction, which can inadvertently mitigate the effects of such

perturbations. It is well known that audio adversarial per-

turbations are often carefully crafted and superimposed on

normal voice commands, after being fed into the ASR, the

perturbation will be treated as noise and filtered out.

Therefore, LaserAdv faces the following main chal-

lenges: First, unlike the noise and distortion introduced

when converting sound, microphones, as transducers designed

specifically for sound, exhibit complex and unknown system

characteristics when converting lasers, leading to the intro-

duction of various unknown signal distortions. Second, it is

challenging to simultaneously achieve inaudible, targeted, uni-

versal (one perturbation works on more than 10,000 speech),

synchronisation-free (up to 0.5 s), long-range (over 120 m),

and black-box attacks (successfully tested on black-box mod-

els)in the physical world. We refer to adversarial perturbations

with the above attack capabilities as an integrated adversarial

perturbation (IAP).

To address these challenges, we first investigated the band-

width requirements of ASR for adversarial examples. Follow-

ing this, we utilized laser pulse signals and multi-frequency

signals to excite the laser channel of the microphone, inves-

tigating the system response characteristics and possible in-

troduced distortions. We found that the frequency response

of the laser channel drops off sharply with increasing fre-

quency. To meet the bandwidth requirements and mitigate the

distortion induced by frequency selective fading (FSF), we

proposed a method called selective amplitude enhancement

based on time-frequency interconversion (SAE-TFI). This

method allows selective control of the fading components.

In addition to the distortion caused by FSF, microphones

are also relatively insensitive to lasers, resulting in a low

amplitude in the captured signal. To solve this problem, we

imposed device-dependent constraints on the adversarial per-

turbation during its generation, while ensuring low compu-

tational complexity. As the adversarial perturbation works

together with victim speech rather than drowning it out, the

need for high sensitivity to the laser is reduced, making it

suitable for a wider range of devices. The effectiveness and

range of the attack are also significantly improved.

Third, to implement IAP, we introduced strategies for asyn-

chrony, and content independence in the objective function.

In particular, to ensure attack effectiveness in black-box sce-

narios simultaneously, we proposed a method for extracting

target command attributes and model attributes based on audio

data with a similar distribution. We have effectively tackled

all challenges and validated LaserAdv in realistic scenarios.

In summary, our contributions can be summarized as follows:

• We present LaserAdv, an approach that injects adversar-

ial perturbations into state-of-the-art ASR systems via

laser beams.

• We conducted a comprehensive analysis of the system

characteristics of the laser channel to identify various

sources of signal distortion. Based on these findings, we

propose an innovative selective amplitude enhancement

method to address the distortion. Additionally, by intro-

ducing different strategies, we effectively generate IAPs.

• We evaluate LaserAdv on three ASR systems (Deep-

Speech, Whisper, iFlytek) across 6 devices. Our results

show that more than 10,000 voice commands can be

compromised into the same targeted sentence with the

addition of a single laser IAP in black-box settings. Fur-

thermore, in the presence of victim speech, the maximum

range of attack can be up to 120 m without using a tele-

photo lens.

2 Background

2.1 Traditional Audio Adversarial Perturba-
tions

Previous researchers have made considerable efforts to ensure

that adversarial perturbations are imperceptible to humans,
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and these efforts can be categorized as follows: 1) Minimizing

the value of adversarial perturbations δ [3]; 2) Acoustic mask-

ing: Using the psychoacoustic model [8] or human perception

model [11] to constrain the amplitude of adversarial perturba-

tions. 3) Environmental sound mimicking: Making the adver-

sarial perturbations sound like environmental sound [5].

Minimizing the Value of δ. The basic idea of this type of

method is to limit the perturbation to a relatively small range,

so the optimization problem for creating an audio adversarial

perturbation can be formulated as follows:

argmin
δ

L( f (x+δ),y′)+ ε‖δ‖2 (1)

where the target ASR system can be modeled as f (·), L(·)
is the loss function, x represents the original audio, δ is the

generated adversarial perturbation, y′ is the target transcrip-

tion, and ε is the constraint hyperparameter used to limit the

amplitude of the adversarial perturbation to increase conceal-

ment.

Acoustic Masking. In addition to simply using the Lp
distance to limit the strength of the adversarial perturbation,

some studies use the psychoacoustic principle of auditory

masking to selectively introduce these perturbations into re-

gions of the audio that are inconspicuous to the human ear [6].

The loss function can thus be formulated as follows:

L( f (x+δ),y′)+ ε ·Lθ(x,δ) (2)

where Lθ constrains the normalized power spectral density

(PSD) estimation of the perturbation to be under the frequency

masking threshold of the original audio [8]. While the abso-

lute amplitude of δ can be fine-tuned in alignment with the

masking threshold, allowing larger δ values, the maximum

value is still confined to a limited range.

Environmental Sound Mimicking. In order to make audio

adversarial perturbations imperceptible to humans, another

research effort has incorporated environmental sounds such

as birds singing, car horns, and HVAC noise into the pertur-

bations [5, 12]. This method ensures that the perturbations

are sufficiently loud to maintain robustness in physical attack

while remaining difficult for humans to detect. Given a chosen

environmental sound template δ̂, the attack objective can be

expressed as:

argmin
δ

L( f (x+δ),y′)+θ ·dist(δ, δ̂) (3)

where dist(δ, δ̂) denotes the distance between adversarial

perturbation and the sound template according to a chosen

distance metric, e.g., L2 distance [5], time-frequency pattern

difference [12].

Although current adversarial perturbation attacks effec-

tively minimize perceptibility by controlling or manipulating

the magnitude of perturbation δ through various methods, the
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Figure 2: Structure of MEMS microphone and attenuation

characteristics of sound and laser beam.

acoustic perturbations δ may still be audibly detectable under

specific conditions, meanwhile, the attack distance is limited.

Therefore, it is essential to investigate adversarial perturba-

tions that are entirely inaudible and capable of facilitating

long-range attacks.

2.2 MEMS Microphone and Vulnerability

Due to their small size, robustness, high performance and low

cost, MEMS microphones have become increasingly common

in modern electronic devices, especially those with voice-

based interaction capabilities such as smartphones, smart

home devices and laptops. The structure of the MEMS mi-

crophone is shown in Fig. 2 (a). Nevertheless, the Light-

Commands [10] attack confirmed the optical coupling phe-

nomenon of the MEMS microphone, where changes in light

intensity can generate an output voltage in the MEMS mi-

crophone. This makes it possible to inject signals from a

distance, which presents both intriguing possibilities and wor-

rying vulnerabilities. However, adversarial perturbation is

more sensitive to distortion than voice commands, which in-

troduces uncertainty when using the laser beam to carry the

perturbation.

