
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Max Attestation Matters: Making Honest
Parties Lose Their Incentives in Ethereum PoS

Mingfei Zhang, Shandong University; Rujia Li and Sisi Duan, Tsinghua University
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-mingfei

Max Attestation Matters: Making Honest Parties Lose
Their Incentives in Ethereum PoS

Mingfei Zhang
Shandong University

mingfei.zh@outlook.com

Rujia Li⋆

Tsinghua University
rujia@tsinghua.edu.cn

Sisi Duan⋆†

Tsinghua University
duansisi@tsinghua.edu.cn

Abstract
We present staircase attack, the first attack on the incentive
mechanism of the Proof-of-Stake (PoS) protocol used in the
Ethereum 2.0 beacon chain. Our attack targets the penalty of
the incentive mechanism that penalizes inactive participation.
Our attack can make honest validators suffer from penalties,
even if they strictly follow the specifications of the protocol.
We show both theoretically and experimentally that if the
adversary controls 29.6% stake in a moderate-size system, the
attack can be launched continuously, so eventually all honest
validators will lose their incentives. In contrast, the adversarial
validators can still receive incentives, and the stake owned by
the adversary can eventually exceed the one-third threshold
(system assumption), posing a threat to the security properties
of the system.

In practice, the attack feasibility is directly related to
two parameters: the number of validators and the parame-
ter MAX_ATTESTATIONS, the maximum number of attestations
(i.e., votes) that can be included in each block. We further
modify our attack such that, with the current system setup
(900,000 validators and MAX_ATTESTATIONS =128), our attack
can be launched continuously with a probability of 80.25%.
As a result, the incentives any honest validator receives are
only 28.9% of its fair share.

1 Introduction

Ethereum [49], one of the most popular blockchain systems,
upgraded to 2.0 in Sep 2022. The system now uses a Proof-
of-Stake (PoS) protocol called Gasper as its core consensus
scheme [12], a Byzantine fault-tolerant (BFT) protocol that
tolerates Byzantine failures (i.e., arbitrary failures). Different
from conventional BFT protocols [13, 16–18, 24, 46, 52, 53]
that assume the adversary does not control over one-third of
nodes (also called validators) or Nakamoto consensus (the

⋆ Corresponding author.
† Sisi is also with Zhongguancun Laboratory, Shandong Institute of

Blockchains, and Beijing National Research Center for Information Science
and Technology

consensus protocol of Bitcoin and Ethereum 1.0) that assumes
the adversary does not control over 50% computational power,
PoS assumes that the adversary does not control more than
one-third of the total stake. Here, the stake in general refers
to the account balance of the validators.

The PoS protocol of Ethereum assumes a partially syn-
chronous network [19], where there exists an unknown upper
bound for message processing and transmission. The protocol
is a combination of Casper friendly finality gadget (FFG) [11]
and a variant of the GHOST fork-choice rule [43] called
Hybrid Latest Message Driven Greedy Heaviest-Observed
Sub-Tree (HLMD GHOST). The protocol is epoch-based, and
there are many slots in each epoch, divided by physical clocks.
In each epoch, HLMD GHOST selects the canonical chain
based on the received block proposals. Informally speaking,
an honest block proposer will extend the canonical chain when
creating a new block, and an honest validator only votes for
blocks on the canonical chain (so the system is somewhat
live). Additionally, Casper is a gadget that essentially counts
the number of votes (also called attestations) so eventually
some blocks are finalized and honest validators will finalize
the same chain (and the system is safe).

Almost all PoS protocols [12, 23, 26] make an implicit as-
sumption similar to conventional BFT: all honest validators
are always online, and the system cannot support an unknown
number of validators that may go to sleep [35]. This is in
sharp contrast to the Nakamoto consensus. While some aca-
demic efforts have been made to study PoS in the sleepy
model [5, 30], Ethereum utilizes the incentive mechanism
to encourage validators to stay online. The incentive mech-
anism for attestations consists of rewards and penalties. In
particular, validators whose attestations are finalized on-chain
will receive rewards, and validators whose attestations are
not finalized on-chain for a sufficiently long period of time
will suffer from penalties (see §3.4 for details). The incentive
mechanism has been very successful in practice. According
to the report provided by rated.network1, the participation

1Data source (accessed in Feb 2024): https://www.rated.network/

USENIX Association 33rd USENIX Security Symposium 6255

https://www.rated.network/

rate of Ethereum has reached 99.6%. Indeed, validators are
incentivized to make the system both safe and live so they
can continue gaining rewards from the blockchain.

An attack on the attestation incentive mechanism. For the
first time, we present an attack on the incentive mechanism of
Ethereum PoS, and we call it staircase attack (mainly because
the branches the adversary constructs in the attack look like a
staircase). Our work focuses on the rewards and penalties for
attestations only, so we call them attestation incentives in this
paper. Our attack can be launched even if the network is syn-
chronous, i.e., there exists a known upper bound for message
transmission and processing. The goal of our attack is to force
honest validators to be penalized, even if they strictly follow
the specifications of the protocol. We begin with a warm-up
attack where a single Byzantine validator, upon some oppor-
tune epoch, is able to make some honest validators suffer from
penalties without any cost. We then extend the attack to a sce-
nario where Byzantine validators controlling 29.6% of the
total stake may collude. After an opportune epoch, the Byzan-
tine validators can make half of the honest validators suffer
from penalties in every epoch. Eventually all honest validators
will lose their incentives. Meanwhile, none of the Byzantine
validators suffer from any penalties at all. The consequence
of our attack is thus the same as discouragement attack [10]:
the fraction of the stake controlled by the adversary may con-
tinue to increase, posing safety threats. However, [10] only
briefly mentions the concept and does not provide the attack
strategies. Therefore, we consider our attack the first concrete
instantiation of a discouragement attack.

Our attack utilizes a parameter used in both HLMD GHOST
and Casper called the last justified checkpoint LJ. In Ethereum
PoS, Casper updates the LJ parameter, and HLMD GHOST
determines the canonical chain based on the LJ parameter.
The design of Ethereum PoS identifies the LJ parameter as
a frozen parameter that is not supposed to change within an
epoch. However, as Byzantine validators may withhold their
blocks (and attestations) and release them at any time, an
honest validator might update LJ in the middle of an epoch.
We show that by deliberately packing the attestations from
all Byzantine validators into one block and withholding such
a block, the honest validators always change their LJ in the
middle of an epoch. As a result, the canonical chain (output
by HLMD GHOST) may switch from an old branch to a new
one. Thus, attestations from honest validators included in the
old branch will be discarded and the corresponding honest
validators will be penalized.

Evaluation of the attack. We implement our attack using an
Ethereum implementation Prysm (Capella version) and con-
duct experiments using 1,000 validators. Our experimental
results match our theoretical analysis: if the adversary con-
trols 29.6% stake, all honest validators lose their incentives.
As the fraction of stake controlled by the adversary grows,
honest validators may suffer from stake loss. For instance, if

the adversary controls 33.3% stake, all honest validators are
expected to suffer from a 20% stake loss compared to their
fair share.
Attack feasibility and insights. Ethereum has over 900,000
validators as of Feb 2024. When demonstrating the feasi-
bility of our attack in such a large-scale system, we find a
somewhat surprising result. Specifically, the feasibility of
our attack is related to two parameters: the number of val-
idators and the number of attestations each block can carry,
i.e., the MAX_ATTESTATIONS parameter. Based on the sys-
tem setup of Ethereum, if we fix the MAX_ATTESTATIONS
parameter, our attack can be launched continuously for a sys-
tem with fewer than 16,384 validators. If we fix the system
size of 900,000 validators, the attack can be launched if the
MAX_ATTESTATIONS parameter is increased from 128 to 2,048.

We further modify our attack to accommodate the system
parameters of today’s Ethereum system. With the modifica-
tion, our attack can be continued in each epoch with a proba-
bility of 80.25%, given that the adversary controls 33% of the
total stake. As a result, the attestation incentives of an honest
validator become only 28.9% of the fair share. As reported by
rated.network, the largest mining pool today already controls
32.66% of the total stake. Therefore, our attack can cause
discouragement to honest validators.

It is also worth mentioning that our warm-up attack is ad-
ditionally affected by the honest reorg mechanism [45]. To
successfully launch the warm-up attack, the adversary needs
to carefully release a block late enough and the timing is
highly related to the network condition.

Responsible disclosure. For ethical reasons, we disclosed
our findings to the Ethereum Foundation in April 2023,
and the development team has taken measures since then to
mitigate the attack. With the mitigation, the probability of
continuing the attack in each epoch is significantly reduced.
The mitigation is already effective after the Deneb upgrade
in March 2024. The communication and the mitigation can
be found at https://github.com/ethereum/consen
sus-specs/pull/3339#issuecomment-1637117341.

Our attack and analysis show some interesting insights
that may lead to future research directions. First, the incen-
tive mechanism is usually considered an economic factor
in a system and has never been considered in the design of
Byzantine-fault tolerant consensus protocols [12]. However,
the attacks on the incentive mechanism may make the PoS
protocol violate the security goals. Indeed, the stake of the
adversary may exceed one-third of the total stake so eventu-
ally the safety and liveness of the system might be violated.
Therefore, it is interesting to learn whether the incentive mech-
anism should be part of the security properties in the design
of the consensus protocols. Second, the number of attesta-
tions that can be included in each block is closely related to
both the incentives of validators and the security goals of the

6256 33rd USENIX Security Symposium USENIX Association

https://github.com/ethereum/consensus-specs/pull/3339#issuecomment-1637117341
https://github.com/ethereum/consensus-specs/pull/3339#issuecomment-1637117341

system. Such a counter-intuitive finding shows that the value
of the MAX_ATTESTATIONS parameter (and its closely related
parameters) should be set up carefully.

Our contributions. We make the following contributions.

• We propose staircase attack on the attestation incentive
mechanism of Ethereum’s PoS protocol. We show that
when the adversary controls at least 29.6% of the total stake,
the attack can be launched continuously and eventually
make all honest validators lose their incentives.
• We implement the attack using 1,000 validators. By con-

ducting each experiment for one day (225 epochs), we show
that an adversary controlling 29.6% stake makes all hon-
est validators lose their incentives; if an adversary controls
33% stake, all honest validators are expected to suffer from
a 20% of stake loss compared to their fair share.
• Our feasibility analysis shows that the number of val-

idators and the MAX_ATTESTATIONS parameter have a di-
rect impact on whether the attack can be continuously
launched. Based on today’s system setup of Ethereum,
our attack can be launched under the following two con-
ditions: the system has no more than 16,384 validators;
the MAX_ATTESTATIONS parameter is increased from 128
to 2,048. We further modify our attack such that with a
probability of 80.25%, the attack can be continued in the
next epoch and the expected attestation incentives of honest
validators become only 28.9% of their fair share.

