
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Hive: A Hardware-assisted Isolated Execution
Environment for eBPF on AArch64

Peihua Zhang, SKLP, Institute of Computing Technology, CAS; University of Chinese
Academy of Sciences; Chenggang Wu, SKLP, Institute of Computing Technology, CAS;
University of Chinese Academy of Sciences; Zhongguancun Laboratory; Xiangyu Meng,
Northwestern Polytechnical University; Yinqian Zhang, Southern University of Science

and Technology; Mingfan Peng, Shiyang Zhang, and Bing Hu, SKLP, Institute of
Computing Technology, CAS; University of Chinese Academy of Sciences; Mengyao Xie,

SKLP, Institute of Computing Technology, CAS; Yuanming Lai and Yan Kang, SKLP,
Institute of Computing Technology, CAS; University of Chinese Academy of Sciences;

Zhe Wang, SKLP, Institute of Computing Technology, CAS; University of Chinese
Academy of Sciences; Zhongguancun Laboratory

https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-peihua

HIVE: A Hardware-assisted Isolated Execution Environment for eBPF on AArch64

Peihua Zhang1,2, Chenggang Wu1,2,3, Xiangyu Meng 4†, Yinqian Zhang5, Mingfan Peng1,2, Shiyang
Zhang1,2, Bing Hu1,2, Mengyao Xie1, Yuanming Lai1,2, Yan Kang1,2, and Zhe Wang 1,2,3*

1SKLP, Institute of Computing Technology, CAS
2University of Chinese Academy of Sciences

3Zhongguancun Laboratory
4Northwestern Polytechnical University

5Southern University of Science and Technology

Abstract
eBPF has become a critical component in Linux. To ensure

kernel security, BPF programs are statically verified before
being loaded and executed in the kernel. However, the state-of-
the-art eBPF verifier has both security and complexity issues.
To this end, we choose to look at BPF programs from a new
perspective and regard them as a new type of kernel-mode
application, thus an isolation-based rather than a verification-
based approach is needed. In this paper, we propose HIVE,
an isolation execution environment for BPF programs on
AArch64. To provide the equivalent security guarantees, we
systematize the security aims of the eBPF verifier and catego-
rize two types of pointers in eBPF: the inclusive type pointer
that points to BPF objects and the exclusive type pointer that
points to kernel objects. For the former, HIVE compartmen-
talizes all BPF memory from the kernel and de-privileges
the memory accesses in the BPF programs by leveraging
the load/store unprivileged instructions; for the latter, HIVE
utilizes the pointer authentication feature to enforce access
controls of kernel objects. Evaluation results show that HIVE
is not only efficient but also supports complex BPF programs.

1 Introduction

Linux eBPF allows users to load programs into the kernel and
customize its behavior without modifying the kernel code [11].
eBPF provides an instruction set and execution environment
in the kernel. At load time, the BPF program undergoes a
static verification to ensure kernel security. Then, it is com-
piled and mounted at a specified kernel location. BPF pro-
grams are allowed to call helper functions, which are offered
by the kernel to enable interaction with the system.

While eBPF has been used in various scenarios [2, 4, 9, 13,
15, 15, 32, 34, 37], it presents two issues in use. The first is the
complexity issue, where legal programs may fail in the verifi-
cation due to the verifier’s limited capabilities [2, 13, 15, 37].

†This work was done while he was a visiting student in ICT.
*Zhe Wang is the corresponding author. wangzhe12@ict.ac.cn.

Researchers have resorted to “verifier-oriented programming”
to circumvent this issue, such as masking memory accesses to
reduce the complexity of verification [37]. Even so, it remains
a persistent issue highlighted by many literature [13, 15, 37];
The second is the security issue, where malicious programs
may pass the verification due to vulnerabilities [3, 14, 18, 31].
According to statistics, over half (36/60) of eBPF’s CVEs
come from the verifier since 2014 [31].

Through systematic analysis, we found that the above is-
sues primarily come from the full path analysis stage of the
verification (§3). It executes symbolically the program at
the entry and explores all possible execution paths to check
whether the state is illegal or not. However, it encounters the
well-known state explosion problem, which significantly lim-
its the accuracy of such analysis. Therefore, the verification-
based method has become the bottleneck of eBPF.

In this work, we aim to address the above challenges in
eBPF, to enable its broader practical application. Specifically,
current BPF programs are considered part of the (untrusted)
kernel code, so eBPF uses the verification-based method to
“review” the code to identify all abnormal behaviors. But we
choose another perspective — BPF programs are no longer
part of the kernel code, but a new type of kernel-mode appli-
cation that interacts with the kernel through helper function
calls rather than system calls, so kernel security should be
achieved by isolating BPF programs, not by verification.

As such, we propose to build an isolated execution environ-
ment for eBPF, dubbed HIVE1, and enforce runtime isolation
for BPF programs, thus eliminating the need for full-path
analysis in the verification. Our design is based on AArch64,
which is particularly motivated by the growing popularity of
Arm-based processors in the mobile, PC, and server market,
but should be also applicable to other ISAs, such as x86 (§9).

Our first step is to understand the security goals of the
verifier in its full-path analysis. To this end, we conducted
a comprehensive analysis of the verifier (§3) and concluded
three security goals: 1) memory safety that ensures BPF pro-

1We call it HIVE to refer to a beehive for the bees in the eBPF logo.

USENIX Association 33rd USENIX Security Symposium 163

grams cannot arbitrarily access kernel memory; 2) leakage
prevention that prevents BPF programs from leaking kernel in-
formation; and 3) DoS prevention that ensures BPF programs
cannot cause crashes or excessively consume CPU time.