2.3 Attenuation Characteristics of Sound and
Laser

Sound waves and laser beams exhibit unique attenuation char-

acteristics as they propagate over a distance. In order to quan-

titatively analyze and compare the attenuation rate of sound

and laser, we have carried out the following experiments. We

initially set the distance between the signal sources (i.e. laser

diode and loudspeaker) and the microphone at 0.5 m, care-

fully adjusting the drive power of both the laser and the loud-

speaker to ensure that the signal strength received by the

microphone remained constant at this distance. We then grad-

ually increased the distance between the signal sources and

the microphone at 1.2 m intervals, systematically recording
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Table 1: Comparison of different bandwidths.

Frequencies Numbers Loss Success Rate

0.1 - 0.6 kHz 21 8.65 -

0.1 - 0.8 kHz 323 0.70 96.90%

0.1 - 1 kHz 337 1.15 84.57%

0.1 - 2 kHz 377 0.35 99.73%

0.1 - 3 kHz 383 0.49 99.74%

0.1 - 4 kHz 382 0.11 99.74%

the received signal strength at each step. The maximum dis-

tance was set at 5 m.

The results are shown in Fig. 2 (b), we can observe that the

attenuation of sound decreases rapidly as distance increases,

while the attenuation of lasers is comparatively gradual. When

the distance is expanded from 0.5 m to 5 m, the sound’s inten-

sity is reduced to 7% of its original value, whereas the laser’s

intensity is only reduced to 66.6% of its initial level. This

difference, which is approximately an order of magnitude,

clearly demonstrates the significant advantage of the laser for

long-range attacks.

3 Feasibility Analysis

In this section, We provide a comprehensive analysis by con-

sidering both the bandwidth requirements of adversarial per-

turbations for effective ASR attacks and the two key charac-

teristics of MEMS microphones: 1) the system response to

the laser, and 2) the distortion of the signal within the laser

channel. These factors provide insight into the practical chal-

lenges and potential opportunities for using lasers in audio

adversarial attacks.

3.1 Bandwidth Requirements
Careful selection and tuning of the bandwidth are essential to

the effectiveness of the attack, allowing the perturbations to

exploit weaknesses in the ASR system’s processing of audio

signals. We generated adversarial perturbations by configur-

ing different bandwidths and tested the attack performance

on different ASRs.

As shown in Tab. 1, with the broadening of the frequency

band, the number of generated perturbations increases and

the loss decreases, and the success rate also increases gradu-

ally. Therefore, in order to successfully capture the wideband

signal that is essential for carrying out black-box attacks in

physical scenarios, it is better to have a high and flat frequency

response in both the low (100 Hz) and high (4 kHz) frequency

ranges.

3.2 Responses Characteristic of MIC to Laser
To investigate the feasibility of laser adversarial perturbations,

we conducted a series of experiments to comprehensively
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Figure 3: The system response of MEMS microphone to laser

beams.

analyze the system responses of microphones to laser beams,

focusing specifically on both impulse response and frequency

response aspects.

Impulse Response. The impulse response describes the

time domain characteristics, a microphone with a good im-

pulse response can accurately and faithfully transmit and

convert complex signals and sudden changes, resulting in

high-fidelity signal reproduction. Since it is impossible to

produce a perfect impulse signal with physical equipment, we

have developed a driving current of laser diodes that resem-

bles an impulse by changing the frequency and using different

types of waveforms, as shown in Fig. 3 (a) (Top). This wave-

form takes about 23.5 us to return to its initial state compared

to an ideal pulse. The impulse response of the microphone,

shown in Fig. 3 (a) (Bottom), although the input signal is

instantaneous, the microphone takes approximately 28.7 us

to respond and approximately 61.7 us to return to its initial

state. For common applications such as general recording and

speech recognition, an impulse response time within a few

milliseconds is usually acceptable. The impulse response to

the laser is therefore good.

Frequency Response. To analyze the frequency response

to laser, we systematically generated single-tone sinusoidal

signals (denoted s) within a frequency range of 100 Hz to 4

kHz, with a 200 Hz interval between successive frequencies.

This signal is simultaneously input into two identical laser

driving devices, designated as Device 1 and Device 2, for mod-

ulation. We record the output lout from laser driving Device 1

using a data acquisition card, while Device 2 directly drives a

laser diode. The emitted laser is then injected into a MEMS

microphone positioned 50 cm away, with the recorded sound

denoted as mout . In addition to using the MEMS microphone

to receive the laser signal, we also employ a photodetector

(THORLABS APD430A2) to detect the laser’s intensity, rep-

resented as pout .

The frequency response curves of these three devices are

shown in Fig. 3 (b). The curves corresponding to the laser

drivers and photodiodes are relatively smooth, whereas the

3948    33rd USENIX Security Symposium USENIX Association



Laser 

Command:

Audible Audi-Channel

Laser-Channel

MICPhysical

Audi-Channel

Audi-Channel

Audi-Channel

Audible
Attack

Laser
Attack Laser-Channel

Figure 4: The transformation process of an adversarial pertur-

bation δ in audible and laser channels. The audible and laser

channels involve both the physical space and the microphone

circuit.

frequency response of the microphone shows a pronounced

drop with increasing frequency, from 1.02 V at 100 Hz to

0.2 V at 4 kHz. This result indicates that it’s a FSF chan-

nel for laser signals, resulting in significant signal distortion.

Such a characteristic limits the effectiveness of laser perturba-

tion, especially given the stringent bandwidth requirements.

Therefore, we have developed a specific method to effectively

combat the FSF channel in the design section.

3.3 Distortion within Laser Channels
Theoretical Analysis. To gain a deeper understanding and

facilitate a comparison of signal transformation and distor-

tion in both the audible and laser channels, we first conduct

a theoretical analysis combining the above results. As de-

picted in Fig. 4, given an audible adversarial perturbation

δ(t) and voice command x(t), the recorded signal x′(t) can be

expressed as x(t)+δ(t), ignoring the electrical and ambient

noise present in the physical and electrical system. Nonethe-

less, in real-world scenarios, various noises are introduced,

ultimately resulting in the received signal being represented

as:

x′(t) = Ha(x(t)+δ(t))+na(t) (4)

Here na(t) represents the noise in the audible channel, e.g.,

ambient and electrical noise. Ha(·) is the transfer function of

the audible channel.