2 Related Work

Identified attacks against Ethereum PoS only. Many efforts
have been made to analyze Ethereum PoS since Ethereum an-
nounced its plans to upgrade to 2.0, as summarized in Table 1.

Balancing attack. A balancing attack aims to split honest
validators into two parts, forcing them to vote for two con-
flicting branches with the same weight. Consequently, neither
chain can be finalized and the system suffers from liveness
issues [30, 42]. Ethereum fixed the balancing attack [9] us-
ing a proposal boosting mechanism [39]. In short, proposal
boosting is a "temporary" weight assigned to the block in
the current slot. As the two branches do not have the same
weight anymore, the situation created in the balancing attack
will not last forever. Later, it was shown that the balancing
attack can be revised to bypass the proposal boosting mecha-
nism [31]. In the balancing attack, the cost of the adversary is
that at least one Byzantine validator will suffer from the slash-
ing condition. According to the specification of Ethereum,
slashed validators will suffer from stake loss and eventually
be removed from the system.
Bouncing Attack. In a bouncing attack, checkpoints from two
branches are justified one after the other. Therefore, the canon-
ical chain jumps from one chain to another and neither branch
can be finalized, causing a liveness issue [29, 36]. Ethereum’s

upgrade in March 2023 fixed all known bouncing attacks [22].
Our attacks are designed based on the latest specifications.

Reorg Attack. In reorg attacks [33, 41, 42], the adversary re-
organizes the chain to increase the fraction of the blocks from
Byzantine validators on the canonical chain. The goal is to
gain more profit [25,50,55], decrease the chain quality [34], or
lower the performance of the system. There are two types of
reorg attacks: short reorg attacks (SRA) and long reorg attacks
(LRA) [41]. In SRA, the attacker makes the adversarial branch
heavier than the honest branch so the honest branch becomes
orphaned [33, 42]. An interesting fact is that the SRA in
[33, 42] are fixed by the proposal boosting mechanism [9].
It was later mentioned informally that the proposal boosting
mechanism does not fully address the issue and a revised SRA
called sandwich attack is proposed [15].

Meanwhile, in LRA, the attacker forces the honest branch
to be pruned and the number of blocks affected is usually
larger than that in SRA [2, 37, 40]. Two types of LRA have
been found: unrealized justification attacks [2] and justifica-
tion withholding attacks [37, 40]. In unrealized justification
attacks, the validator in the first slot of an epoch needs to be
Byzantine. The Byzantine validator creates a fork by propos-
ing a block that extends an older block so the canonical chain
is re-organized. In justification withholding attacks, the valida-
tors in the last few slots of an epoch need to be Byzantine and
the Byzantine validators withhold their blocks. In the middle
of the subsequent epoch, the withheld blocks are released so
the LJ of honest validators is updated and the honest branch
is pruned. A patch is provided recently to prevent all LRA
known so far in which branches with enough attestations are
not pruned [2, 38].

Our staircase attack can be viewed as a long reorg attack,
specifically a justification withholding attack. Different from
existing attack that requires validators in consecutive slots
to be Byzantine, our attack only requires the last Byzantine
validator in an epoch to withhold the attestations and the block.
Therefore, our attack is much easier to launch. Besides, the
patch for the LRA does not affect our attack.

Identified attacks against PoS. We summarize some identi-
fied attacks against PoS in general, some of which are appli-
cable to Ethereum PoS as well.

Nothing-at-stake attack. A nothing-at-stake attack refers to
the attack where an adversary is willing to contribute to mul-
tiple forks at no cost (as the validators in PoS do not have to
compete to propose or vote) [8, 26, 27]. The goal of nothing-
at-stake attacks is usually the liveness and the performance
of the system. The avalanche attack is one example of PoS
GHOST [31]. In the attack, it was shown that by deliberately
working on multiple forks at the same time, the canonical
chain consists of blocks only from the adversary, so the sys-
tem may not be live. Note that Ethereum does not suffer from
nothing-at-stake attack, as a validator that equivocates (e.g.,
it votes for two conflicting blocks) will be slashed.

USENIX Association 33rd USENIX Security Symposium 6257

attack type scheme timing assumption target slashed∗ experimentally
confirmed

issue
fixed

balancing attacks
Neu, Tas, and Tse. [30]

synchrony liveness
✗ ✗ ✓

Schwarz-Schilling et al. [42] ✗ ✗ ✓
Neu, Tas, and Tse. [31] ✓ ✗ ✗

bouncing attacks Nakamura [29] partially synchrony liveness ✗
✗ ✓

Pavloff et al. [36] ✗ ✓

short reorg attacks
Neuder et al. [33]

synchrony chain quality ✗
✗ ✓

Schwarz-Schilling et al. [42] ✗ ✓
D’Amato et al. [15] ✗ ✓

long reorg attacks
Asgaonkar [2]

synchrony chain quality ✗
✗ ✓

Ryan [40] ✗ ✓
Potuz [37] ✗ ✓

staircase attack Our work synchrony incentive ✗ ✓ ✓⋆

Table 1: Comparison of known attacks against Ethereum PoS. ∗Slashed denotes whether at least one Byzantine validator will be
slashed. According to the specification of Ethereum, slashed validators will suffer from stake loss and eventually be removed
from the system. ⋆After the recent upgrade, our attack can still be launched but the impact has been significantly reduced.

Long-range attack. In a long-range attack, the adversary first
acquires the secret keys of some validators after they withdraw
their stake (and leave the system). The adversary then revises
the blocks proposed previously and rewrites the history of
the blockchain. Many protocols are designed to prevent the
attack [3, 4, 26, 48, 51]. The Casper protocol [11] used in
Ethereum is a solution to the long-range attack.
Grinding attack. Most PoS protocols use pseudorandom func-
tions (e.g., verifiable random functions (VRF) [28]) to select
block proposers. The way the randomness is generated usually
depends on the blocks in the canonical chain [47]. In practice,
the roles of the nodes might be learned in advance [6] so
the randomness (and the validators eligible to propose subse-
quently) can be manipulated [1,8]. The goal is to improve the
adversary’s chances of being selected as a block proposer (to
gain extra profits or decrease the chain quality).
Selfish mining. Selfish mining is an attack first known in Proof-
of-Work (PoW) [20]. In selfish mining, a mining pool (with a
number of validators) may collude [54] and gain more revenue
than the fair share. Selfish mining attack was later found to
be feasible in some PoS protocols as well [6, 8, 21, 32]. To
the best of our knowledge, selfish mining attack has not been
identified in Ethereum 2.0 yet.

3 Review of Ethereum Proof-of-Stake

Our notations in this section largely follow the specifications
by Ethereum foundation [44].

3.1 System Model

Nodes that participate in the PoS protocol are called valida-
tors. To become a validator, one must deposit at least 32

ETH as an initial stake in its account. Each validator’s vot-
ing power is weighted by its stake. There are N validators
{v1,v2, · · · ,vN}, where N may change over time as validators
join and leave the system. Each validator holds a private/pub-
lic key pair. Validators may be Byzantine and arbitrarily devi-
ate from the protocol. Non-faulty validators are called honest
validators. Ethereum PoS assumes that the stake controlled by
Byzantine validators is less than one-third of the total stake.

To facilitate the description of our attack and without loss
of generality, we assume that N does not change and each
validator is assumed to hold at least 32 ETH. In this way,
we normalize each validator’s balance to 1 unit [12]. This
enables us to tally the number of attestations instead of taking
into consideration the fractions of the validators’ balance.
Accordingly, let f be the number of Byzantine validators, we
assume f < N/3. We believe this assumption is reasonable as
according to the data from beaconcha.in, the average actual
balance of the validators is 32.08 ETH2.

Ethereum PoS assumes that the network is partially syn-
chronous [19], i.e., there exists an unknown upper bound ∆

for message propagation and processing delay. However, our
attack can be launched even if the network is synchronous,
i.e., the value of ∆ is known to every validator.

3.2 Terminology and Notation
Ethereum PoS proceeds in epochs, and each epoch consists
of 32 slots. Given a slot number t, every validator is able
to obtain the epoch number e← ⌊ t

32⌋. Each slot lasts for
12 seconds in the current production system. Within a slot,
only a single block can be proposed. A block b consists of
the slot number, a hash pointer to the parent block, a batch

2Data source (accessed in Feb 2024): https://www.beaconcha.in
/charts/average_balance

6258 33rd USENIX Security Symposium USENIX Association

https://www.beaconcha.in/charts/average_balance
https://www.beaconcha.in/charts/average_balance

of transactions, and a set of attestations (i.e., votes, to be
described shortly). Given a block b, the branch led by b is
the path from b to the genesis block (the first block of the
blockchain history). Each validator maintains a block tree T
about the blocks proposed by the validators. Additionally, a
checkpoint is a special block b. By default, the checkpoint
is the first block proposed in each epoch. If such a block
does not exist, the most recent preceding block becomes the
checkpoint. A checkpoint is denoted as a pair (b,e), where b
is the block and e is an epoch number. For simplicity, we use
the block instead. We use ep(b)← ⌊ t

32⌋ to denote the epoch
number of block b proposed in slot t.

Ethereum PoS consists of Hybrid Latest Message Driven
Greedy Heaviest-Observed Sub-Tree (HLMD GHOST) and
Casper FFG [12]. HLMD GHOST is a fork-choice rule that re-
cursively chooses the root of the heaviest subtree and outputs
the leaf block as head. The chain led by head is also called
the canonical chain. Each honest validator will only vote for
the head of the canonical chain it is aware of or create a new
block by extending the canonical chain. Additionally, Casper
FFG helps finalize the checkpoints, and once a checkpoint is
finalized, all the blocks on the chain led by the checkpoint are
finalized. As attestations are contained in blocks, we can also
say that the attestations are finalized on-chain.

Attestor and proposer. In each epoch, N validators are ran-
domly and evenly divided into 32 validator sets (determined
by the RANDAO protocol3). Each validator set is allocated
for one slot of the epoch and validators (also called attestors)
in this set are allowed to vote. Additionally, in each slot, one
validator is randomly selected as the proposer, also according
to RANDAO. The proposer is the only validator that is allowed
to propose a block in the slot. Our work simply assumes RAN-
DAO is a pseudorandom function that randomly determines
the roles of the validators, i.e., the expected number of honest
attestors in each slot is (N− f)/32. Every validator is able
to determine its role one epoch in advance and also verify
the roles of other validators. A message from validator vi is
considered invalid if vi’s role is not verified.