The core approach taken by HIVE is to de-privilege the
BPF program: the memory of the BPF program is mapped to
an independent address space (called BPF space) and set to be
un-privileged pages; the BPF program still runs at the privi-
leged level, but is compiled to use the load/store un-privileged
(LSU) instructions. The verifier, even without full-path analy-
sis, can prevent illegal instructions and illegal control flows
at load time. This simple setup naturally achieves the above
goals: Firstly, as the kernel memory is set to be privileged
pages, the BPF program cannot access them, thus ensuring
memory safety. Secondly, the layout in the BPF space cannot
be used to infer the kernel address space layout, thus prevent-
ing information leakage. Thirdly, HIVE captures exceptions
and monitors the BPF program’s execution time, rolls back
the execution state, and uninstalls the BPF program once an
exception or timeout is detected, thus preventing DoS.

However, it is difficult for BPF programs to be completely
decoupled from the kernel, thus such a strict isolation execu-
tion environment is not practical. The first challenge is that
there is a large amount of data in BPF objects that are inac-
cessible to BPF programs, such as metadata in maps. Simply
mapping all memory into BPF space will face the problem of
sub-page attacks; the second challenge is that legal access to
kernel objects by de-referencing kernel pointers is also prohib-
ited due to all instructions being emitted as LSU instructions;
the third challenge is that it is difficult to prevent kernel point-
ers from being leaked without the ability to accurately identify
them. We analyze all eBPF pointers, classify them into two
categories, and process them separately in HIVE.

The inclusive type pointers can be de-referenced by the
same memory access instruction, they point to BPF data ob-
jects and share the same logic of security checks that the
pointer can only access the raw data inside its corresponding
object, and it cannot be leaked. To ensure their security, HIVE
compartmentalizes all BPF memory (e.g., stack and maps)
and isolates all BPF-accessible memory regions to the BPF
space. The pointers can be leaked safely due to the design of
independent/decoupled address space.

The exclusive type pointers point to kernel objects, and a
memory access instruction can only be used to de-reference
a pointer of the same kernel object type. However, the de-
referenced points are unknown without the full-path analysis.
To address this, HIVE proposes the exception-based point-of-
use probing method to dynamically identify the de-referenced
points, perform security checks, and patch the code to use the
regular load/store instruction to access the kernel object. To
enforce memory access controls, HIVE utilizes the pointer
authentication (PA) feature to ensure pointer integrity and
type safety. Furthermore, HIVE also proposes a descriptor-
based method to hide the real pointers.

We implemented and evaluated HIVE on Apple mini with
M1 chips. The core of HIVE is a kernel module that manages
the BPF space and monitors the exception. It also modifies
the eBPF subsystem, such as removing the full-path analy-
sis. We use two web servers (i.e., Nginx and Apache) and
two databases (i.e., Memcached and Redis) to evaluate the
performance of HIVE when running 161 BPF programs from
BCC [35] and Tracee [4]. The experimental results show that
HIVE is efficient compared with the vanilla eBPF. To evaluate
the complexity promotion effectiveness, we successfully re-
placed 10 in-tree kernel modules with HIVE-equipped eBPF
and applied HIVE to accelerate system calls.

To summarize, the contributions are as follows:

• A comprehensive study on eBPF’s verifier. We conduct
a comprehensive study on the verifier for the first time,
resulting in a summary of its security properties and a
discussion of its issues in complexity and security.

• A novel isolated execution environment for BPF pro-
grams. We propose a new isolated execution environment
on AArch64, HIVE, to isolate the BPF programs by com-
bining a set of hardware features, which could provide the
same level of security guarantees as static verification.

• New insights from implementation and evaluation. We
implement and evaluate a prototype of HIVE. The results
show that the dynamic isolation for BPF programs can be
practical, and it could replace the verification.

2 Background

2.1 Extended Berkeley Packet Filter (eBPF)
At load time, the eBPF verifier performs static analysis to en-
sure the kernel’s security. Once the verification is passed, the
program will be compiled into the native code and mounted
to the specified kernel location. eBPF provides a RISC in-
struction set and an execution environment inside the kernel
which offers the following supports.

• Registers. There are 11 registers (r0-r10) and will be
mapped into physical registers after JIT compilation.

• Maps. Users can statically apply for custom-sized data
areas through maps, which are key-value stores. Maps can
be accessed by both user processes (via syscall) and BPF
programs, enabling the data exchange between them.

• Stack. The BPF function’s frame is stored on the BPF
stack, which uses the kernel stack. BPF and kernel stack
frames are arranged in the order of function calls.

• Context. When the kernel calls the BPF program, it passes
a context structure, which is a program-type related kernel
object, through the function parameter.

• Helper functions. Programs are allowed to call helper
functions, which are dedicated functions offered by the
kernel to enable interaction with the system.

164 33rd USENIX Security Symposium USENIX Association

arg
dst

bpf_check()

ALU_rewrite

ST_rewrite

Spectre V1 sanitization

Spectre V4 sanitization

offset leakage

uninitialized
register read

BPF
object
OOB Iuninitialized

stack read II

Spectre V1 filter

kernel object OOB I

kernel stack
crash I

pointer
leakage I

permission
violation I

kernel stack crash II

deadlock

timeout

do_check
(state)

CMP_check

ALU_
check

LD_
check

ST_
check

CALL_
check

EXIT_check

Is reg_opnd
initialized?Rx !read_ok

Is reg_opnd ptr type?ptr comparison

src
ptr?Is 32 bit opcode?partial copy of ptr

Is bitwise/... opcode?operation on
ptr prohibited

Is scalar -= ptr?sub ptr from scalar

Is ptr1 +=/... ptr2?ptr op ptr prohibited

Is opnd pkt_end/...?

stack slot uninited? invalid read

Is src_opnd ptr && dst_opnd not stack ptr? addr leak

Is dst writable? can't write packet/read-only map/...

Is call_stack_fame >32? call frames is too deep

Is arg type match? expected ctx/... ptr, got other

Is ptr argument?

Is spinlock helper? unlock is missing/misunlock/...