At the same time, the transformation of the laser pertur-

bation is shown in Fig. 4. Unlike audible perturbation, laser

perturbation is transmitted through the laser channel within

the physical and electrical systems. Given an laser adversarial

perturbation δ and a voice command x(t), the received signal

can be expressed as:

x′(t) = Ha(x(t))+Hu(δ(t))+na(t)+nu(t) (5)

where nu(t) denotes the noise within the laser channel. Hu(·)
is the transfer function of the laser channel, which leads to

other types of signal distortion caused by factors such as FSF

and weak response. Consequently, the overall signal distortion

is aggravated compared to audible perturbations, owing to the

inherent characteristics of the laser channel.

Evaluation. To investigate the distortion characteristics of

both audible and laser channels, and analyze the feasibility of

LaserAdv, we first generate an audio adversarial perturbation

with a bandwidth ranging from 100 Hz to 4 kHz. We then

play and record perturbation using a loudspeaker and five de-

vices, including a MEMS microphone and four smartphones,

designated as Enjoy 20 Pro, Honor 20 Pro, Redmi K30 Ultra,

and Samsung Galaxy S9.

To obtain the laser perturbations, we fed the perturbation

into the laser driver for modulation, subsequently using it to

drive the laser diode. The emitted laser was then injected

into the five devices. Fig. 5 illustrates the recorded perturba-

tion of the five devices. The top five images from (a) to (e)

display the recorded acoustic perturbations with very subtle

distortions, while the bottom five images from (f) to (j) re-

veal the recorded laser perturbations. Each of these images

exhibits two to three types of distortions: 1) the introduction

of additional noise; 2) weak response, resulting in a low SNR;

and 3) distortion caused by FSF. In subsequent designs, we

will propose corresponding methods to address the distinct

distortion.

These findings provide a nuanced insight into how to care-

fully design the adversarial perturbations to address the spe-

cific types of distortion encountered.

3.4 Threat Model
Attack Goal. The adversary’s objective is to manipulate the

output of the target’s black-box ASR system from a distance

of ten metres. This is achieved by introducing an laser adver-

sarial perturbation that is unrelated to the content or timing

of the victim’s speech. Unlike the approach used in Dolphi-

nAttack [42] and LightCommands [10], LaserAdv assumes

that the victim is speaking any voice commands at the time

of the attack. In summary, the adversary must simultaneously

fulfil the following conditions:

• Synchronization-free. In LaserAdv, synchronisation-

free describes scenarios where adversarial perturbations,

although delayed by up to 0.5 seconds, can still affect the

first 0.5 seconds of voice commands. This indicates that

the perturbations do not require precise synchronisation

with the voice commands to be effective.

• Transferability. This refers to the adversarial perturba-

tions generated for the white-box ASR system Deep-

Speech, which can be utilized to attack black-box sys-

tems such as iFlytek and Whisper.

• Universal. It refers to the ability of a perturbation to

effectively interfere with over 10,000 user’s voice com-

mands. Note that we do not use the term Generalizability
to illustrate the LaserAdv attack.
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Figure 5: Recorded acoustic adversarial examples (top) and laser-based adversarial examples (bottom) with 5 different devices.

• Inaudible and targeted.

Assumption on Attacker’s Knowledge. We have designed

our threat model to reflect a realistic scenario where an at-

tacker with limited resources, only has detailed knowledge

of one ASR system - DeepSpeech. The other two systems

are state-of-the-art commercial and black-box ASR systems

(Whisper and iFlytek) about which we have no detailed inter-

nal knowledge. Our study aims to demonstrate the potential

transferability of the attack across different systems. There-

fore, specific knowledge of these systems is not required to

validate the effectiveness of our approach. The adversary has

no knowledge of the content and timing of the victim’s voice

commands.

Adversary’s Capability. LaserAdv assumes that laser per-

turbations are emitted when the victim is actively speaking.

Since the adversarial perturbations are transmitted via laser

rather than conventional audio, it is assumed that the adver-

sary is equipped with the necessary equipment that can mod-

ulate and transmit laser beams. The total price for the laser

driver, the laser diode and the battery are less than $20. Simi-

lar to other long-range attacks, the lack of visual or auditory

feedback from the target device prevents the attacker from

promptly determining the success of the attack. Typically,

multiple attempts will be made to ensure the attack achieves

its intended results. When LaserAdv achieves universal, the

perturbations do not require synchronization with the spoken

words. This capability allows the system to effectively manip-

ulate voice commands regardless of their timing or content.

Assumption on the Victim’s device. Since certain com-

mands can only be executed on an unlocked device, in this

case, we assume that the smart device is unlocked. For other

commands, the device may be either locked or unlocked. As

the smart device is already awakened during the interaction

with the victim, we do not need to assume whether the device

is specifically trained to recognize the speaker’s voice.

4 LaserAdv Design

4.1 Basic Problem Formulation
In prior research, the basic optimization problem formula-

tion should consider the perturbation to be imperceptible to

humans. Consequently, strict constraints on the perturbation

were necessary. The constraints limit the feasible space of

solutions, making it more challenging for optimization algo-

rithms to find the optimal solution. This may result in slower

convergence, increased complexity, greater computational re-

source demands, etc.

In our study, we aim to find an adversarial perturbation

δ that meets the condition f (x+ δ) = y′. Unlike previous

methods, the adversarial perturbation δ is not subject to strict

constraints for imperceptibility. Thus, the basic optimization

problem can be expressed as follows:

argmin
δ

L( f (x+δ),y′) (6)

where L(·) refers to the loss function of a white-box sys-

tem, which in our work is DeepSpeech. Due to the lack of

constraints on δ, solving the above optimization problem be-

comes much simpler and faster.

4.2 Transferability in Black-box ASRs
Transferability, while advantageous for an attacker, poses sev-

eral challenges in crafting successful adversarial perturbation.

Transferability arises from the observation that different ASR

models, despite their unique structures and parameters, often

capture similar high-level features for targeted voice com-

mands. This consistency not only leads to identical results for

similar speech inputs but also creates uniform vulnerabilities

across models. Based on this, we considered a wide range
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of other voice commands when generating perturbations for

target commands. The dataset contains various elements of

speech, including different volumes, accents, speech rates,

background noise and more. As a result, the generated per-

turbations, when combined with any other voice command,

have high-dimensional features similar to those of the target

command. This makes them potentially effective for attack-

ing models with different architectural parameters. During

the perturbation generation process, we sampled audio inputs

from this assembled dataset. Thus, the optimization problem

can be expressed as follows:

argmin
δ

E
x∼S

L( f (x+δ),y′) (7)

where S represents the similar distribution of the audio inputs,

and x is randomly sampled from S .