Attestation. In Ethereum, a vote is also called an attestation.
An attestation (att) by validator vi consists of a slot number,
two checkpoints (source and target), and the hash of a block b.
We say att is an attestation for block b. By default, source is
vi’s last justified checkpoint (i.e., LJ, to be described shortly).
The target field is the checkpoint block of the current epoch
in vi’s canonical chain. Both source and target are needed to
identify the chain each attestor votes for. In an attestation, the
source or the target field is denoted as the hash of a checkpoint
block b and the epoch number. In this paper, we omit the
epoch number for ease of understanding. Notably, the block
b is the output of the HLMD GHOST.

Justification and finalization. The justification and finaliza-

3RANDAO: https://github.com/randao/randao

tion rules are defined in Casper for checkpoints only. Specifi-
cally, if attestations from more than two-thirds validators with
the same source and target are received, the target checkpoint
is justified. Additionally, if the descendant checkpoint of a
checkpoint cp is justified, cp becomes finalized. If cp is final-
ized, all the blocks on the chain led by cp are finalized and
the order of the finalized blocks will never be reversed.

Given a branch c in vi’s block tree T , we use V (c), J(c), and
C(c) to denote the number of attestations included in chain
c, the last justified checkpoint based on V (c), and checkpoint
block of the current epoch in c, respectively. Given a block
b and a branch c led by b’s parent block, if the slot numbers
of b and b’s parent block indicate that b is from a new epoch,
LJ is updated to J(c). Ideally, LJ is updated at the beginning
of an epoch and is not changed during the epoch. In contrast,
J(c) is updated whenever V (c) is updated.

Fork choice rule. The fork choice rule HLMD GHOST defines
the canonical chain and HLMD GHOST outputs the head of
the canonical chain. In particular, the block each attestor
votes for is the head of its canonical chain. Meanwhile, a
block proposer will extend the head of the canonical chain
when creating a new block b, i.e., by setting the hash pointer
of b as the hash of the head. Given a block tree T , the
canonical chain is defined as follows (an example is provided
in Figure. 1):
1. Prune any branch c ∈ T such that J(c) is lower than LJ.
Then calculate the weight of each block in the chain. Here,
weight is determined by the attestations. In particular, if
there exists an attestation for block b, the weight of b is
incremented by one.
2. Recursively calculate the sum of weights of each sub-
branch. The branch with the largest accumulative weight is
considered the heaviest subtree and becomes the canonical
chain.

4 5

10

1 2 1 3

0 22

1

2

1

11

1

1 2 1

block in canonical chain

pruned block

i
attestation with weight i

vote for a block

Figure 1: Example of the fork choice rule HLMD GHOST.
Attestations are represented in dashed rounded rectangles and
blocks are represented in solid rectangles. The number shown
in each attestation denotes the weight of the attestation and
the number shown in each block denotes the weight of the
subtree. The leftmost branch c is pruned (because J(c) is
lower than LJ), and its weight is not calculated. The rightmost
branch is the canonical chain.

USENIX Association 33rd USENIX Security Symposium 6259

https://github.com/randao/randao

3.3 Workflow of Ethereum PoS

We summarize the workflow of Ethereum PoS in Figure. 2.
Each validator maintains three local parameters: the last justi-
fied checkpoint LJ, a set of received attestations Atts, and the
block tree T .

In slot t, if vi is the proposer, it broadcasts a
(PROPOSE, t,vi,H(head),newatts, txs) message to all valida-
tors (lines 1-10). Here, head is the output of HLMD GHOST
and H(head) is the hash of head, serving as a hash pointer of
the parent block. The newatts field consists of a set of attes-
tations vi has received. Given the canonical chain c, any at-
testation that satisfies the following two requirements will be
included in newatts: 1) the attestation has not been included
in c so far; 2) the source is the same as LJ and the target is the
same as C(c). If vi is an attestor, it waits until 1/3 time of slot t
has elapsed (i.e., four seconds) and updates its LJ. Then, vi pre-
pares an attestation message (ATTEST, t,vi,H(head),LJ,C(c))
and sends it to all validators, where LJ is the source, and the
checkpoint of current epoch C(c) is the target (lines 11-19).

Upon receiving a block b from the proposer v j of slot t ′,
vi checks: 1) whether the epoch number of b is higher than
the epoch number of b’s parent block; 2) whether the epoch
number of J(c) is higher than LJ, where c is the branch led
by b (line 24). If so, vi updates LJ to J(c). Validator vi then
processes the attestations included in b and updates its block
tree T , i.e., for each branch c ∈ T , update J(c), V (c), and
C(c) (lines 27-31). Last, if b is a block from the prior epoch
and ep(J(c))> ep(LJ), vi also updates its LJ (lines 33&34).

It is worth mentioning that a validator vi updates LJ in three
cases. First, vi receives the first block in some epoch e such
that J(c) is higher than its LJ (lines 23-25). Second, before
vi prepares an attestation, it updates its LJ according to the
messages it receives (lines 14-16). Last, although vi already
enters epoch e, it has received a sufficiently large number of
attestations for an epoch lower than e (e.g., included in the
blocks withheld in previous epoch(s) and released in epoch e4)
such that J(c) is higher than its LJ (lines 32-34). Before epoch
e begins, the epoch number of LJ of any honest validator is at
most e−2.

3.4 The Attestation Incentive Mechanism

The incentive mechanism consists of rewards that encourage
active participation and penalties that discourage inactive be-
havior [12,44]. Validators with attestations finalized on-chain
will receive rewards, and validators who do not have their at-
testation finalized on-chain (after a sufficiently large number
of slots) will get penalties. Note that penalties differ from the
slashing conditions [12]: slashing conditions penalize behav-
iors such as equivocation, while penalties only act on inactive

4Note that according to the design of the system, a block tagged with
epoch e′ where e′ < e can still be accepted by validator vi even if vi already
enters epoch e.

The Ethereum Protocol for Validator vi

global parameters: slot t
local parameters: block tree T , attestation set Atts, last justified
checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon slot t do
02 as the proposer for slot t
03 let head be the output of HLMD GHOST
04 let c be canonical chain
05 for each attestation att in Atts
06 if att is not included in c and

source of att is LJ and target of att is C(c) then
07 newatts← newatts∪{att}
08 obtain a batch of transactions txs from mempool
09 create block b =(PROPOSE, t,vi,H(head),newatts, txs)
10 send b to all validators
11 as the attestor for slot t
12 wait until 1/3 time of slot t has elapsed
13 let head be the output of HLMD GHOST
14 ▷ Update LJ
15 if ep(t)> ep(head) and ep(J(c))> ep(LJ) then
16 LJ← J(c)
17 let c be canonical chain
18 create attestation att =(ATTEST, t,vi,H(head),LJ,C(c))
19 send att to all validators
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 upon receiving b = (PROPOSE, t ′,v j,H(head),newatts, txs) from
the proposer v j of slot t ′ do
21 T ← T ∪{b}
22 let c be the branch led by b
23 ▷ Update LJ
24 if ep(b)> ep(head) and ep(J(c))> ep(LJ) then
25 LJ← J(c)
26 ▷ Update J(c)
27 for each att ∈ newatts
28 let tar be the target in att
29 V (c)[tar]←V (c)[tar]+1
30 if V (c)[tar]≥ 2N/3 and ep(tar)> ep(J(c)) then
31 J(c)← tar
32 ▷ Update LJ (exploited by our staircase attack)
33 if ep(b)< ⌊ t

32⌋ and ep(J(c))> ep(LJ) then
34 LJ← J(c)
35 upon receiving attestation att (with message type (ATTEST)) from
validator v j of slot t ′ do
36 Atts← Atts∪{att}

Figure 2: The Ethereum PoS Protocol. Codes are shown for
validator vi. H() denotes the hash function.

behavior. The slashing condition is also part of the incentive
mechanism of the system. We thus use attestation incentives
to denote rewards and penalties in this paper.

Generally speaking, the rewards and penalties of each val-
idator depend on its own stake, the total amount of stake, and
the corresponding attestation. For each validator vi, a base
reward Ibase is first decided, which is an equation of vi’s stake

6260 33rd USENIX Security Symposium USENIX Association

and stake of all validators. Both rewards and penalties are then
calculated based on Ibase. The reward is R×WrIbase. Here, R
is the rewards scale with participation, which is related to
vi’s stake and the total stake of attestors who have their at-
testations finalized on-chain. Wr is the weight determined by
the source, target, and block in the attestation. Additionally,
the penalty is WpIbase, where Wp is the weight determined
by the source and target of the attestation vi is supposed to
send. If a validator submits an attestation in an epoch e and
the attestation is finalized on-chain, the validator receives a
R×WrIbase reward. On the contrary, if the attestation is not
finalized on-chain, the validator gets a penalty with amount
WpIbase and no reward for epoch e.

4 An Attack on the Incentive Mechanism

In this section, we present staircase attack, an attack on the
incentive mechanism of the Ethereum PoS protocol. The goal
of this attack is to make honest validators suffer from penal-
ties, even if the network is synchronous and honest validators
strictly follow the specification of the PoS protocol.

We begin with a warm-up attack where a single Byzantine
validator can manipulate the target of attestations from honest
validators and make (N− f)/32 honest validators suffer from
penalties. We then show that if Byzantine validators (owning
29.6% of the total stake) collude, the colluding validators can
manipulate both the source and target of attestations from
half of the honest validators. After the attack is started, it can
be launched in every epoch. Eventually, all honest validators
will lose their incentives. In contrast, Byzantine validators
do not suffer from any penalties. The only cost is that the
incentives Byzantine validators can obtain during the attack
are slightly lower than their fair share.

We show in Figure. 3 the meaning of legends used in the
figures of this paper.

Legend

attestations from honest validators with source lower
than the checkpoint block of the previous epoch

a block proposed by a Byzantine validator that includes

a block proposed by an honest validator that includes

attestations included in the block

attestations from Byzantine validators with source as
the checkpoint block of the previous epoch

a block proposed by an honest validator that includes

a pruned block

a block that will be received at time t

a withheld and released block

attestations from honest validators with source as the
checkpoint block of the previous epoch

discarded attestations

Meaning

tt

Figure 3: The meaning of legends used in the figures of this
paper. Figures in this paper are best viewed in color.

4.1 Overview of the Attack Methodology

Our attack exploits the fact that LJ and the latest checkpoint
might be changed in the middle of an epoch, as mentioned in
§3.3. For ease of understanding, we illustrate three examples
in Figure. 4 to show three possible cases. Before epoch e, LJ
is set as cp, and attestations by all honest validators in epoch
e have target set as block 0.