JMP_checkIs state equal in loop?infinite loop detected Is ret_value scalar? only scalar value is allowed

comm_access_check()
common_src_opnd_check Stack read check

Is ctx/
... ptr?Is accessed field legal?invalid access Is map_value

/... ptr type?
The relative
offset to obj's
base is: [min,
max]

Is min < 0? min value is negative

Is min+imm_off < 0?

Is max + imm_off +
value_size> obj_size?

max value is
outside of
memory range

Is variable offset?
var_offset read prohibited Is max > BPF_MAX? unbounded access

min value is
outside of
memory range

comm_
access_
check()

Is stack
ptr type?

Is stack access inbound?invalid stack access

dereference of modified
 ctx/... ptr disallowed Is ptr modified?

var_offset write prohibited

bpf_check()

check_max_stack_depth(state)
// Landing checks1

convert_ctx_accesses(state)
// Landing checks2

do_misc_fixups(state)
// Sanitization

combined stack
size is too large

offset_check_and_relocation

do_check_common(state)->do_check(state) // Inflight checks

`

⼦主题

主题

⼦主题

⼦主题

⼦主题

 Spectre V1
maskingkernel object

OOB II

pointer
leakage II

BPF object OOB II

 Spectre V4
barrier

type
mismatch

legend: security propertyfunction security check error message

Is ST_insn && dst field readonly?

permission
violation II

invalid write

uninitialized
stack read I

Fig. 1: The security checks and corresponding security properties of the verifier in the full-path analysis.

2.2 Hardware Features on AArch64

Unprivileged load/store. The access right of a memory ac-
cess instruction is determined by the current exception level
(EL) and the target memory’s permission. The code runs at
EL0 (i.e., the user mode) can access the unprivileged pages
(abbreviated to U-page) in user space but cannot access the
privileged page (abbreviated to P-page) in kernel space, and
we call that EL-based memory isolation. But the load/store
unprivileged (LSU) instructions, i.e., ldtr and sttr, is an
exception. No matter which EL they are executed at, they are
treated as if at EL0, and thus cannot access P-pages.

E0PD. E0PD [6] is introduced in ARMv8.5-A as hardware
mitigation to prevent the fault timing attacks launched by
malicious users against the kernel. It prevents the unprivileged
memory accesses to the (lower or upper or both) halves of the
address space and generates the translation fault in constant
time when accessing. There are two bits E0PD0 and E0PD1
of the TCR_EL1 register which controls whether unprivileged
memory accesses to the lower-half (user) or the upper-half
(kernel) of the address space is disabled, respectively.

Pointer Authentication. Pointer Authentication (PA) [6] is
a hardware feature in ARMv8.3-A that employs the crypto-
graphic authentication code to protect the pointer’s integrity.
It attaches a PA Code (PAC) to a pointer in the unused bits of a
64-bit address. PA introduces pac* and aut* instruction fam-
ilies to sign and authenticate a pointer with a 64-bit modifier
using the key indicated by the instruction name. 2. The pac*
instructions calculate the PAC and attach it to the pointer. The
aut* instructions authenticate a pointer and clear the PAC in
the pointer, making the pointer usable. If the authentication
fails, the pointer will be modified to an invalid pointer.

2For example, the pacda specifies signing data pointers using the A key.

3 Understanding the eBPF Verifier

3.1 The Workflow of the Verifier

The workflow of the verifier consists of three consecutive
stages, with the later stages becoming more complex. The
pre-process stage scans the BPF program linearly to find re-
location items and check if there are any unallowed opcodes,
e.g., indirect calls; The CFG check stage searches the control
flow graph and forbids any out-of-bounds jumps or unreach-
able codes; The last stage creates a state machine that records
the type and range of all registers and stack slots during the
path exploration. Meanwhile, it verifies that all states con-
form to a set of security properties that do not threaten the
kernel. Since it traverses all possible paths, we call it full-path
analysis in this paper. The full-path analysis performs most
of the analysis and integrates the majority of security checks,
focusing on it allows for a comprehensive understanding of
the verifier’s capabilities and limitations.

3.2 The Internals of Full-path Analysis

3.2.1 The Methodology of Study

Due to the lack of comprehensive documentation explicitly
about the verifier, we had to understand its design manually.
To this end, we dedicated 80 person-days to meticulously re-
view and understand the verifier’s source code. We undertook
a top-down analysis from the verifier’s entry to all exits. We
collected all checks and scrutinized the triggering conditions,
the check’s content, its dependencies, and restrictions.

All checks share a distinguishing feature, which is a con-
ditional judgment statement with an error message output
(e.g., verbose()). Among these checks, some of them are
not related to the full-path analysis. For example, the division-

USENIX Association 33rd USENIX Security Symposium 165

Table 1: Summarized security goals and their corresponding security properties in full-path analysis.
Security Goal Description Against Attacks Corresponding Security Properties in Fig. 1

SG-1: ① Programs can only access BPF memory,
OOB Access

BPF object OOB I/II, kernel object OOB I/II,
Memory Safety and specific kernel objects such as context. permission violation I/II, type mismatch

SG-2:
Information

Leakage
Prevention

① Programs cannot write pointers into maps,
Layout Leakage pointer leakage I/II, offset leakage, type mismatchand calculation among pointers is not allowed.

② Programs cannot read uninitialized information. Uninitialized Rd uninitialized register read, uninitialized stack read I/II
③ Programs cannot speculatively access areas

Spectre Spectre V1 filter/masking, Spectre V4 barrieroutside the BPF program’s memory.

SG-3:
DoS Prevention

① Programs cannot crash while executing. Crash Kernel kernel stack crash I, kernel stack crash II
② Programs cannot execute for too long. Denial-of-Service timeout, deadlock

by-zero check checks if the imm operand in the instruction is
0. Filtering such checks is simple by inspecting whether the
condition contains the env or not. This is due to the program
state used in the state machine being recorded in the verifier’s
environment structure (struct bpf_verifier_env *env).