4.3 Time and Content Independent
In realistic scenarios, the laser adversarial perturbation δ ∈
Q1×M should be insensitive to both the relative position within

the victim speech and the actual content of the victim speech

x ∈Q1×N , where M,N are the length of δ and x.

In the process of perturbation generation, we randomly

choose a time delay τ uniformly within the range from 0

to N −M to compute the gradient at each iteration, thus the

objective function Eq. 8 can be expressed as follows:

argmin
δ

E
x∼S ,τ∼T

L( f (x+δ(t − τ)),y′) (8)

Let T = {kd | k ∈ N,0 ≤ k ≤ M
d }, where d is the number

of sample points.

In LaserAdv, the value of d can be set to greater than 20,

thereby reducing the number of iterations compared with

previous work [5], where d is set to 1 sample point. That is

because the laser perturbation is more position-insensitive and

robust due to no strictly constrained amplitude. To validate

this, we use Eq. 1 and Eq. 6 to generate two different adver-

sarial perturbations, denoted δ1 and δ2. It takes approximately

1000 iterations to generate an effective δ1, whereas only 200

iterations are needed for δ2. The results show that the final

successful attack delay ranges for δ1 and δ2 are 0− 10 and

0−50 respectively. The number of iterations required to reach

convergence directly correlates with the algorithm’s complex-

ity. Therefore, when using different objective functions to

generate two distinct δ, the iteration count provides insight

into which algorithm is more efficient. This is critical for prac-

tical applications where computational resources and time are

constrained. In LaserAdv, the value of d can be set to 20 or

even higher. This approach leads to quicker convergence of

the objective function with fewer iterations while maintaining

effectiveness.

To make the adversarial perturbation universal, the opti-

mization problem should consider the generalization of the

perturbation across a wide range of audio inputs. To achieve

this goal, we propose the following optimization problem

based on Eq. 8:

argmin
δ

E
τ∼T , x∼{S ,D}

L( f (x · i+δ(t − τ)),y′) (9)

where D represents the distribution of the audio inputs x,

Parameter i, which is adjusted between 0.1 and 1, is specifi-

cally designed to normalize and adjust the volume of audio

inputs within the dataset. This adjustment not only enhances

the efficiency of our perturbation generation but also helps

prevent non-convergence issues during the optimization pro-

cess.

4.4 Physical Adversarial Perturbation
According to the preliminary analysis, there are two kinds of

distortion that should be carefully considered and addressed

in LaserAdv.

Dealing with Low Sensitivity. Reviewing the aforemen-

tioned results of the feasibility analysis, we can see that some

devices with MEMS microphones are insensitive to lasers

and receive only a low intensity of laser-induced adversarial

perturbations. However, the intensity of the adversarial pertur-

bation is a critical factor in the success of the attack. As the

intensity of the perturbation decreases, so does the success

rate of the attack. Therefore, to address the issue of reduced

intensity due to the limited gain of microphones, we impose

certain constraints on the amplitude of the perturbation within

our optimization problem. The parameter b is determined

by the device’s frequency response. When the frequency re-

sponse is low, b is set to a smaller value, ensuring that even

minimal perturbations remain effective. Consequently, suc-

cessful attacks can be achieved even when the device receives

only small amplitude perturbations. Furthermore, by setting

a lower bound a on the perturbation, we avoid overly strin-

gent constraints that could hinder the generation process. In

LaserAdv, The values for a and b are based on experience

and the frequency response of the equipment.

Dealing with FSF Channel. FSF causes wide-bandwidth

perturbation to be attenuated unevenly across the spectrum

after passing through the laser channel. Specifically, the high-

frequency components experience much greater attenuation

than the low-frequency components. This distinctive distor-

tion phenomenon stands apart from distortions caused by

ambient noise or low sensitivity, making it impervious to

remedies such as the introduction of random noise or similar

measures.

In LaserAdv, we propose a Selective Amplitude En-

hancement method based on Time-Frequency Interconver-

sion (SAE-TFI) aimed at compensating for the attenuation of
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high-frequency components. To begin, we apply Short Time

Fourier Transform (STFT) to the generated perturbation δ
to convert it from the time domain to the frequency domain,

which can be expressed as:

S(δ) = ST FT{δ(t)}(τ,ω) =
∫ ∞

−∞
δ(t)h(t − τ)e− jωtdt (10)

where h(·) is the Hann window function, and δ(t) is the

converted perturbation signal. S(δ) is the complex spectrum

of δ after applying STFT. S(δ) corresponds to a complex value

at each time t and each frequency f . Next, we use Eq. 11 to

obtain the amplitude spectrum and phase spectrum of the

perturbation δ:

Amp = abs(S(δ))
Phase = angle(S(δ))

(11)

where abs(·) means taking the absolute value of a complex

number, angle(a+b j) = arctan( b
a ). In order to recover the

missing high-frequency components as much as possible, we

perform linear enhancement on the amplitude spectrum using

Eq. 12:

ˆAmp =

{
coe f ·Amp, i f f > cut_o f f ,

Amp, otherwise
(12)

where coe f is the coefficient representing the enhancement

ratio, and cut_o f f represents the cut-off frequency. Although

the linear method cannot completely reverse the unique dis-

tortion, it can effectively alleviate the high-frequency loss

caused by FSF to a certain extent.

Finally, the inverse short-time Fourier transform (iSTFT)

process is applied to obtain the enhanced time domain pertur-

bation signal, and the formula is as follows:

δ̂ = iST FT{ ˆAmp · e j·Phase} (13)

where δ̂ is the enhanced perturbation signal, and the func-

tion of iSTFT is to transform the specified complex spectrum

into a time domain signal.

After thoroughly considering the other various distortion

factors (i.e., ambient noise, etc.), we formulate our optimiza-

tion problem as follows:

argmin
δ

E
τ∼T , x∼{S ,D}, h∼{H1,H2}

L( f (x · i+δ′),y′) (14)

subject to a ≤ δ′ ≤ b

where, δ′ = h⊗F(δ(t − τ))+ n, a and b are parameters

restricting the amplitude of the perturbation δ′, h is the room

Figure 6: Illustration of the experimental setup.

impulse response (RIR) sampled from the collected distri-

bution H1 and H2 in the audible channel and laser channel

respectively. n denotes the Gaussian white noise, and F(·)
represents the band-pass filter. The RIR of H1 is chosen from

the Database [13]. To obtain the impulse responses of the

laser channel, we play and record the impulse using a laser

diode and microphone. These noise components effectively

simulate the complexity of the laser channel state, also indi-

cating the necessity of considering these complexities in the

design and implementation of LaserAdv.