• Case 1: LJ is updated upon receiving the first block of
an epoch. As shown in Figure. 4a, in epoch e, v1 receives
block 0 to block 31. The attestations of all honest validators
are included in the blocks. As attestations from all honest
validators are received, the condition V (c)[0] > 2N/3 is
satisfied and J(c) is updated to block 0. In epoch e+1, v1
receives block 32 in the first slot. As the epoch number
of J(c) is greater than LJ, LJ is set as block 0 (line 24 in
Figure. 2). Honest attestors all use block 0 as source and
block 32 as target in their attestations i n epoch e.
• Case 2: LJ is updated before preparing an attestation.

As shown in Figure. 4b, v2 receives block 0 to block 31,
but no blocks have been received in epoch e+1. LJ is not
updated to block 0 until v2 becomes an attestor (line 14 in
Figure. 2). Before v2 prepares its attestation, it updates its
source as block 0 and target as block 31.
• Case 3: LJ is updated in the middle of an epoch. As

shown in Figure. 4c, validator v3 has received block 0 to
block 16 in epoch e. In epoch e+1, v3 receives block 33, the
parent of which is block 16. As blocks 17-31 are withheld
or delayed, v3 has not received 2N/3 attestations and J(c) is
still cp, where c is the chain led by block 33. The attestation
from v3 has cp as source and block 16 as target. Later, in
slot t of epoch e+ 1, v3 receives blocks 17 to 31, blocks
created in epoch e but received in slot t of epoch e+1. Now,
the blocks on the branch led by block 31 include enough
attestations in epoch e. Therefore, J(c) and LJ are updated
to block 0 (line 33 in Figure. 2).

It is worth mentioning that after LJ is updated, any branch
c such that J(c) is lower than LJ will be pruned in the block
tree, and HLMD GHOST will not output a block from a pruned
branch. Take the case for validator v3 as an example, we show
the block tree of v3 after v3 receives blocks 17-31 in Figure. 5.
In this example, before v3 receives blocks 17-31, branch c2 is
the canonical chain. After LJ is updated to block 0, branch c1
led by block 31 becomes the canonical chain. Branch c2 led
by block 33 will then be pruned as J(c2) = cp, lower than LJ
(block 0).

Our attack utilizes this fact to force honest validators to
prune a branch led by a block from an honest validator, so the
attestations on the pruned branch are discarded, e.g., the attes-
tations included in block 33 in Figure. 5 with cp as source and
block 16 as target are discarded. Moreover, these attestations
will never be finalized on-chain, as their source is lower than
LJ (lines 5-7 in Figure. 2) and the corresponding validators
will be penalized. In the following, we show that one Byzan-

USENIX Association 33rd USENIX Security Symposium 6261

0 16 17 31 32... ...

LJ is updated to block 0
Time

epoch e epoch 1e

(a) v1 receives block 32, the first block in epoch e+1. v1 updates its
LJ to block 0.

0 16 17 31... ...

Time

epoch e epoch 1e

LJ is not updated LJ is updated to block 0

32

(b) v2 has not received any blocks in epoch e+1 yet and does not
update its LJ until it prepares an attestation. Before v2 prepares its
attestation, it updates its source as block 0 and target as block 31.

0 16

17 31

...

...

LJ is not updated LJ is updated to block 0

Time

epoch e epoch 1e

33

t

(c) v3 receives block 33 and the chain led by block 33 does not include
2N/3 attestations. v3 does not update its LJ. When v3 later receives
blocks 17-31, the chain led by block 31 includes 2N/3 attestations
with target as block 0. v3 updates LJ to block 0.

Figure 4: Examples of updating LJ.

0 16

17 31

...
...

1() 0J c = 2()J c cp=

1chain c

2chain c33

Figure 5: Validator v3’s block tree.

tine validator is able to make the attestations from (N− f)/32
honest validator be discarded. We then show that if all Byzan-
tine validators collude, they can utilize the re-organization of
the chain to make half honest validators suffer from penalties
in every epoch.

4.2 The Warm-up Attack

In our warm-up attack, a single adversarial validator vi can
launch the attack and (N− f)/32 honest validators are ex-
pected to be penalized. To kick-start the attack, vi waits for
an opportune epoch. An epoch e is deemed opportune if vi
is eligible to propose in the first slot of epoch e (let the slot
number be t).

Before epoch e, honest validators maintain a consistent
view of the canonical chain, and LJ of all honest validators is

the same checkpoint. According to the discussion in §3, we
know that before epoch e begins, the epoch number of LJ is
e−2, and we use cpe−2 to denote the LJ of all validators. We
use cpe−1 to denote the checkpoint block proposed in the first
slot of epoch e−1 and b to denote the last block proposed in
epoch e−1. We assume that all validators receive cpe−1 and
b in epoch e−1. Given such an opportune epoch e, the attack
strategies of vi are summarized below.

(1) (Figure. 6a) Validator vi first creates a block bi that ex-
tends block b and withholds bi. As none of the validators
has received the first block in epoch e yet, case 2 mentioned
in §4.1 is satisfied: LJ is updated to cpe−1 when attestors in
slot t prepare their attestations. Thus, attestors in slot t then
send attestations using cpe−1 as source and b as target.

(2) (Figure. 6b) At the end of slot t, validator vi sends bi to all
validators. Here, bi becomes the head of the canonical chain,
and all honest validators set their checkpoint block as bi.
Additionally, the chain c led by b consists of the attestations
from all validators in epoch e−1, so J(c) is already set as
cpe−1. As the first block of epoch e is received, case 1 in
§4.1 is satisfied and all honest validators update their LJ to
cpe−1 (lines 23-25 in Figure. 2).

(3) (Figure. 6c) After slot t, any attestations created by honest
attestors in slot t will be discarded by all honest validators.
To see why, given any attestation att mentioned in step (1),
the target field of att is b. However, the checkpoint of epoch
e for all honest validators is bi. When any proposer creates
a new block, att will be filtered (lines 6-7 in Figure. 2).
Therefore, all honest attestors in slot t will be penalized.
According to our discussion in §3.2, the expected number
of honest attestors penalized is thus (N− f)/32.

4.3 The Staircase Attack

We are now ready to present our staircase attack, in which
Byzantine validators collude to launch the attack. Here, we
assume the adversary controls a set of Byzantine validators
to launch the attack and later discuss the number of Byzan-
tine validators the adversary needs to control. Recall that our
warm-up attack manipulates the target of attestations from
honest validators. Our full staircase attack relies on the warm-
up attack to kick-start the attack. After that, the staircase
attack manipulates the source of honest validators instead.
The idea is to let half of the honest validators use an outdated
LJ as source and eventually be penalized. To do so, all Byzan-
tine validators withhold their attestations and blocks, making
LJ non-frozen and updated in the middle of an epoch. After
that, the attestations released before LJ is updated are not
included in the canonical chain, resulting in penalties for the
corresponding honest validators.

Notations. We define several notations to assist the explana-
tion of our attack. We divide each epoch e into two periods:
the first period consists of slots before LJ is updated; the sec-

6262 33rd USENIX Security Symposium USENIX Association

Time

ib

epoch e

slot t

ib

end of t

...

epoch 1e

using as b target

b

(a) Step 1: vi withholds block bi. Honest attestors in slot t create
attestation with b as target.

Time

ib

epoch e

ibib...

epoch 1e

slot t slot 1t

b

() is set to iC c b

(b) Step 2: vi releases bi and all honest validators update their check-
point block to bi (i.e., C(c)).

Time

ib

epoch e

slot t slot 1t

ibib...

epoch 1e

discarded

b

(c) Step 3: Attestations with target different from bi will be discarded
and honest attestors in slot t will eventually be penalized.

Figure 6: Warm-up attack where vi is the Byzantine validator.
Before epoch e begins, all validators receive the last block b
in epoch e−1.

ond period consists of the rest of the slots in epoch e. Honest
attestors in the first period create attestations with some check-
point cp as the source, while honest attestors in the second
period create attestations with cp′ as the source, where cp′

is higher than cp. We partition attestations from all valida-
tors into three sets: A1 denotes the attestations from honest
attestors in the first period; A2 denotes the attestations from
honest attestors in the second period; A3 denotes the attesta-
tions from all Byzantine attestors in epoch e. Our goal is to
make the attestations in A2 and A3 share the same source and
target, and the number of attestations in A2∪A3 is greater than
2N/3, so the canonical chain can be manipulated by the ad-
versary and attestations in A1 will be discarded. As illustrated
in Figure. 3, we use green, blue, and red rounded rectangles
to represent the attestations in A1, A2, and A3, respectively.

We use cadv to denote the branch withheld by Byzantine
validators. In our attack, after cadv is released, LJ is updated
by all honest validators. Similarly, chon is the branch seen by
honest validators before cadv is released.

The (one-time) attack. To kick-start a staircase attack, Byzan-
tine validators also need to wait for an opportune epoch, the
condition of which is exactly the same as our warm-up at-
tack: the proposer vi of the first slot t in epoch e is Byzantine.
Similar to our warm-up attack, we use cpe−2 to denote the

LJ of all validators and cpe−1 to denote the checkpoint block
proposed in the first slot of epoch e−1. The strategies of our
staircase attack are summarized below.
(1) (Figure. 7a) In slot t of epoch e, vi replays the warm-up

attack: vi withholds its block bi and releases bi at the end of
slot t, after which all honest validators set their checkpoint
of epoch e as bi. In epoch e, the Byzantine validators have
two strategies. First, all Byzantine validators in epoch e
withhold their attestations with cpe−1 as source and bi as
target (i.e., A3), regardless of which slot each validator is
the designated attestor. Second, the last Byzantine proposer
v j in slot t j (all proposers in the rest of epoch e are honest5)
in epoch e includes the attestations from the Byzantine
validators in its block b j and withholds b j. Note that not all
the attestations from Byzantine validators are included in
b j (as according to the protocol, a block in some slot cannot
include attestations with a higher slot number). In this case,
the attestations not included in b j can simply be included
in blocks proposed in epoch e+1 and the corresponding
validators will still receive their rewards.
At the end of epoch e, the chain c seen by all honest val-
idators consists of the attestations from all honest attestors
from slot t + 1 to t + 31 (the last slot in epoch e) where
source of these attestations is cpe−1. The expected number
of attestations on chain c is then 31(N− f)/32, equal to the
number of honest attestors from slot t +1 to t +31. Note
that even if the attestations from honest attestors in slot
t+31 are received by all honest validators and the proposer
of the first block in epoch e+1 includes these attestations,
the maximum number of attestations with bi as target is
still 31(N− f)/32. Namely, as we assume f = N/3, the
number of attestations is 31

32 ×
2N
3 < 2N

3 , the requirement
for validators to update their J(c). Therefore, at the end of
epoch e, LJ and J(c) of all honest validators is cpe−1.