Among all the checks, some are complexity or functional-
ity checks, such as the combined branch state cannot exceed
8,192 to prevent state explosion. We filter these checks by
understanding their semantics, supplemented by the error mes-
sage. For example, these checks usually contained phrases
like “too many” or “too complex”. Conversely, the secu-
rity checks typically contained words like “prohibited” or
“invalid”. By understanding the filtered security checks and
their semantics, we obtain all the security properties that the
verifier wants to ensure in the full-path analysis.

3.2.2 The Security Properties in Full-path Analysis

Fig. 1 gives a panoramic view of how the verifier performs
the security checks in the full-path analysis. bpf_check()
is the entry point of the verifier, and the do_check() it calls
contains most of the security checks in the full path anal-
ysis. Since they are performed during the path traversal
along with the state tracking, we call them inflight checks.
Whenever an instruction is encountered, it will perform se-
curity checks based on the semantics of the instruction and
all operands’ states (i.e., the type and the value range). Af-
ter the path traversal, the check_max_stack_depth() and
convert_ctx_accesses() are called in sequence to per-
form some global security checks, which we call the land-
ing checks. For instance, it checks the combined BPF stack
frames’ size does not exceed the upper limit to prevent ker-
nel stack crashes. Finally, do_misc_fixups() is called to
instrument some sanitization code to prevent Spectre attacks.

The verifier contains hundreds of security checks, we have
merged and simplified similar security checks in Fig. 1 for
ease of introduction. The left and right sides give the sum-
marized 20 security properties of these security checks. For
example, underflow and overflow are both disallowed when
accessing BPF objects, which corresponds to BPF object OOB
I. As for kernel object access instructions, the immediate off-

set is checked based on a whitelist to ensure the BPF program
only accesses legal fields, which ensures kernel object OOB I.

While some security checks have explicit security proper-
ties that can be summarized based on judgment conditions
and error messages, some properties need to be inferred. Take
uninitialized stack read II as an example, BPF programs are
not allowed to write to the stack using variable offsets due to
the state maintenance of stack slots. When a variable offset is
involved and a stack slot is uninitialized, the verifier cannot
determine if this write would initialize this slot, potentially
leading to an uninitialized stack read. The detailed descrip-
tions of all security properties are listed in Appendix A.

The summarized security goals. Security properties are the
security that the verifier must ensure at the implementation
level. Based on them, we also summarize the security goals
at the design level, as shown in Table 1. All security goals
were emailed to the eBPF developers and got confirmation.
For SG-1, BPF programs can only access their own memory.
The permission violation and type mismatch between pointers
could lead to illegal memory access, thus they are also mem-
ory safety related; For SG-2, the information leakage should
be prevented, including kernel layout, uninitialized informa-
tion, and kernel memory accessed speculatively. Besides, the
type mismatch between scalars and pointers could also leak
kernel layout; For SG-3, DoS attacks should be prevented
due to the preempt being disabled when the BPF program is
running, and the exception handling is not supported in eBPF.

3.3 The Dilemma of Full-path Analysis

Although eBPF developers have been dedicated to improving
the verifier, it still faces the following dilemmas.

The capability dilemma. To avoid the state explosion and
ensure the analysis can finish in a constant time, several re-
strictions are imposed on the program, including limiting the
number of loops and branches. Kernel developers have recog-
nized this challenge and tried to address it over the years. For
example, eBPF supports the intra-procedure analysis instead
of the whole program in 2017. However, it can lead to state
overestimation and even exacerbate complexity problems.

166 33rd USENIX Security Symposium USENIX Association

4

User-mode
Applications

System Calls

Linux Kernel (EL1)

Kernel-mode
Applications (BPF)

BPF Helper Calls

EL0 EL1

U-Page P-Page

User Code (LS) BPF Code (LSU)

Kernel Code (LS) Kernel Data

BPF DataUser Data

Control Flow Transfer: Memory Access: Memory Types:

U
se

r S
pa

ce

K
ernel Space

(Including B
PF Shadow

)
B

PF Space

Memory View

Kernel Space
(254TB)

User Space
(256TB)

Memory Hole~ ~

0x0

Legend

V
irtual A

ddress Space

BPF Space
(1TB)

Shadow BPF
Space (1TB)

Fig. 2: The high-level design of HIVE.

Constant loops were supported in 2019 after extensive design
and attempts. Helper functions such as bpf_loop() were in-
troduced in 2021 to handle a special kind of loops. However,
while these functions seemingly address the loop problem,
they impose limitations on passing state between loop itera-
tions, along with the loop body and condition, deviating from
commonly used loop patterns (detailed in Appendix B). Up to
now, complex BPF programs still cannot pass the verification.

The correctness dilemma. The code size and complexity of
the full-path analysis have significantly increased over the
years, making formal verification challenging and leading to
design and implementation bugs. The full-path analysis has
been responsible for over 90% of CVEs in the eBPF verifier
in the past decade. Despite its potential, unprivileged eBPF
programs have been dismissed as unsafe by the Linux commu-
nity. As the core of the verifier, the intricate implementation
of the full-path analysis contributes to these security issues.

4 Overview

4.1 Threat Model
The goal of HIVE is to provide an isolated execution environ-
ment for BPF programs to replace the full-path analysis in the
verifier. We assume the pruned verifier and other components
of the eBPF subsystem are secure and trustworthy. The goal
of the adversary is to compromise the security goals listed
in Table 1 through adversary-controlled BPF programs. BPF
programs may execute arbitrary legal instructions, access arbi-
trary memory, and call arbitrary helpers. Note that the pruned
verifier still guarantees the control flow safety.