After solving Eq. 14, we obtain an adversarial perturbation

within the bandwidth of 100 Hz to 4 kHz. By applying the

SAE-TFI method, we are able to create adversarial perturba-

tions taking into account all the factors involved.

5 Evaluation

5.1 Experiment Settings
Prototype. We implement LaserAdv using the TensorFlow

framework on a server running Ubuntu 16.04 with an NVIDIA

Tesla V100-16GB GPU. The default configuration is set as

follows: d = 20, the maximum number of iterations is 2,000,

and the frequency range of the band-pass filter F(·) is set to

100 Hz - 4 kHz. The maximum time delay τ between x and δ is

set to 1.2 seconds. The target ASR models for our experiments

are DeepSpeech, iFlytek, and Whisper. To modulate and emit

the laser adversarial perturbations, We utilize a 5mW red

laser diode with a wavelength of 650 nanometers, directing

the beam vertically towards the smartphone’s microphone.

Simultaneously, we position a loudspeaker adjacent to the

microphone to play voice commands during the attack, as

shown in Fig. 6. Notably, we employ a telescope to obtain

long-distance line of sight, precisely aiming the laser at the

microphone’s aperture for launching long-distance attacks.

Evaluation Metrics. We use the following metric to quan-

tify the performance of LaserAdv.

Attack success rate. The success rate measures the propor-

tion of adversarial perturbations that successfully cause the

target ASR system to misclassify the perturbed audio signal.

A higher success rate indicates a more effective adversarial
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Table 2: Performance of IAP under different scenarios.

No. Voice commands τ = 0 seconds τ = 0.5 seconds
DeepSpeech iFlytek Whisper DeepSpeech iFlytek Whisper

1 Airplane mode on 100% 100% 100% 100% 100% 100%

2 Open the window 100% 80% 94% 100% 60% 62%

3 To be or not to be 100% 96% 100% 100% 76% 100%

4 Save driving records 100% 82% 90% 100% 58% 80%

5 Ok google 100% 98% 90% 100% 66% 100%

6 Chat with me 100% 86% 100% 100% 80% 100%

7 Listen to the broadcast 100% 94% 100% 100% 42% 94%

8 Turn on the wipers 100% 92% 94% 100% 84% 80%

9 News broadcasting 100% 92% 92% 100% 82% 92%

10 Open the file 100% 88% 90% 100% 84% 66%

11 Screen sharing 100% 98% 84% 100% 88% 98%

12 Start playing 100% 94% 82% 100% 90% 96%

13 Stop playing 100% 94% 100% 100% 68% 100%

14 Tell a story 100% 88% 78% 100% 58% 56%

15 Turn down the volume 100% 64% 94% 100% 72% 64%

16 Turn left 100% 94% 90% 100% 82% 100%

17 Turn right 96% 92% 92% 100% 100% 94%

18 Turn on the bluetooth 100% 64% 88% 100% 72% 92%

19 Turn on seat heating 98% 98% 86% 98% 86% 78%

N ... ... ... ... ... ... ...

12260 What’s the time 98% 74% 96% 100% 52% 100%

Attack Success Rate 12260/12260 12258/12260 11925/12260 12255/12260 12215/12260 12067/12260

attack. Note that a successful attack is only achieved if the

output of the ASR matches the target sentence perfectly. In

other words, partial recognition of the command is insufficient

for success.

Dataset. Impulse Response. We use 10 audible impulse

responses randomly selected from database [13] and 30 laser

impulse responses recorded by ourself.

Voice commands. In our experiments, by leveraging

Google’s text-to-speech service [15], we generate a diverse

and high-quality dataset of voice commands covering various

phrases, which we consider to be the original voice commands

denoted as x.

5.2 Overall Performance
In this section, we present a detailed evaluation of the per-

formance of laser adversarial perturbations, and the results

are shown in Tab. 2. We first applied the perturbation to a

subset of 12,260 voice commands from our dataset to evalu-

ate the effectiveness in a digital scenario. The evaluation was

performed under two different conditions: one with no delay

and the other with a delay of 0.5 seconds imposed on the per-

turbation. Interestingly, our results showed that the success

rate of the attack remained consistently high under both delay

conditions for all three different ASR models tested (namely

DeepSpeech, iFlytek and Whisper). Specifically, we observed

an attack success rate of over 98% for all models, reaching a

full 100% for DeepSpeech without delay.

In the physical scenario, we randomly selected a subset

of 20 audio samples previously identified as vulnerable in

the digital scenario. These experiments were conducted us-

ing a smartphone to record the adversarial perturbations. For

each original voice command, we performed 50 attack at-

tempts. We can see that DeepSpeech was the most vulnerable

to the LaserAdv attack. A 100% success rate was consistently

Table 3: Attack success rate under different perturbation dura-

tions (60 experiments per length).

Lengths 30% 40% 50% 60% 70% 80% 90%

Success rate 82% 100% 100% 100% 100% 100% 100%

achieved across multiple voice commands. In contrast, the

iFlytek model was the most resistant; in particular, when the

delay was set to 0.5 seconds, the attack success rate dropped

to 75%. Nevertheless, our adversarial perturbation scheme

demonstrates a robust, synchronisation-free black-box attack

capability in a physical environment.

5.3 Impact of Perturbation Duration

In order to evaluate the effect of perturbation duration on the

attack success rate of LaserAdv, we conducted an experimen-

tal analysis where the length of the adversarial perturbation

was varied over a wide range, specifically 30%, 40%, 50%,

60%, 70%, 80% and 90% of the voice command duration. For

each predetermined duration, a series of 60 different attack

attempts were made against the ASR system.

The results of these trials are systematically presented in

Tab. 3. The results show that when the duration of the adver-

sarial perturbation exceeds 40% of the total length of the voice

command, LaserAdv is able to achieve an impeccable attack

success rate of 100%. Notably, even when the perturbation

is limited to only 30% of the voice command, LaserAdv still

achieves a substantial success rate of 82%. These results show

that LaserAdv demonstrates robust performance even when

the perturbation is relatively short. Therefore, the perturbation

can be successful even when it lags behind the normal voice

command, thereby reducing the time sensitivity.
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(a) The impact of time delay.
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(c) The impact of distance between

laser diode and smartphone.

(d) The diagram of long-range

attack scenario.

Figure 7: Illustration of the performance of LaserAdv and a long-range attack.

Table 4: Comparison of long-range attack performance.