(2) (Figure. 7b) In epoch e+ 1, we divide the epoch into
two periods. Let t ′ be the first slot in epoch e + 1, i.e.,
t ′ = t + 32. For now, we assume the first period ends at
the end of slot tadv− 1 and discuss the value of tadv later.
There are two forks of the chain, branch chon seen by honest
validators and branch cadv withheld by Byzantine validators.
The adversary’s strategy in the first period is to prepare
attestations with bi as source and b j as target and withhold
their attestations. The branch chon thus consists of blocks
from honest proposers for slots [t ′, tadv−1]. The attestations
included in chon will all have source as cpe−1, and we let
the set of attestations be A1.

(3) (Figure. 7c) At the beginning of slot tadv (i.e., the second
period), the adversary releases the withheld chain cadv and
our goal here is for all honest validators to update their LJ
to bi and make cadv become the canonical chain. Here, we
need to dive into the attestations in cadv. According to the
discussion in step (1), the branch from bi to b j consists

5According to the RANDAO protocol, the roles of each validator in
epoch e can be predicted before epoch e begins.

USENIX Association 33rd USENIX Security Symposium 6263

Time

jb

ib

epoch e

advt

the first period in epoch 1e

() is not updated to hon iJ c b1 is updated to eLJ cp 1 is eLJ cp

ib chain honc

chain advc

1A

3A

(a) Step 1: In epoch e, the first Byzantine proposer vi replays the
warm-up attack. All Byzantine validators withhold their attesta-
tions. The last Byzantine proposer v j includes the attestations
from the Byzantine validators in its block b j and withholds b j.
LJ and J(c) of all honest validators are cpe−1.

(b) Step 2: In the first period of epoch e + 1 (before slot tadv
begins), branch chon is seen by honest validators and branch cadv
is withheld by Byzantine validators. LJ is not updated and is still
cpe−1 during this period. The attestations A1 included in chon
have cpe−1 as the source.

Time

jb

ib

epoch e

advt

the first period in epoch 1e

jb

the second period

() and is updated to adv iJ c LJ b1() is hon eJ c cp

2A

3A

1A

(c) Step 3: At the beginning of slot tadv, Byzantine validators release cadv. As cadv includes a sufficiently large fraction of attestations
with target as bi, LJ is updated to bi. In the second period, chon is pruned and cadv becomes the canonical chain. Attestations A1
included in chon are discarded and the corresponding validators will be penalized.

Figure 7: One-time staircase attack where all Byzantine validators collude. We assume that before epoch e begins, the LJ of all
validators is cpe−2 and the (checkpoint) block proposed in the first slot of epoch e−1 is cpe−1.

of the attestations (with source as cpe−1 and target as bi)
from all attestors (Byzantine and honest) between slot t
and t j (the slot of b j). If the number of the attestations
is greater than 2N/3 (i.e., V (cadv)[bi]> 2N/3), all honest
validators will set their J(cadv) as bi. Therefore, we know
that if t j−t−1

32 > 2
3 , the condition V (cadv)[bi] > 2N/3 will

be satisfied. We show in Lemma 1 that if the adversary
controls f =N/3 validators, this happens with a probability
of 98.84%.
As J(cadv) is updated to bi after cadv is released, it is not
difficult to see that LJ will be updated to bi in the middle of
an epoch! Moreover, as J(chon) is still cpe−1 in the second
period of epoch e+ 1, the branch chon (up to bi) will be
pruned and cadv becomes the canonical chain. Any attesta-
tions in A1 will be discarded since the source field in A1 is
different from LJ of validators in the second period. Thus,
the corresponding attestors will be penalized.

Value of tadv in one-time attack. As discussed in step (1),
J(chon) will never be updated to bi in our attack. Therefore,
the branch chon (up to bi) will be pruned. To maximize the
number of honest attestors that will be penalized (i.e., |A1|),
we can set up tadv as large as possible. If tadv is the last slot in
epoch e+1, almost all honest validators will be penalized.

Lemma 1. Assuming that slot t is the first slot of epoch e
and f = N/3. Given the last slot t j of epoch e in which the
proposer vi is Byzantine (all proposers in the rest of epoch
e are honest), the probability that t j−t−1

32 ≥ 2/3 is at least
98.84%.

Proof. According to the definition, t j−t−1
32 < 2/3 happens

only if any proposer in slot t j + 1 to slot t + 31 is honest,
i.e., ⌊ 32

3 ⌋ = 11. We now calculate the probability that the
proposers in the last 11 slots in epoch e are all honest. As the
proposer of each slot is selected pseudorandomly according
to RANDAO, the probability of the above situation is:

(
N− f

N
)11 ≈ 1.16%.

The probability that there is at least one Byzantine proposer
in one of the last 11 slots is thus:

Psucc = 1− (
N− f

N
)11 ≈ 98.84%.

Repeating the attack for every epoch. Our attack above
can in fact be continued in every epoch after e+ 1. This is

6264 33rd USENIX Security Symposium USENIX Association

Time

jb

ib

jb

epoch 1e

1 is updated to eLJ cp is updated to eLJ cp 1 is updated to eLJ cp 2 is updated to eLJ cp

epoch e

vb vb

epoch 2e epoch 3e

Figure 8: Staircase attack where the attack is repeated in every epoch. The figure is best viewed in color. The green, blue, and red
rounded rectangles represent attestations in A1, A2, and A3 respectively.

achieved by simply having the last Byzantine validator in each
epoch e′ withhold its block just as v j does and then repeat
steps (2) and (3) in epoch e′+1. For instance, in epoch e+1
of the (one-time) attack, the last Byzantine validator vk in slot
tk starts to withhold its block bk and all Byzantine attestors in
the rest of epoch e+1 withhold their attestations. In epoch
e+ 2, branch ce+2

hon that extends the canonical chain is seen
by all honest validators and Byzantine validators withhold
a branch ce+2

adv led by bk. After the end of the first period of
e+2, the withheld branch is released, in the hope that J(ce+2

adv)
and LJ is updated to the first block in epoch e+1 (denoted
as cpe+1) and J(ce+2

hon) is still bi (the first block in epoch e).
After LJ of honest validators is updated to cpe+1, ce+2

hon will
be discarded.

Value of tadv in staircase attack. Notably, same as our one-
time attack, only the attestations in A2 and A3 can be included
in ce+2

adv . Therefore, we need to ensure that J(ce+2
adv) can be

updated to cpe+1 (and also every epoch after e+2). Now it
becomes clear why we additionally need to define A2 and A3
in addition to A1. We already know that the set of attestations
from Byzantine validators is A3 and |A3|= f < N/3. To en-
sure that the branch ce+2

adv consists of 2N/3 attestations, set A2
must consist of more than 2N/3− f attestations. To satisfy
this condition, we can set A1 to A3 with roughly the same size
and set tadv as the middle of an epoch e′, i.e., tadv = 16+ t ′,
where t ′ is the first slot in e′.

Lemma 2. In our staircase attack, honest attestors that create
attestations in A1 will be penalized and |A1| ≤N/3, regardless
of the fraction of f in N.

Proof. Let |A3| be f . |A2| must be greater than 2N/3− f for
the branch by the adversary to become the canonical chain,
following the discussion above. Therefore, the size of A1 must
no more than than N−|A2∪A3|= N/3.

Theorem 1. According to the configuration in Ethereum
where Wr ≤ 27Wp/20 (see Appendix A for more details), the

expected incentive of any honest validators becomes lower
than 0 when f ≥ 8N/27≈ 29.6%N.

Proof. The attestation incentive each validator receives is the
difference between the rewards and the penalties. Accord-
ing to our attack, attestors that create attestations in A2 will
receive rewards and attestors that create attestations in A1
will suffer from penalties. To lower the expected incentives
received by honest validators, we can simply let |A1|= N/3
according to Lemma 2. According to our discussion §3.4, to
determine the concrete amount, we also need to calculate R,
the rewards scale with participation. As attestations in A2 and
A3 are included in the canonical chain, R= |A2∪A3|/N≈ 2/3.
Therefore, the reward received by each honest validator is
R×WrIbase =

2
3WrIbase and the penalty of each validator is

WpIbase. Accordingly, the incentives received by all honest
validators are (2

3 |A2|Wr−|A1|Wp)Ibase. Our goal is to learn
the expected incentives received by any honest validator. As
the number of honest validators is |A1 ∪A2|, the expected
incentives of each validator becomes:

Ihon = (
2
3
|A2|Wr−|A1|Wp)

Ibase

|A1∪A2|
.

As |A1|= N/3 and |A1∪A2|= N− f , we have:

Ihon = (
4

15
N− 9

10
f)

WpIbase

N− f
≤ 0.

We can simply set 4
15 N − 9

10 f ≤ 0 to satisfy the equation
above, so f ≥ 8N/27.

On the contrary, Byzantine validators do not suffer from
penalties. However, the rewards they receive will be decreased.
Following the discussion in Theorem 1, the reward each
Byzantine validator receives is Iadv =

2
3WrIbase in each epoch,

about 33% lower than the fair share.

USENIX Association 33rd USENIX Security Symposium 6265

5 Implementation and Evaluation

Implementation. We implement our attack using Prysm6,
one of the most widely adopted Ethereum 2.0 beacon chain
implementations written in Golang. The Prysm version is in
Capella7, the latest version at the time of writing. We mod-
ify the codes in the Prysm as specified in Figure. 9, where
changes we make on top of the PoS protocol are highlighted
in red and the files we modify are included as comments.
Our implementation has exactly the same effect as the attack
mentioned in §4.3 while the actual implementation is slightly
different. We have made the scripts for our attacks and the
logs of our experiments available8.

The Workflow of a Byzantine Validator vk

global parameters: slot counter t
local parameters: last justified checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon slot t do
02 obtain a set I of Byzantine proposers in the current epoch,

ordered by the slot numbers the validators are allocated for
03 ▷ prysm/beacon-chain/rpc/prysm/v1alpha1/validator/proposer.go
04 ▷ prysm/validator/client/propose.go
05 as the proposer for slot t
06 follow lines 3-9 specified in Figure. 2
07 if t is the first slot in an epoch then
08 send b to all validators at the end of slot t
09 elseif vk is the last Byzantine proposer in I then
10 send b to all Byzantine validators at once and to all honest

validators at the beginning of the 17th slot in the next epoch
11 else send b to all validators at once
12 ▷ prysm/validator/client/attest.go
13 as an attestor for slot t
14 follow lines 12-18 specified in Figure. 2
15 send att to the last Byzantine proposer in I

Figure 9: The workflow of a Byzantine validator vk. The main
changes made on top of Figure. 2 are highlighted in red. The
source code files we revised are highlighted in gray.