4.2 High-level Design
Our key insight is that BPF programs can be executed as
kernel-mode applications. An analogy can be drawn from the
isolation of user applications: User applications running at
EL0 cannot access kernel memory because the kernel memory
pages are set up as privileged pages; each user application

runs in its own independent and continuous address space;
crash isolation can be achieved via monitoring exceptions.
If an isolated execution environment can be created for BPF
programs, some of the heavy-lifting tasks performed by static
verification can be replaced by hardware-assisted dynamic
isolation. This is the key idea behind HIVE.

As shown in Fig. 2, HIVE creates such an isolated execution
environment as follows: Firstly, HIVE creates an independent
address space for each BPF program, dubbed BPF space. BPF
space holds all BPF data and is set as U-Pages. Note that the
BPF code is kept in the kernel space, which is set to be P-
Pages, as is done in a vanilla OS. In this way, users cannot
infer the kernel layout from the BPF space. Secondly, HIVE
emits all BPF memory access instructions as LSU instruc-
tions, which can access the BPF data on the U-Pages, but
cannot access the kernel memory on the P-Pages. Because
of Privileged Access Never (PAN) [6], helper functions are
forbidden from accessing the BPF data. Therefore, HIVE cre-
ates a separate space that maps the BPF data as P-Pages for
them, hence creating a shadow BPF space. Both shadow BPF
spaces and BPF spaces are 1TB in size and are placed at the
highest address. Thirdly, HIVE captures all exceptions and
times the execution of BPF programs. Once an exception or a
timeout is caught, HIVE will roll back the state to the entry
of the target BPF program and unload it.

4.3 Challenges

Since BPF programs are highly coupled to the kernel, isolat-
ing them from the kernel still faces the following challenges:

C-1: BPF data requires object-granular isolation. The full-
path analysis tracks the type of each pointer and the range of
the pointed object, ensuring that it can only access the acces-
sible region inside the BPF data object. This is because BPF
data objects are non-contiguous and interleaved with other
inaccessible objects. For example, eBPF embeds object man-
agement structures (including function pointers, lock pointers,
etc) into these objects, which also need protection. However,
the EL-based memory isolation used in HIVE cannot provide
such finer-grained (or sub-page) protection.

C-2: Kernel objects need to be accessed securely. eBPF
allows BPF programs to directly access specific fields of ker-
nel objects. However, such fine-grained kernel object access
control is difficult for two reasons: 1) The LSU instructions
cannot access the kernel space; 2) HIVE cannot distinguish
which instruction accesses the kernel object. Simply setting
the page where the kernel object is located to be U-Page will
be vulnerable to sub-page attacks; Copying all accessible
fields of kernel objects into the BPF space each time the BPF
program is executed will bring high performance overhead.

C-3: The pointers of kernel objects cannot be leaked. Since
maps can be accessed by users through system calls, the full-
path analysis prevents all pointers from being written to maps,

USENIX Association 33rd USENIX Security Symposium 167

Table 2: Differences between different eBPF pointer types.

Types Point to
Modif Instr. De-reference OOB
iable Access Form Pinned Check Method

Inclusive1 BPF obj ✔ arbitrary form ✘ bound-check
Exclusive2 Kernel obj ✘ constant offset3 ✔ whitelist

1 Including 10 types: ptr_to_stack, ptr_to_buf, ptr_to_mem,
ptr_to_tp_buffer, ptr_to_map_key, ptr_to_map_value, ptr_to_packet,
ptr_to_packet_meta, ptr_to_packet_end, and ptr_to_flow_keys.

2 Including 8 types: ptr_to_tcp_sock, ptr_to_socket, ptr_to_sock_common,
ptr_to_xdp_sock, ptr_to_ctx, ptr_to_btf_id, ptr_to_map, and ptr_to_func.

3 Except for ptr_to_map and ptr_to_func, other types of pointers are allowed
to be de-referenced directly via memory access instructions.

preventing the leakage of pointers. HIVE places BPF’s data
into a fixed BPF space to eliminate security problems caused
by the leakage of BPF object pointers. But, the pointers that
point to allowed kernel objects must be prevented from being
leaked. Without pointer/type tracking, HIVE cannot recognize
these pointers and prevent them from being leaked.

5 Detailed Design

The above challenges are due to the lack of pointer/type track-
ing capabilities in HIVE. In this section, we analyzed the
pointer type features of eBPF in §5.1, and introduce how
HIVE integrates its design in §5.2, §5.3, and §5.4. Importantly,
the design of HIVE is compatible with the eBPF standard, al-
lowing seamless execution of any BPF program.

5.1 eBPF Pointer Types
There are 18 types of pointers in eBPF and we classified
them into two types based on their usage and constraints:
the inclusive type and the exclusive type. The inclusive type
pointer points to the BPF data object, and the latter points to
the kernel object. Pointers of the same type share the same
functional constraints but differ between different types.

In eBPF, the exclusive type is performed with more strict
constraints. This is due to the support of direct memory access
to specific fields of kernel objects [1]. eBPF introduces a vir-
tual data structure for each BPF-accessible kernel object dur-
ing programming. Each virtual structure solely encompasses
BPF-accessible fields of its corresponding kernel object. At
load time, eBPF will relocate all accesses to the fields of vir-
tual structures to the actual fields of kernel objects. However,
the precise relocation requires three constraints (shown in Ta-
ble 2): 1) their value cannot be modified, allowing for accurate
pointers tracking; 2) they can be only de-referenced through
the memory access instruction in the form of pointer plus
offset, allowing for the relocation by rewriting the immediate
operand of the instruction; 3) memory access instructions that
access a kernel object are not allowed to be used to access
BPF objects or even other types of kernel objects, allowing
for enforcing the memory access control.

Except for the OOB-related security properties, all proper-
ties are the same for these two pointer types. The difference
in OOB security properties is just in how they are ensured:
the OOB check for the inclusive type is a range check, but for
the exclusive type, it is a whitelist based on the kernel object.