Attack range LaserAdv LightCommands

20 m 100% 50%

40 m 100% 25%

60 m 95% 15%

80 m 80% 5%

100 m 65% -

120 m 15% -

5.4 Impact of Time Delay
Tab. 2 shows the attack performance of LaserAdv when there

is no delay and the delay is 0.5 seconds. In this section, to

further explore the impact of time delay of the perturbation,

we lagged the perturbation relative to the user’s speech by

0.2 seconds, 0.4 seconds, and 0.6 seconds respectively, and

observe the results.

As shown in Fig. 7 (a), as the delay increases, the success

rate of the attack on all three ASRs decreases. Notably, Deep-

Speech exhibits the lowest level of robustness. Even with a

delay of 0.6 seconds, its attack success rate remains above

90%. Meanwhile, iFlytek and Whisper experience significant

drops but still achieve success rates of over 50%. This result

highlights the impressive capability of LaserAdv attack to

attain asynchrony of the adversarial perturbation.

5.5 Impact of Varying Laser Power Levels
In this section, we aim to explore the power requirements

essential for effectively conducting the LaserAdv attack. we

employ a laser power meter [44] to measure the maximum

power at 6 mW. During the experiments, we adjusted the

voltage of the laser driver board to incrementally increase the

laser power from zero to the maximum, and then evaluate the

performance of the attack.

Fig. 7 (b) illustrates the success rate of the attack across

varying driving laser power levels. When the power is 2.5

mW, the attack becomes effective and the success rate is only

10%. As the power gradually increases, so does the success

rate. Notably, upon reaching the rated power of the laser diode

at 5mW, a 100% success rate can be achieved. Consequently,

in our experimental setups, we typically maintain the laser

diode power within the range of 5 mW to 6 mW to ensure

optimal performance for LaserAdv attack.

5.6 Impact of Distance

In this section, we aim to explore the attack performance

of LaserAdv as the attack distance increases. We evaluated

the performance of close-range attacks using Honor 20 Pro

smartphone as a receiver. We then used a MEMS microphone

to test the maximum attack distance. This two-step approach

allows us to evaluate the performance of the attack under

different conditions. As the sound inlet of MEMS chip is

larger than that of the microphone in the smartphone, and

there is no grille, the attack distance is greater for the MEMS

microphone.

Fig. 7 (c) shows the performance of LaserAdv on the mo-

bile phone as the distance varies. At a distance of 1 m, the

attack achieves a success rate of 80%. As the distance in-

creases, the success rate decreases. At a distance of 5 m, the

success rate drops to only 11%. This phenomenon is attributed

to the expansion of the laser diode’s light spot as the distance

increases. As a result, the laser light diverges, making it diffi-

cult to accurately target the small microphone hole with the

higher-intensity laser.

We conducted a long-range attack in a wide corridor where

the laser diode was significantly far from the MEMS micro-

phone, as illustrated in Fig. 7 (d). The total length of the corri-

dor is 120 m. The audible voice commands were continuously

played at a volume of 55 - 65 dB. We conduct experiments

at intervals of every 20 m, from 20 m to 120 m, and control

the intensity of perturbations and voice commands equally, to

compare the attack performance of LaserAdv and LightCom-

mands. We performed 20 attack attempts at each distance and

calculated the average attack success rate. Tab. 4 reveals a

clear trend: as the distance increases, the attack success rate

decreases. LightCommands achieve a 50% success rate at 20

m, dropping to just 5% at 80 m, and becoming ineffective

beyond that range. In contrast, LaserAdv boasts a remarkable
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Figure 8: Acoustic port of microphone in smartphone and MEMS microphone, and the impact of angles.

Table 5: Attack success rate under different environmental

illumination conditions.

Illumination Conditions Luminance Success Rate

Curtains closed 38 lx 100%

Lights off 240 lx 100%

Lights on 460 lx 100%

Sunlight 2100 lx 100%

performance with a success rate exceeding 95% within 60 m,

80% at 80 m, and the ability to extend up to 120 m. Notably,

LightCommands demonstrates an attack range of up to 110

m. However, it is dependent on a telephoto lens, and rather

than modifying the victim’s speech into a target command, it

utilizes a laser to directly inject voice commands.

5.7 Impact of Environmental Illumination
Conditions

To investigate the influence of environmental illumination

conditions on LaserAdv attack, we designed four experimen-

tal conditions, i.e., curtains closed, lights off, lights on and

sunlight. Using a luminous flux meter, we measured the light

flux to be 38 lx, 240 lx, 460 lx, and 2,100 lx respectively. Then

we conducted attacks under each condition to evaluate the

performance of the attack.

The results are presented in Tab. 5, demonstrating that the

LaserAdv attack attains a 100% success rate under various

lighting conditions. This is attributed to the compact size

of the smartphones’ microphone hole, preventing ambient

light from penetrating it and consequently, not impacting the

efficacy of the LaserAdv attack.

5.8 Impact of Angles

In this section, we will explore the effect of angles on the

success rate of LaserAdv attack in real-world scenarios. In

practical situations, it may not always be possible for laser

to hit the microphone diaphragm directly. Therefore, under-

standing the performance of the attack from different angles

is crucial to fully assess its effectiveness. There are significant

differences between the microphone on a smartphone and a

standalone microphone chip when exposed to laser at differ-

ent angles. The smartphone microphone is embedded in the

phone, so the laser has to pass through the pre-set sound holes

of the device before reaching the microphone port, as shown

in Fig. 8 (a). In addition, a protective grill or mesh is usually

placed in front of the microphone to protect it from dust. In

contrast, with a stand-alone microphone chip, the laser only

has to pass through its own port. As a result, its response to

laser at different angles can be very different.

In our experiments, we chose the MEMS microphone to

evaluate the influence of angles. We maintained a fixed posi-

tion for the laser diode, and controlled the angle of the laser

to deviate from the microphone hole by adjusting the knob on

the turntable. From the observations in Fig. 8 (b), we noticed

that the angle was adjusted up to a maximum of 26 degrees.

Surprisingly, the success rate of the attack did not decrease

significantly as the angle increased on DeepSpeech. However,

the success rate dropped to 60% on Whisper, that is because

as the angle increases, the signal strength received diminishes,

leading to a reduction in the signal-to-noise ratio (SNR). This

drop in SNR is likely responsible for the decreased accuracy

of attacks on Whisper. For DeepSpeech, the perturbation was

specifically tailored for this system, which explains why the

attack accuracy remains comparatively high despite the angle

changes. Overall, these results demonstrate the remarkable

effectiveness of the LaserAdv attack in realistic attack sce-

narios where the alignment between the laser beam and the

microphone hole may not be perfect.