Experiment configuration. We establish a local testnet with
1,000 validators connected through a P2P LAN network and
vary the fraction of Byzantine validators to understand the
impact of our attack. We choose the LAN network as the
communication delay is negligible, demonstrating that our
attack can be launched even in a fully synchronous network.

We vary the number of Byzantine validators using f = 296
(i.e., f ≈ 8N/27), f = 310, f = 320, and f = 333 and assess
the incentives received by the validators. In each experiment,
we fix the identities of f Byzantine validators, run our testnet
for one day (225 epochs), and collect the attestation incentive

6Prysm: https://github.com/prysmaticlabs/prysm
7Capella: https://github.com/ethereum/consensus-specs/t

ree/dev/specs/capella
8Scripts of our attacks and logs of the experiments: https://github

.com/tsinghua-cel/Staircase-Attack

of each honest validator from their logs. As a comparison, we
also run the testnet for one day without launching the attack
and collect the incentives of all validators, the value of which
is also known as the fair share.
Evaluation results. We evaluate the incentive loss rate of
honest validators and report the result in Figure. 10. Here, the
incentive loss rate is calculated as follows. We first calculate
the incentive loss of an honest validator as the difference
between its fair share and the incentives it receives during
the attack. The incentive loss rate is then calculated as the
percentage of incentive loss in the fair share. The incentive
loss rate can be interpreted as follows. If the attack is not
launched, the incentive loss rate is supposed to be 0%. If the
incentive loss rate is close to 100%, all honest validators will
lose their incentives.

Our results show a notable trend: as the attack is being
launched, the incentive loss rate of each honest validator in-
creases significantly and then stabilizes. For f = 296, the loss
rate eventually stabilizes at 100%, matching our results in
Theorem 1. For f = 310, f = 320, and f = 333, the incentive
loss rate exceeds 100% and all the honest validators are ex-
pected to suffer from stake loss. For instance, when f = 333,
the incentive loss rate is close to 120%, i.e., honest validators
suffer from a 20% stake loss compared to their fair share.

20 40 60 80 100 120 140 160 180 200 220
60

80

100

120

140

Epoch

In
ce

nt
iv

es
L

os
s

R
at

e
(%

)

f = 296 f = 310
f = 320 f = 333

0

Figure 10: The incentives loss rate of an honest validator for
experiments with 1,000 validators and f Byzantine validators.
Each experiment is launched for one day (225 epochs).

6 Attack Feasibility and Analysis

In this section, we analyze the feasibility of our attacks in the
current Ethereum system considering the production-level im-
plementation details. So far, we have presented three attacks
on the incentive mechanism of Ethereum: a warm-up attack
where a single Byzantine validator can launch the attack and
make some honest validators suffer from penalties; a one-time
attack where Byzantine validators collude to make all honest
validators suffer from penalties; and the staircase attack where

6266 33rd USENIX Security Symposium USENIX Association

https://github.com/prysmaticlabs/prysm
https://github.com/ethereum/consensus-specs/tree/dev/specs/capella
https://github.com/ethereum/consensus-specs/tree/dev/specs/capella
https://github.com/tsinghua-cel/Staircase-Attack
https://github.com/tsinghua-cel/Staircase-Attack

Byzantine validators continuously launch the attack in every
epoch and all honest validators lose their incentives.

Feasibility of warm-up attack. Recall that in our warm-up at-
tack, the Byzantine validator vi only needs to delay its block bi.
In practice, the feasibility is related to honest reorg currently
implemented in Ethereum. Honest reorg is a mechanism that
prevents intentionally withheld blocks. In particular, a block
proposed in slot t with fewer than 20% attestations from at-
testors in slot t is considered invalid. If vi releases its block
at the end of slot t, the block will be re-organized and our
warm-up attack may fail. To prevent bi from being considered
invalid due to honest reorg, vi can carefully release a block
late enough to ensure that at least 20% attestors (but not all)
receive bi. In this way, the warm-up attack can still succeed
and around 80% honest attestors in the slot will be penalized
(i.e., approximately (N− f)/40). Note that in practice, the
concrete release time is highly related to the actual network
condition in the Ethereum network. We leave the analysis as
future work.

Feasibility of one-time attack and staircase attack. We have
validated the feasibility of our attacks in the current Ethereum
system beyond 1,000 validators. Indeed, Ethereum has more
than 900,000 validators as of today9, we thus analyze whether
our attacks can be launched in such a large-scale system. Our
analysis reveals a somewhat surprising result: the feasibility
of the attacks is directly related to the number of validators
and the maximum number of attestations in each block (i.e.,
MAX_ATTESTATIONS in Ethereum (MaxAtt for short)).

Ethereum currently employs a committee-based scheme
to aggregate the attestations using the BLS signature [7]. Re-
call that every slot has N/32 validators randomly selected by
RANDAO. The validators in each slot are further divided into
several committees [44]. In every slot, matching attestations
(same target, source, and head) in the same committee are ag-
gregated into one aggregated attestation. We use Nc to denote
the number of committees in each epoch and Na to represent
the number of aggregated signatures in every block.

In the most recent configuration of Ethereum, Na is limited
by MaxAtt [44]. The value of Nc is determined as follows
(also as shown in Figure. 11), where MaxCom is the maximum
number of committees in a slot (the actual parameter name is
MAX_COMMITTEES_PER_SLOT [44]):

Nc =

{
N/128, if N ≤ 4096×MaxCom;
32×MaxCom, otherwise.

(1)

Currently, the parameter MaxAtt is 128 and the parameter
MaxCom is 64. Thus we have Na = MaxAtt = 128, Nc = 32×
MaxCom = 2048, and Nc = 16Na.

Lemma 3. To launch staircase attack, Na ≥ Nc.

9Data source (accessed in Feb 2024): https://www.beaconcha.in
/charts/validators

N

Nc

0 4096εc

32εc
Nc = N/128

Nc = 32εc

Figure 11: The value of Nc as N grows. We use εc to denote
MaxCom.

Proof. In our staircase attack, the block proposed by the last
Byzantine validator in an epoch includes attestations from all
Byzantine validators. Therefore, Na is no less than the number
of aggregated attestations from Byzantine validators.

According to the RANDAO protocol, Byzantine attestors
are randomly distributed among Nc committees. Since attesta-
tions across committees cannot be aggregated, the number of
aggregated attestations from Byzantine validators is no less
than Nc, i.e., Na ≥ Nc.

Based on Lemma 3, we now analyze the impacts of system
parameters and the number of validators to our attack. We
also provide a modified attack to make our attack feasible in
today’s Ethereum system.
Impacts of the maximum number of attestations to our at-
tack. To satisfy the condition Na ≥ Nc specified in Lemma 3,
we need either a larger Na or a smaller Nc. We have the fol-
lowing observations:

• If the MaxAtt parameter increases from 128 to 2,048, a block
can include aggregated attestations from all Byzantine val-
idators. This is mainly because Nc = 16Na in the current sys-
tem, and a 16-fold increase in MaxAtt would make Na = Nc.
Alternatively, we can also set MaxCom to MaxCom/16 to
achieve the same result (as Nc depends on MaxCom), i.e., by
decreasing MaxCom from 64 to 4.
• There are many alternative ways for Na = Nc to be satisfied.

For instance, if the parameter MaxAtt increases from 128 to
512 and the parameter MaxCom decreases from 64 to 16,
the condition Na ≥ Nc is also satisfied.

Such a counter-intuitive finding shows that the values of
system parameters such as MaxAtt and MaxCom are not an easy
engineering decision and should be set up carefully.
Impacts of the number of the number of validators to
our attack. If we fix the MaxAtt and MaxCom parameters,
our attack can be launched with fewer than 16,384 validators.
This is because when we fix the value of parameters, we need
to set Nc ≤ Na = 128 according to Lemma 3. According to
equation (1), setting Nc as 32×MaxCom will never make Nc ≤
128. As a result, we can set Nc = N/128 for Nc ≤ Na = 128
to hold. Accordingly,

N ≤ 128×128 = 16384.

Namely, if we do not change the system parameters, Ethereum

USENIX Association 33rd USENIX Security Symposium 6267

https://www.beaconcha.in/charts/validators
https://www.beaconcha.in/charts/validators

becomes vulnerable to our attack when the number of valida-
tors is below 16,384.

A modified attack on the current system. We can modify
our attack to be feasible in the current Ethereum system. The
main reason why our attack might fail in the current system
is that a block cannot include attestations from all Byzantine
validators. Indeed, based on the current system parameters,
a block can include attestations from 128 committees (i.e.,
MaxAtt =128), and there are 64 committees (i.e., MaxCom =64)
in each slot. Since the Byzantine attestors are distributed in
every committee and attestations across committees cannot
be aggregated, a block can include attestations of Byzantine
attestors from at most two slots. Our modified attack thus
requires more Byzantine validators to release the withheld
attestations. In particular, the attestations from Byzantine
validators in the first 28 slots are directly sent to all validators
in the system. Only the attestations from Byzantine validators
in the last four slots are withheld. Among them, attestations
in two slots are included in the block proposed by the last
Byzantine proposer. Therefore, we require the slot of the last
Byzantine proposer to be one of the last four slots. Under
the assumption of f = 0.33N, the probability of repeating the
attack is:

Psucc = 1−
(

N− f
N

)4

≈ 80.25%.

We provide the details of the modified attack in Appendix B. If
the attack cannot be repeated in the next epoch, the adversary
can wait for another opportune epoch to restart the attack.
Recall that our attack can be started if the proposer of the first
slot of an epoch is Byzantine. The probability of starting an
attack is thus 33%.

Combining the discussion above, we show the attestation
incentives of honest validators in Theorem 2 in Appendix B.
Specifically, if the adversary controls 33% of the total stake,
the attestation incentives of an honest validator become only
28.9% of the fair share.

7 Discussion

Mitigation. We show two possible solutions as mitigation of
the attack. One solution is to modify the tree pruning rules in
HLMD GHOST. In the current fork choice rule (see §3.2), the
branch that does not include the latest justification informa-
tion will be pruned. Our attack takes advantage of this to force
honest validators to be penalized. Relaxing the pruning rules
and still keeping the honest branch in the HLMD GHOST tree
can mitigate our attack. Alternatively, adjusting the concrete
amount of rewards and penalties can also mitigate our attack.
Currently, the amount of penalties and rewards are almost
identical. If the penalties in the attestation incentive mecha-
nism are lowered, our attack can be mitigated accordingly.