5.2 Handling Inclusive Pointer Types

In eBPF, all the inclusive type pointers have the same security
checks, thus they have a unified parent type mem_type. How-
ever, security checks are only performed by using the more
exact inclusive types due to only raw data in BPF objects
can be accessed and stored in fragments. This fragmented
accessible memory poses challenges to the EL-based mem-
ory isolation. A feasible approach is to organize accessible
segments into a contiguous BPF memory space.

5.2.1 BPF Memory Compartmentalization

In this section, we introduce how HIVE compartmentalizes
all BPF objects into the BPF space.

Stack separation. BPF programs use a stack, which is on top
of the kernel stack. The stack frames of BPF functions are
only accessed through the BPF stack frame pointer register,
which is mapped to a physical general-purpose register (the
%x25 on AArch64), and its derived pointers. The JIT com-
piler will also instrument code to store/restore (using the %sp
register) return addresses and callee-saved registers during
the BPF function call/return. In HIVE, the BPF stack frames
are separated from the kernel stack by isolating them to a
new stack. At load time, HIVE allocates a dedicated memory
region as the BPF stack (for each CPU core) in the BPF space,
and adjusts the %x25 to point to it. As such, helper functions
can be called freely without stack switching and still use the
kernel stack. To prevent attackers from causing the kernel
stack to overflow through continuous function calls, HIVE
also places an unmapped guard page at the lowest position
of each kernel stack. HIVE also instruments instructions to
manage BPF stack frames (detailed in §C.1).

Maps separation. Maps are composed of metadata and val-
ues that are stored next to each other. The metadata usually
contains the type, data pointers, and function pointers, which
must be separated from values. To do this, HIVE slightly ad-
justs the structure of the map, separates all the values from
the maps, maps them into the BPF space with the allowed
permission (e.g., the read-only), and leaves a pointer pointing
to them (detailed in §C.2). This change is transparent to the
BPF program because it only uses the address of the value,
and the parsing on the maps is done by helper functions.

Packets separation. Packets, which are buffers pointed to
by the data field in the context, are allocated when network
packets arrive. Simply mapping them into the BPF space
could bring high-performance overhead due to the packet

168 33rd USENIX Security Symposium USENIX Association

freeing will cause the mapping canceling, which incurs the
high-cost TLB shootdown. To this end, HIVE allocates the
packet from a dedicated memory pool, which is implemented
as a kmem_cache in the slab. It will be double-mapped into
the BPF space with allowed access permissions based on the
BPF program’s type, such as read-only and writable. This
eliminates the need for high-cost page table manipulation.

Since a BPF program processes all packets sequentially (ei-
ther individually or in groups), it is secure allowing access to
all packets at the same time. Furthermore, for parallel packet
processing, HIVE prevents potential concurrent attacks by iso-
lating different queues. Specifically, BPF programs can utilize
multi-queue network interfaces for parallel execution, these
interfaces have multiple independent receive/send queues,
and each queue will be handled in parallel on a different CPU
core. HIVE associates each queue with specific kmem_cache
and maps them into different BPF spaces of a BPF program
respectively. When the BPF program processes the packets in
a queue, HIVE will set the corresponding BPF space for the
BPF program, so that the BPF program can only see all the
packets in one queue at the same time.

5.2.2 BPF Memory Isolation (SG-1)

Isolation of direct memory accesses. HIVE separates all
accessible BPF objects and maps them in the BPF space.
Therefore, containing type pointers no longer requires object-
level range checking, they only need to check whether the
access target is in BPF space through the EL-based memory
isolation mechanism. However, this method leads to a new
problem: user programs and BPF programs can access each
other’s memory. To address this problem, HIVE leverages
E0PD to enable/disable unprivileged access to user space and
BPF space. Specifically, when the kernel calls a BPF pro-
gram, HIVE will clear E0PD1 to enable the access to the BPF
space, and set E0PD0 to disable the access to user space; when
the kernel returns to the user program, HIVE checks if any
BPF program has executed, if it has, HIVE reverse the E0PD
settings. This design can avoid unnecessary E0PD settings.

Sanitization of helper’s parameters. The inclusive type
pointers can be passed to helpers through parameters. The
full-path analysis performs the range/type checking for the pa-
rameters that HIVE should do the same. Besides, as mentioned
in §4.2, the inclusive type pointers also need to be converted to
point to the shadow BPF space when passed to helpers. Bene-
fiting from the design of BPF space memory layout/alignment,
the range/type checking, and the pointer conversion can be
performed through one logical operation instruction. HIVE
instruments an orr xn, 0xffffff0000000000 instruction
for each function parameter of the inclusive type pointer be-
fore calling helpers. In this way, the kernel can access the BPF
space in a disguised way while the pointer is also checked.
Note that an attacker may set a pointer point to the boundary

of the BPF space to induce helpers to access memory out-
side the BPF shadow space. But it is safe that the helper will
overflow access to BPF space and trigger permission fault.

5.2.3 Information Leakage Prevention (SG-2)

Independent address space (SG-2.1). HIVE creates an in-
dependent address space for each BPF program and ensures
separated BPF objects are randomly mapped into it. All the
inclusive type pointers are relocated to point to this space.
Thus, attackers cannot infer any kernel layout information
from the inclusive type pointers that can be safely leaked.

Use after initialization (SG-2.2). HIVE initializes all mem-
ory allocated in the BPF space at load time. Each time the
BPF program is executed, the BPF stack of the current core
will be reused without re-initialization. If an uninitialized read
of the BPF stack occurs, it will still access the content of the
last execution and will not cause memory leaks in the kernel.