5.9 Impact of Different Smart Devices

To validate the efficacy of the LaserAdv attack on different

smart devices, we employed 6 smartphones for experiments,

including Huawei Enjoy 20 Pro and Mate 60 Pro, Honor 20

Pro, Samsung Galaxy S9, Redmi K30 Ultra and Oppo Reno

9. The attacks employ a universal perturbation with the target
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Figure 9: The impact of different smart devices.
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Figure 10: The impact of different SPLs of the voice com-

mands and loudness of perturbation.

phrase being “Hi”, and three voice commands are randomly

chosen for each device: “Speed up”, “Call Alice” and “Turn

on the air conditioner”. Subsequently, we performed 50 attack

attempts for each voice command to comprehensively assess

its success rate.

Fig. 9 illustrates the attack performance on different smart

devices. It is evident that the attack on Honor 20 Pro and

Samsung Galaxy S9 yields the most favourable results, with a

remarkable 100% attack success rate. On the other hand, the

attack performance on other 4 smartphones is comparatively

lower, though still significant, with a success rate exceeding

72%. The observed variations in attack performance can be

attributed to the use of different microphones in each device,

naturally leading to distinct results. Nevertheless, these results

collectively validate the effectiveness of the LaserAdv attack.

5.10 Impact of SPLs of the Voice Commands
The variation in sound pressure levels (SPLs) of voice com-

mands is an important factor in the effectiveness of laser

perturbations. To investigate the effect of sound intensity on

the performance of LaserAdv attack, we conducted an exper-

iment in a typical meeting room with ambient noise of about

40 dB. We played voice commands at a range of 55 dB to 79

dB during the attack on the MEMS microphone.

As shown in Fig. 10 (a), it is interesting to note that despite

the escalating SPLs, the success rate of the LaserAdv attack

remains consistently 100% on all three ASR models tested.
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Figure 11: The impact of different scenarios including office,

restaurant and street, and thickness.

This result underlines the high effectiveness and robustness

of the LaserAdv attack in the face of fluctuating acoustic

intensities. Remarkably, even in scenarios where the target is

speaking at a high volume, the attack continues to demonstrate

a high success rate. This effectively undermines the ASR

system’s defences and leads to significant misinterpretations.

5.11 Impact of Loudness of Perturbations or
Malicious Commands

We further investigate the attack performance changes due

to different loudness of the perturbations in LaserAdv or ma-

licious voice commands in LightCommands. We positioned

a loudspeaker 50 cm away from the MEMS microphone to

deliver the user speech, measuring the sound intensity within

the range of 70 - 80 dB using a sound meter. Subsequently,

we adjust the laser emission intensity to correspond with its

intensity, varying from 20% to 160%, to observe the attack

results.

As shown in Fig. 10 (b), at an intensity ratio of 20%,

LaserAdv can attack successfully, despite with a relatively

low success rate. As the intensity increases, the attack success

rate gradually improves. When the laser intensity matches

the user’s speech intensity, LaserAdv achieves a success rate

of 80%, while LightCommands is just successful under this

condition. With increasing intensity, the success rate can be

up to 100%. Our experiments confirm that LaserAdv requires

substantially lower perturbation intensity compared to Light-

Commands. Consequently, it can achieve a broader attack

range, and devices with lower laser response can also be at-

tacked.

5.12 Impact of Different Ambient Noise

To assess the effect of varying ambient noise levels on the

effectiveness of the LaserAdv attack, we set up an experiment

in our office where pre-recorded ambient noise was played

at various SPLs. In all of these experiments, the loudspeaker

producing the ambient noise was located 50 cm from the
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target device. A sound meter placed near the target device

was used to measure the SPLs of the ambient noise.

The results are shown in Fig. 11 (a). As the noise level

increases, the success rate of the attack remains at 100%. This

indicates that the LaserAdv attack is unaffected when the

noise level is below 90 dB, ensuring the effectiveness of the

attack even in high noise conditions.

5.13 Attack through Transparent Glass

Real-world attack scenarios may involve long-range attacks

where the attacker and the victim’s smart device are not in the

same room. These attacks can be carried out over obstacles

such as windows and transparent glass on doors. We therefore

positioned glass of different thicknesses between the laser

emitter and the targeted mobile phone to conduct experiments.

This setup allows us to thoroughly investigate LaserAdv’s

ability to penetrate the glass barrier.

Fig. 11 (b) shows the success rate of the LaserAdv attack

through the glass of different thicknesses, demonstrating the

remarkable ability of the laser to penetrate. First, the intensity

of the laser beam decreases slightly after passing through the

glass. The success rate of the attack is 100% when there is no

glass, and as the thickness of the glass increases, the success

rate remains above 98%. Thus, the thickness of the glass has

no significant effect on the success rate of the attack. These

results have significant implications for LaserAdv attacks in

physical scenarios.

6 Defense and Discussion

In this section, we discuss potential defense strategies against

LaserAdv and some of its limitations.

6.1 Defense

In previous studies, adversarial perturbations have been shown

to be vulnerable to certain audio processing methods, such as

local smoothing [16,17], audio squeezing [4,16,18], compres-

sion [5, 19], and audio down-sampling [4, 17]. However, laser

adversarial perturbations are not strictly amplitude-limited

and exhibit robustness against distortion. Consequently, these

methods might not be as effective against laser adversarial

perturbations.

Another approach [17, 20–23] is to employ adversarial

training, where the ASR model is trained with adversarial

examples to enhance its robustness against adversarial attacks.

However, it may still exhibit certain limitations when coun-

tering specific adversarial attacks or adaptive adversaries that

continuously alter their attack strategies.

Inspired by EarArray [27], compared to acoustic perturba-

tion, only one microphone can capture the laser beam. This

property can be exploited to detect laser adversarial perturba-

tions using two or more microphones. By analyzing the differ-

ences in the received signals across multiple microphones, it

is possible to distinguish between genuine audible signals and

laser adversarial perturbations. This approach could provide

a practical defense mechanism against laser adversarial at-

tacks, thereby enhancing the security and robustness of ASR

systems against such threats.

We respectively captured the user’s voice commands and

injected either one or two beams of laser perturbations into the

smartphone’s microphone to create datasets. We first extract

the audio features from normal voice commands and then train

a simple machine learning model, i.e., support vector machine

(SVM). Subsequently, the model is utilized to discern whether

the audio received by the microphone corresponds to normal

speech or adversarial perturbations.