Note that Ethereum is taking the first approach as men-
tioned in our responsible disclosure. In particular, chain c
will not be pruned if the difference between ep(J(c)) and
the current epoch is no more than two epochs. This solution
can mitigate our attack but cannot fully prevent our staircase
attack from happening. In particular, the Byzantine validators
can delay the attestations for a longer period of time and the
honest chain will still be pruned.

Situations observed in practice. Situations similar to our
warm-up attack are in fact quite common in practice. Ac-
cording to beaconcha.in, at least one validator in each epoch
is penalized because of incorrect attestations. Such events
are often caused by natural network delay such that honest
attestors do not receive the first block in an epoch before
sending their attestations.

Extension of our attack. As mentioned in §2, our stair-
case attack is one kind of reorg attack. Although we focus
on attestation incentives in this paper, our attack can be ex-
tended to cause other effects, given its nature as a reorg attack.
For example, the adversary can manipulate the order of the
transactions and obtain more MEV (Maximal Extractable
Value) [14]. Besides, strategically choosing the parent block
for the withheld blocks allows the adversary to reorg more
blocks from the honest validators. This may lower the chain
quality and pose a liveness threat to the system.

Future directions. Our counter-intuitive finding about
MAX_ATTESTATIONS parameter setting may lead to future re-
search directions. Indeed, having a larger MAX_ATTESTATIONS
will enhance the performance of the system as more attes-
tations are aggregated. In fact, the parameter is even re-
lated to the liveness of the system. However, our attack
shows that a larger MAX_ATTESTATIONS might make hon-
est validators suffer from higher incentive loss. Therefore,
it is interesting to learn whether there exists some sweet
spot for the MAX_ATTESTATIONS parameter and how the
MAX_ATTESTATIONS, N, and the incentives are correlated. Fur-
thermore, it would be useful to consider security properties
related to incentives when designing consensus protocols.

8 Conclusion

We present staircase attack, the first attack on the incentive
mechanism of the Ethereum Proof-of-Stake (PoS) protocol.
Without considering the constraints of system parameters
such as the number of validators, we show that an adversary
that controls 29.6% stake can launch the attack and eventu-
ally all honest validators lose their attestation incentives. As
the fraction of stake controlled by the adversary increases,
honest validators may even suffer from stake loss. Moreover,
considering the values of system parameters, the feasibility of
our attack is closely related to two parameters: the number of
validators and MAX_ATTESTATIONS, the maximum number of
attestations included in each block. With the current Ethereum

6268 33rd USENIX Security Symposium USENIX Association

setup (900,000 validators and MAX_ATTESTATIONS =128), we
show that an adversary that controls 33% stake can make
honest validators suffer from no incentives with a probability
of 80.25%. Our attack shows that in addition to the safety
and liveness properties considered in conventional consensus
protocols, properties regarding the incentives might also be
worth investigating in today’s blockchain systems.

Acknowledgment

The authors would like to thank our shepherd and the Usenix
Security reviewers for their helpful comments that greatly im-
proved our paper. This work was supported in part by the Na-
tional Key R&D Program of China under 2022YFB2701700,
Beijing Natural Science Foundation under M23015, China
Postdoctoral Science Foundation under 2023M741949, and
Tsinghua Shuimu Scholar.

References

[1] Musab A Alturki and Grigore Roşu. Statistical model
checking of randao’s resilience to pre-computed reveal
strategies. In Formal Methods. FM 2019 International
Workshops, pages 337–349, 2019.

[2] Aditya Asgaonkar. Unrealized justification re-
orgs. https://notes.ethereum.org/@adiasg/u
nrealized-justification. (accessed in Feb 2024).

[3] Sarah Azouvi, George Danezis, and Valeria Nikolaenko.
Winkle: Foiling long-range attacks in proof-of-stake
systems. In AFT, pages 189–201, 2020.

[4] Sarah Azouvi and Marko Vukolić. Pikachu: Securing
pos blockchains from long-range attacks by checkpoint-
ing into bitcoin pow using taproot. In ConsensusDay,
pages 53–65, 2022.

[5] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white:
Provably secure proofs of stake. IACR Cryptol. ePrint
Arch., 2016(919), 2016.

[6] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and
Nicola Greco. Single secret leader election. In AFT,
pages 12–24, 2020.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the weil pairing. In ASIACRYPT, pages
514–532, 2001.

[8] Jonah Brown-Cohen, Arvind Narayanan, Alexandros
Psomas, and S Matthew Weinberg. Formal barriers to
longest-chain proof-of-stake protocols. In EC, pages
459–473, 2019.

[9] Vitalik Buterin. Proposal for mitigation against bal-
ancing attacks to lmd ghost. https://notes.ethe
reum.org/@vbuterin/lmd_ghost_mitigation. (ac-
cessed in Feb 2024).

[10] Vitalik Buterin. Discouragement attacks. 2018.

[11] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[12] Vitalik Buterin, Diego Hernandez, Thor Kamphefner,
Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying
Wang, and Yan X Zhang. Combining ghost and casper.
arXiv preprint arXiv:2003.03052, 2020.

[13] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. TOCS, 20(4):398–
461, 2002.

[14] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In SP, 2020.

[15] Francesco D’Amato and Caspar Schwarz-Schilling. Pro-
poser boost considerations. https://notes.ethere
um.org/@casparschwa/H1T0k7b85. (accessed in Feb
2024).

[16] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. In
EuroSys, pages 34–50, 2022.

[17] Sisi Duan, Xin Wang, and Haibin Zhang. FIN: Practical
signature-free asynchronous common subset in constant
time. In CCS, 2023.

[18] Sisi Duan and Haibin Zhang. Foundations of dynamic
bft. In SP, pages 1317–1334, 2022.

[19] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. JACM,
35(2):288–323, 1988.

[20] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[21] Matheus VX Ferreira and S Matthew Weinberg. Proof-
of-stake mining games with perfect randomness. In EC,
pages 433–453, 2021.

[22] Fork choice upgrade. https://github.com/ether
eum/consensus-specs/pull/3290. (accessed in Feb
2024).

USENIX Association 33rd USENIX Security Symposium 6269

https://notes.ethereum.org/@adiasg/unrealized-justification
https://notes.ethereum.org/@adiasg/unrealized-justification
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://notes.ethereum.org/@casparschwa/H1T0k7b85
https://notes.ethereum.org/@casparschwa/H1T0k7b85
https://github.com/ethereum/consensus-specs/pull/3290
https://github.com/ethereum/consensus-specs/pull/3290

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In SOSP, pages
51–68, 2017.

[24] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Bullshark: DAG BFT
protocols made practical. In CCS, 2022.

[25] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In
CRYPTO, pages 451–480, 2020.

[26] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In CRYPTO, pages
357–388, 2017.

[27] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli,
and Ghassan Karame. Securing proof-of-stake
blockchain protocols. In ESORICS, pages 297–315,
2017.

[28] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan.
Verifiable random functions. In FOCS, pages 120–130,
1999.

[29] Ryuya Nakamura. Analysis of bouncing attack on
ffg. https://ethresear.ch/t/analysis-of-b
ouncing-attack-on-ffg/6113. (accessed in Feb
2024).

[30] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-
and-flow protocols: A resolution of the availability-
finality dilemma. In SP, pages 446–465, 2021.

[31] Joachim Neu, Ertem Nusret Tas, and David Tse. Two
more attacks on proof-of-stake ghost/ethereum. In Con-
sensusDay, pages 43–52, 2022.

[32] Michael Neuder, Daniel J Moroz, Rithvik Rao, and
David C Parkes. Selfish behavior in the tezos proof-
of-stake protocol. arXiv preprint arXiv:1912.02954,
2020.

[33] Michael Neuder, Daniel J Moroz, Rithvik Rao, and
David C Parkes. Low-cost attacks on ethereum 2.0 by
sub-1/3 stakeholders. arXiv preprint arXiv:2102.02247,
2021.

[34] Rafael Pass and Elaine Shi. Fruitchains: A fair
blockchain. In PODC, pages 315–324, 2017.

[35] Rafael Pass and Elaine Shi. The sleepy model of con-
sensus. In ASIACRYPT, pages 380–409, 2017.

[36] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara
Tucci-Piergiovanni. Ethereum proof-of-stake under
scrutiny. In SAC, pages 212–221, 2023.

[37] Potuz. Justification widtholding attacks. https://
hackmd.io/o9tGPQL2Q4iH3Mg7Mma9wQ. (accessed in
Feb 2024).

[38] Potuz. Witholding attack mitigation. https://hack
md.io/a8vbgF6YR0-j6T9LpcYB3g. (accessed in Feb
2024).

[39] Proposer lmd score boosting #2730. https://github
.com/ethereum/consensus-specs/pull/2730. (ac-
cessed in Feb 2024).

[40] Danny Ryan. Epoch reorg. https://notes.ethere
um.org/VH_B3kEVQFav4roEgYuCjA. (accessed in Feb
2024).

[41] Danny Ryan. Fork choice bugfix disclosure.
https://notes.ethereum.org/@djrtwo/2023-f
ork-choice-reorg-disclosure. (accessed in Feb
2024).

[42] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Mon-
not, Aditya Asgaonkar, Ertem Nusret Tas, and David
Tse. Three attacks on proof-of-stake ethereum. In FC,
pages 560–576, 2022.

[43] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In FC, pages 507–527,
2015.

[44] Ethereum proof-of-stake consensus specifications. ht
tps://github.com/ethereum/consensus-specs.
(accessed in Feb 2024).

[45] Michael Sproul. Allow honest validators to reorg late
blocks. https://github.com/ethereum/consensu
s-specs/pull/3034. (accessed in Feb 2024).

[46] Xiao Sui, Sisi Duan, and Haibin Zhang. Marlin: Two-
phase bft with linearity. In DSN, pages 54–66, 2022.

[47] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris
Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J Fischer, and Bryan Ford. Scalable bias-
resistant distributed randomness. In SP, pages 444–460,
2017.

[48] Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram
Kannan, Mohammad Ali Maddah-Ali, and Fisher Yu.
Bitcoin-enhanced proof-of-stake security: Possibilities
and impossibilities. In SP, pages 126–145, 2023.

[49] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 2014.

[50] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei
Yang, and Feng Zhu. Sok: Mev countermeasures: The-
ory and practice. arXiv preprint arXiv:2212.05111,
2022.