Convert Spectre to Meltdown (SG-2.3). The key to Spectre
v1 and v4 attacks [21] is to transiently access the sensitive
data and use its value to encode and access a legal memory
address that could cause the change of the cache state. As men-
tioned in §4.2, BPF programs use LSU instructions in HIVE,
thus accessing the kernel space (speculatively) will cause the
permission fault. A hardware patch named CSV3 [5] is added
to mitigate the Meltdown attack [27], which forbids the data
loaded under speculation with a permission fault to be used to
form an address to be used by other instructions in the spec-
ulative sequence. Therefore, thanks to the transformation of
LSU instructions and the CSV3 patch, Spectre attacks can be
blocked from the hardware level without any software effort.

5.3 Handling Exclusive Pointer Types

Since the exclusive type pointers cannot be modified and
their de-referenced points are exclusive, we propose to utilize
the PA to ensure the pointers’ integrity, and the regular LS
(load/store) instruction to provide the ability to access kernel
objects. However, the PA+LS method still faces three chal-
lenges: 1) how to design a secure modifier to prevent pointer
substitution attacks; 2) how to ensure the authentication op-
erations are done at all points of use; 3) how to address the
problem of information leakage. In the following subsections,
we will introduce how HIVE addresses the above challenges.

5.3.1 The Design of Modifier and the Sign

PA suffers from pointer substitution attacks — pointers signed
with the same modifier can be replaced with each other and
pass the authentication [24, 25]. To avoid pointers being re-
placed by other type pointers, pointers from other BPFs, or
pointers from historical executions, we must ensure that the
modifier is different for each exclusive type and historically

USENIX Association 33rd USENIX Security Symposium 169

mov x5, x0 ##not corrupt x0
orr x6, x24, ctx_type
autda x5, x6
ldr w1, x5, 8 ## regular LS

/* 1. filter the exception */
if exception instr’s opcode is not ldtr then
goto label_illegal;

endif
/* 2. find the type and do security check */
foreach obj_type of exclusive_types do
if auth(%x0, %x24 ∧ obj_type) pass then

/* perform the security check */
if access(base:%x5, offset:8, size:4) \
is in whitelist(program_type, obj_type);
then patch the auth code; return;

else goto label_illegal;
endif

endif
end foreach
/* 3. uninstall the bpf program */
label_illegal: uninstall_bpf(this_program);

bpf program
… …
/* R1 stores ctx_ptr

load sk_buff.len */
R2 = *(u32*)(R1 + 8)
… …

/* 1.sign context pointer at
the program’s entry */

/* 1.1 load exe_cnt to x24 */
mov x5, 8
mov x6, &exe_cnt
ldadd x5, x24, x6
/* 1.2 create the modifier */
orr x6, x24, ctx_type
/* 1.3 sign the ctx_ptr */
pacda x0, x6
… …
/* 2. load sk_buff.len */
/* 2.1 placeholder instr */
nop
nop
nop
/* 2.2 load sk_buff.len */
ldtr w1, x0, 8 ## LSU

native code

int len

context obj:
struct sk_buff

... ...

... ...

... ...

JIT

HIVE exception handler

generated code

Patch

❹

❶

❷

❸

❺

❻

Callee-saved
X24: modifier
x28:
X23: context_ptr

Caller-saved (table base)
X15:
X14:
X13:

Others (table base)
X18、x17、x16、x8

Temp:
X5: temp
X6: temp

Fig. 3: An example of the exclusive pointer type solution.

unique to each BPF program. Pointers of the same type gen-
erated during BPF program execution are safe to replace each
other because the security checks are only type-related.

In HIVE, the modifier is designed to be the following form:
EXE_CNT ∨ PTR_TYPE, where EXE_CNT is a 64-bit execution
counter for all BPF programs. The counter only uses the
upper 61 bits, which starts from 0 and increases by 8 each
time, ensuring that the lowest 3 bits are 0. PTR_TYPE is a 3-bit
constant value that represents the exact type (8 types in all).
Since EXE_CNT is determined each time the BPF program
is executed, HIVE uses the unused %x24 register in eBPF
to store its value at the program’s entry. When signing or
authenticating an exclusive type pointer, the OR result of the
%x24 and the type is calculated as the modifier (➊ in Fig. 3).
Two unused registers %x5 and %x6 in eBPF are used as the
temporal registers for HIVE to conduct such calculation.

For most cases, the pacda instruction is instrumented after
the pointer generation point, such as relocation at load time,
helper returns, and program’s arguments. For the dynamically
loaded pointers from kernel objects, HIVE instruments the
pacda instruction right after the load operation at runtime be-
cause it can only be identified at runtime (detailed in §5.3.2).

5.3.2 The Authentication and Security Checks (SG-1)

The exclusive type pointers can be de-referenced directly and
passed into helper functions. For each helper call, HIVE in-
struments an autda instruction to authenticate the parameter
which is the exclusive type pointer. If authentication passes,
it means the pointer has not been modified and matches the
parameter type. However, it is difficult for direct memory

1: nop ## placeholder instr
2: nop ## placeholder instr
3: ldtr w1, x0, 8 ## load sk_buff.len

1: mov x5, x0 ## not corrupt x0
2: orr x6, x24, ctx_type ## create the modifier
3: autda x5, x6 ## authentication
1: and x5, x0, 0xffff ## mask table index
2: ldr x5, x23, x5 ## load pointer from the table
3: ldr w1, x5, 8 ## load sk_buff.len using pointer

Patch

int len

struct sk_buff

... ...

... ... descriptor table
(65,536 entries)

&sk_buff
... ...

x23

The unused x23 in BPF is used to point to the table.

Fig. 4: The code de-referencing the exclusive type pointers.

accesses because HIVE does not know where to instrument.

Exception-based point-of-use probing. To address this, we
observed that de-referencing a signed exclusive type pointer
via the LSU instruction will trigger the hardware exceptions
in HIVE (will be discussed later), so we can know the use
points of the exclusive type pointers lazily by catching and
filtering such exceptions (➋➌ in Fig. 3). It is feasible that once
an instruction accesses one type of kernel object, it can no
longer access other types of objects. Note that since the PAC
is stored in the highest 16 bits of a pointer, and the highest 16
bits of the effective addresses in the kernel and BPF spaces
are both 1, the sign operation will not change the pointer, that
points to the kernel object originally, to point to the BPF space.
The signed pointer may point to the user/kernel space or the
memory holes, accessing them by using the LSU instructions
will trigger the permission fault or the translation fault.