Our final experiments revealed that the model can detect

perturbations injected into a single microphone with an ac-

curacy of 100%. However, when perturbations are injected

into two microphones simultaneously, the model’s detection

accuracy decreases to 65.02%. The significant drop indicates

the efficacy of LaserAdv in countering signal detection-based

defense mechanisms.

6.2 Limitation

There are a few limitations to keep in mind. Firstly, LaserAdv

requires the attacker to have access to the architecture and

parameters of one ASR system to generate audio adversarial

perturbations, a condition that may not be consistent with

real-world scenarios. However, many white-box ASR models

can be used to generate audio adversarial perturbations and

transfer the attack to black-box ASR systems. As part of future

research, we aim to investigate the applicability of LaserAdv

under more realistic attack settings and explore the feasibility

of targeting multiple systems directly.

Secondly, when the attack command is excessively lengthy

or the feedback from the ASR system deviates from the com-

mand issued by the victim, it has the potential to draw his

attention. Furthermore, owing to the considerable distance,

the attacker can not perceive the feedback from the ASR sys-

tem, and thus cannot immediately judge whether the attack

can be successful. This challenge persists in long-distance

attacks and remains unresolved.

Thirdly, although we can utilize the photoacoustic phenom-

ena for LaserAdv attack, sometimes it is weak and may limit

the effectiveness of the attack. Given these limitations, we

plan to explore alternative channels (e.g. ultrasonic channel)

and methodologies to develop a more robust and effective

adversarial attack. We aim to investigate the properties of

these new channels and potentially merge them with current

techniques to improve the overall performance of perturba-

tions. Such improvement may make them more resilient to

varying environmental conditions and channel degradation.
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Finally, LaserAdv requires an adversary to possess laser

equipment. However, it is worth noting that this additional

complexity does not pose a significant financial barrier. En-

couragingly, the price of the equipment remains relatively low,

under $20, making it affordable and accessible to potential

threat actors.

7 Related Work

In this section, we review the existing studies of adversarial

perturbations and sensor attacks, which can be illustrated as

follows.

7.1 Adversarial Perturbation Attacks
One common approach for generating adversarial examples is

to minimize the perturbation while making it challenging for

humans to detect any changes. Previous works such as [16,17]

focused on generating perturbations by incorporating pertur-

bation volume into the loss function. Others like [28] utilized

genetic algorithms to generate imperceptible perturbations.

Another strategy to enhance imperceptibility involves short-

ening the perturbation and targeting weaker parts to decrease

the chances of detection. For instance, Miao et al. [30] di-

vided audio into frames and selected optimal locations for

adding perturbations. Liu et al. [31] generated sparser pertur-

bations that were less detectable while maintaining accuracy.

O’Reilly et al. [32] employed weighted sampling to select

perturbation points, leading to faster generation and greater

robustness.

Furthermore, some studies focused on improving the im-

perceptibility of perturbations through psychoacoustic hid-

ing methods [6, 8, 33–35]. These methods rely on the fre-

quency masking effect in signal processing, where louder sig-

nals render nearby frequencies imperceptible. Additionally,

some existing studies aim to make the perturbations resemble

sounds commonly found in the environment, such as whis-

tles, bird sounds, or alarm clocks. For instance, AdvPulse [5]

successfully implements universal, synchronisation-free and

targeted audio adversarial attacks using sub-second pertur-

bations. However, to ensure the success of physical attacks,

these perturbations must be embedded in loud, common envi-

ronmental sounds that may inadvertently alert the victim due

to the sudden onset of noise. In addition, the targeted ASR

system is a convolutional neural network for small-footprint

keyword spotting, and its feasibility has not been validated

on commercial ASR models. Similarly, Shi et al. [12] de-

veloped an environmental sound simulation mehtod. Com-

mandersong [4] quietly injected perturbations into a song to

perform a physical adversarial attack.

The similarity to environmental noise can lead to easy

detection when the perturbation sound abruptly appears. Fur-

thermore, these methods require the perturbation to be ap-

proximated to a specific environmental sound, ensuring that

the deviation remains below a certain threshold. This added

complexity in training arises from the need to approximate

the noise accurately and the necessity for more training data.

7.2 Signal Injection Attacks On Sensors
Sensors enable devices to perceive their surroundings, gather

data, and respond accordingly, playing a pivotal role in shap-

ing the modern technological landscape. However, despite

their importance, recent studies have exposed vulnerabilities

in many sensor systems, posing significant security challenges.

S. Nashimoto et al. [36] proposed a method of injecting false

information into sensors, leading to misleading or erroneous

data interpretation. Many researchers have investigated at-

tacks on radar systems [37], anti-lock braking systems (ABSs)

using magnetic speed sensors [38], and even global position-

ing systems (GPS) [39]. Yan et al. [40] have delved deeper

into the sensors used for driving guidance, such as millimeter-

wave radars, ultrasonic sensors, and forward-looking cam-

eras. Their work revealed vulnerabilities in these systems,

leading to the development of contactless attacks capable of

inducing blindness in autonomous vehicles. Similarly, Jang et

al. [41] proposed an innovative anti-drone technique employ-

ing electromagnetic interference signal injection, effectively

disrupting the communication channel between an Inertial

Measurement Unit (IMU) and its control unit.

Researchers also have unveiled a range of signal injection

attacks on microphones, exploiting various physical phenom-

ena. Sugawara et al. [10] introduced a novel attack that con-

verts light to sound to inject malicious audio signals into

microphones. Zhang et al. [42] demonstrated successful mod-

ulations of low-frequency audio commands that attack VCSs

by exploiting the nonlinearity of microphone circuits.

By scrutinizing various microphone studies, it becomes

evident that these crucial audio sensors can be compromised

through diverse attack vectors, including inaudible voice [42],

light [10], and electromagnetic (EM) -based attacks [43].

Building upon this understanding, our research seeks to ex-

plore the potential vulnerabilities of microphones and ASR

systems using lasers.

8 Conclusion

This paper introduces LaserAdv, a new method for launch-

ing adversarial attacks on ASR systems via laser adversarial

perturbations. In our study, we identified critical factors that

affect the effectiveness of the LaserAdv method, including

the response characteristics of the microphone laser channel

and the effects of frequency-selective fading and low sen-

sitivity. To address these issues, we proposed a SAE-TFI

method and further optimized the IAP generation objective

function to facilitate more practical attack scenarios. Our re-

sults demonstrate the potential of LaserAdv in successfully at-

tacking three ASR systems using IAP, including DeepSpeech,
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Whisper, and iFlytek. In the presence of victim speech, the

maximum distance can be up to 120 m at a cost of only $20.
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