6270 33rd USENIX Security Symposium USENIX Association

https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://hackmd.io/o9tGPQL2Q4iH3Mg7Mma9wQ
https://hackmd.io/o9tGPQL2Q4iH3Mg7Mma9wQ
https://hackmd.io/a8vbgF6YR0-j6T9LpcYB3g
https://hackmd.io/a8vbgF6YR0-j6T9LpcYB3g
https://github.com/ethereum/consensus-specs/pull/2730
https://github.com/ethereum/consensus-specs/pull/2730
https://notes.ethereum.org/VH_B3kEVQFav4roEgYuCjA
https://notes.ethereum.org/VH_B3kEVQFav4roEgYuCjA
https://notes.ethereum.org/@djrtwo/2023-fork-choice-reorg-disclosure
https://notes.ethereum.org/@djrtwo/2023-fork-choice-reorg-disclosure
https://notes.ethereum.org/@djrtwo/2023-fork-choice-reorg-disclosure
https://github.com/ethereum/consensus-specs
https://github.com/ethereum/consensus-specs
https://github.com/ethereum/consensus-specs/pull/3034
https://github.com/ethereum/consensus-specs/pull/3034

[51] Bennet Yee. Keep your transactions on short leashes.
arXiv preprint arXiv:2206.11974, 2022.

[52] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT
consensus with linearity and responsiveness. In PODC,
2019.

[53] Haibin Zhang and Sisi Duan. PACE: Fully parallelizable
bft from reproposable byzantine agreement. In CCS,
2022.

[54] Haoqian Zhang, Mahsa Bastankhah, Louis-Henri
Merino, Vero Estrada-Galiñanes, and Bryan Ford. Break-
ing blockchain rationality with out-of-band collusion.
In FC, 2023.

[55] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-
Galinanes, and Bryan Ford. Flash freezing flash boys:
Countering blockchain front-running. In ICDCSW,
pages 90–95, 2022.

A Rewards and Penalties in Ethereum

In this section, we provide more details on attestation rewards
and penalties [44]. The reward weight of a validator Wr is
set to 54 if the corresponding attestation is finalized on-chain
and the head field in the attestation is correct (i.e., the block
matches the head of the canonical chain). If the attestation is
finalized on-chain but the head in the attestation is incorrect,
the reward weight Wr is set to 40. Finally, if the corresponding
attestation is not finalized on-chain10, the penalty weight of a
validator Wp is set to 40.

As mentioned in §4, the attestations in A2 are finalized on-
chain, so the reward weights of the corresponding attestors Wr
are at most 54. Meanwhile, the attestations in A1 are discarded,
so the penalty weight of the corresponding attestors Wp is 40.
Thus, we have Wr ≤ 27Wp/20.

B Modified Staircase Attack

In this section, we show the modified staircase attack. The
modified attack can be launched based on the latest system
configuration of Ethereum. We show the workflow of the
modified attack in Figure. 12. Compared to the attack pre-
sented in §4.3, we make three major changes. First, as shown
in Figure. 13, there are now three statuses for each Byzantine
validator: idle, repeat, and stop. The status is idle if the attack
is not being launched. The status is repeat if the attack is
being launched and can be repeated to the next epoch. The
status is stop if the attack cannot be repeated and will be
stopped at the end of the epoch. Here, the last epoch of the

10The value can be found at https://github.com/ethereum/cons
ensus-specs/blob/dev/specs/altair/beacon-chain.md#incentiv
ization-weights

The Workflow of a Byzantine Validator vk

global parameters: slot counter t, attack state statuscr, statusnxt
local parameters: last justified checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 init statuscr← idle, statusnxt ← idle
02 upon slot t do
03 let current epoch number be e← ⌊ t

32⌋
04 ▷ prysm/validator/client/runner.go
05 if t is the first slot in epoch e then
06 if statuscr = repeat then
07 if judge(e) = 1 and judge(e+1) = 1 then
08 statusnxt ← repeat
09 if judge(e) = 1 and judge(e+1) = 0 then
10 statusnxt ← stop
11 if statuscr = stop then
12 statusnxt ← idle
13 ▷ prysm/beacon-chain/rpc/prysm/v1alpha1/validator/proposer.go
14 ▷ prysm/validator/client/propose.go
15 as the proposer for slot t
16 follow lines 3-9 specified in Figure. 2
17 if statuscr = idle then
18 if t is the first slot in epoch e then
19 send b to 20% honest validators at 1/3 of slot t
20 if judge(e) = 1 and judge(e+1) = 1 then
21 statusnxt ← repeat
22 if judge(e) = 1 and judge(e+1) = 0 then
23 statusnxt ← stop
24 else statusnxt ← idle
25 elseif vk is the last Byzantine proposer in I then
26 send b to all Byzantine validators at once
27 set tadv as follows
28 if statuscr = repeat then
29 tadv← the 14-th slot in epoch e+1
30 if statuscr = stop then
31 tadv← the last slot in epoch e+1
32 send b to all honest validators at the beginning of slot tadv
33 else send b to all validators
34 ▷ prysm/validator/client/attest.go
35 as an attestor for slot t
36 follow lines 12-18 specified in Figure. 2
37 if statuscr = repeat or statuscr = stop then
37 if t mod 32 < 28 then
37 send att to all validators
37 else
38 send att to the last Byzantine proposer in I
39 if t is the last slot in epoch e then
40 statuscr← statusnxt
41 function judge(epoch e)
42 obtain a set I of Byzantine proposers in epoch e
43 if there is a Byzantine proposer in the last four slots then
44 return 1
45 return 0

Figure 12: The workflow of a Byzantine validator vk.

attack becomes similar to that in our one-time staircase attack.
Second, the attestations from Byzantine validators in the first

USENIX Association 33rd USENIX Security Symposium 6271

https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md#incentivization-weights
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md#incentivization-weights
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/beacon-chain.md#incentivization-weights

28 slots are not withheld. Instead, they are directly sent to all
validators in the system. The attestations from the Byzantine
attestors in the last four slots are sent to the last Byzantine
proposer v j. Third, to continuously launch the attack, slot tadv
(when the last Byzantine proposer v j releases the block b j)
is not set to the middle of an epoch. Instead, it is set to the
beginning of the 14-th slot of an epoch.

We also introduce a function called judge (lines 41-45).
Briefly speaking, given an epoch e, the judge function re-
turns 1 if the attack can be repeated in the next epoch and 0
otherwise.

idle

stop

repeatline 21

line 23

line 24 line 8

lin
e 10

line 12

Figure 13: The status of the attack. Line numbers refer to
those in Figure. 12.

Lemma 4. In the modified attack, the number of attestations
included in the canonical chain can not exceed 2N/3 at the
end of an epoch.

Proof. After the attack is launched, none of the honest val-
idators update their LJ before the last Byzantine validator
releases the withheld block. If the status is repeat, the at-
testations from the honest validators in the first 13 slots are
discarded and attestations from the honest validators in the
last slot are not included. On the contrary, Byzantine valida-
tors use the new LJ as source of their attestation. Therefore,
the number of attestations included in the canonical chain is
smaller than 18(N− f)/32+28(N− f)/32 = 2N/3. For the
stop status, the proof is conducted in the same manner. After
the warm-up attack is launched, none of the honest validators
update their LJ before the 28-th slot. On the contrary, Byzan-
tine validators use the new LJ as source of their attestation.
Thus, the number of attestations is lower than 2N/3 and the
checkpoint is not set correctly.

Lemma 5. If the adversary controls 33% of the total stake
and the attack is being launched, all honest validators lose
their incentives or even suffer from stake loss.

Proof. We consider the attestations from honest validators
in epoch e while the attack is being launched. The attesta-
tions from honest validators in the first period of epoch e are
included in the branch ce

hon. The attestations from honest val-
idators in the last four slots are included in the branch ce+1

hon .
The rest attestations from honest validators are included in the

branch ce
adv and ce+1

adv . We thus consider the following three
cases.
(1) The branch ce

hon in the first 13 slots is pruned in epoch e.
Attestations from the honest attestations in the first 13 slots
are thus discarded.

(2) The branch ce+1
hon in the last four slots is pruned in epoch

e + 1. Block b j can include attestations with a number
roughly equal to the number of attestations in most two
slots. Therefore, the attestations from honest attestations in
the last two slots are discarded.

(3) The branches ce
adv and ce+1

adv are not pruned, and the at-
testations from the honest validators in ce

adv and ce+1
adv are

finalized on-chain.
Thus, the fraction of discarded attestations from honest valida-
tors in total attestations is Rhon = (13+2)/32. The expected
incentives of an honest validator is then Ihon is

(((1−Rhon)
N− f

N
+

f
N
)(1−Rhon)Wr−RhonWp)× Ibase.

Let f = 0.33N and Wr = 27Wp/20, we have the incentive
Ihon ≈−0.0382×WrIbase < 0, where WrIbase is the fair share
of an honest validator.

Theorem 2. If the adversary controls 33% of the total stake,
our modified attack makes the incentives of an honest valida-
tor decrease to 28.9% of its fair share.

Proof. The incentive of an honest validator in each epoch can
be modeled as a discrete-time Markov chain. In particular,
there are three states of the attack: the idle status (staircase
attack is not launched), the repeat status (staircase attack is
launched and being repeated in every epoch), and the stop
state (staircase attack can not be repeated and conduct a one-
time attack to penalize all honest validators). In each state, the
incentives of honest validators are WrIbase, Ihon, and−WpIbase,
respectively. Meanwhile, the transition matrix is shown as
follows:

P =

 2/3 Psucc/3 (1−Psucc)/3
0 Psucc 1−Psucc
1 0 0

 .

By applying the matrix to a n-epoch transition, we have matrix
P(n) = Pn. The P(n) becomes stable after n = 27, we have

P(n) ≈

 0.372 0.504 0.124
0.372 0.504 0.124
0.372 0.504 0.124

 ,

for n ≥ 27. Thus, the incentive of an honest validator
is equal to any entry in the matrix P(n) multiplied by
(WrIbase, Ihon,−WpIbase)

T, which is approximately 0.289×
WrIbase.

6272 33rd USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	Review of Ethereum Proof-of-Stake
	System Model
	Terminology and Notation
	Workflow of Ethereum PoS
	The Attestation Incentive Mechanism

	An Attack on the Incentive Mechanism
	Overview of the Attack Methodology
	The Warm-up Attack
	The Staircase Attack

	Implementation and Evaluation
	Attack Feasibility and Analysis
	Discussion
	Conclusion
	Rewards and Penalties in Ethereum
	Modified Staircase Attack