The authentication code generation. A BPF program usu-
ally has different exclusive types of pointers, and HIVE needs
to know which type of de-referenced pointer triggers the ex-
ception. To this end, HIVE tries to use all types to authenti-
cate the pointer when handling the exception (➍). Only when
the types match can it pass the authentication. If no type is
matched, it means that the pointer may be corrupted and HIVE
will uninstall the BPF program. If a type is matched, HIVE
will check the whitelist based on the range of access (from
the instruction operand), the program type, and the exclusive
type (➎). If the check passes, HIVE will generate a regular LS
instruction along with the authentication code and patch the
original code (➏). Note that the patched code cannot corrupt
the signed pointer due to it may be used to probe subsequent
use points. To achieve in-place patching, HIVE inserts nop
instructions during the code jitting before memory access
instructions with the constant offset that is in the whitelist.

5.3.3 The Design of Type Descriptor Table (SG-2)

All kernel objects accessed in BPF programs are initialized
by the kernel (that ensures SG-2.2). But, the PA+LS method
cannot ensure the confidentiality of pointers (SG-2.1), and
the PA feature is vulnerable to Spectre attacks [33] (SG-2.3).
Therefore, we need another method that is compatible with
the PA+LS method to solve these problems. Inspired by the file
descriptor mechanism, we propose a type descriptor based
method to hide the real pointers and enforce their usage.

Specifically, HIVE transforms the pointer to a descriptor

170 33rd USENIX Security Symposium USENIX Association

which indexes a descriptor table that stores the actual pointers
in it. HIVE sets up a table with 65,536 (216) entries for each
exclusive type. The base address of each table will be stored in
an unused register in eBPF. Pointers to different objects of the
same type are stored in different entries, and unused entries
are filled with invalid addresses. Fig. 4 shows the patched
code based on the descriptor table, which is used to replace
the patched code based on authentication (➏ in Fig. 3). It
performs a mask operation on the descriptor to ensure that the
access to the descriptor table will not go out of bounds (line 1),
then uses the descriptor to index the table of the corresponding
type to obtain the actual pointer (line 2), and finally uses the
regular LS instruction to access the kernel object (line 3).
For helper calls, HIVE inserts the same instructions at lines
1-2 to recover the pointer for each exclusive type pointer
parameter and store the original value in the kernel stack;
when the helper returns, HIVE restores the original value of
the parameter to prevent the pointer leakage. The design of
the descriptor table ensures pointers’ confidentiality (SG-2.1)
and the mask operation prevents Spectre attacks (SG-2.3).

The authentication-based point-of-use probing method re-
mains the same, we only replace the authentication-based
patched code with the table look-up code. The newly patched
code could also provide the same security guarantees on SG-1
— it forces the use of the table corresponding to the target type
to ensure type matching and the addresses of target objects
obtained from the table are either legal or invalid.

5.4 Secure and Passive DoS Prevention (SG-3)

BPF program may bring two types of DoS: trigger an excep-
tion, and execute without terminating. For the former case,
HIVE passively captures all triggered exceptions, rolls back
the state to the entry point of the program, and unloads it;
For the latter case, HIVE checks the BPF execution time each
time there is an interrupt coming and rolls back the state when
the executed instructions reach a certain threshold.

Exceptions capturing. The BPF program changes the mem-
ory state in three folds: BPF data in the BPF space, BPF
management structures in the kernel, and some kernel objects.
Changes to the first two types of data do not affect the state
of the kernel. The fields modified by the third type of ker-
nel object are just raw data for the kernel and do not affect
the execution of the kernel. Therefore, they can be cleared
by uninstalling the BPF program simply. HIVE only needs
to store all BPF-accessible registers at the entry of the BPF
program and restore them during the roll-back.

Execution timing. HIVE maintains a timetable for each exe-
cuting BPF program to track their execution time. When an
interrupt occurs, HIVE checks the duration of the currently ex-
ecuting BPF program and either uninstalls it if it exceeds the
configured time limit or updates the timetable if it is within
the limit. The advantage of this method is that it accurately ac-

1

bpf_syscall

BPF
prog

eBPF verifier
pkt slab

BPF space
constructor

helper-call
patcher

HIVE
handler

kernel
CFG
check

full-path
analysis

②Pre-
Process

④BPF JIT
compiler

context-
switch

copy-to/
from-user

eBPF procedure HIVE procedure interaction w/ kernel and HIVE

⑤helper
functions

① maps
management

③ HIVE
module

native code

int-ret

HIVE

Fig. 5: The workflow of HIVE.

counts for the execution time of the BPF program, including
the helper functions, which could avoid DoS problems caused
by underestimating execution time in the verification [18].

6 System Implementation

The prototype of HIVE (shown in Fig. 5) is implemented on
Linux-v6.6.1/AArch64. The core of HIVE is a kernel module
(③) to manage the BPF space, handle helper calls, and manage
exceptions. HIVE modifies the eBPF subsystem and the core
kernel. For the eBPF subsystem, HIVE modifies the map
management (①) to achieve maps separation, the verifier (②)
to skip the full-path analysis, the JIT compiler (④) to perform
the code instrumentation and transformation, and rewrites 11
helper functions (⑤); for the core kernel, HIVE only modifies
43 LoC, including creating the packet slab, configuring the
E0PD, and timing the execution of BPF programs.

Patch detail. During page fault handling, the patching handler
is invoked with the fault type and address. To avoid concurrent
execution, the handler’s execution is protected by a mutex lock.
Upon acquiring the lock, it verifies the LSU form of the patch
point. If passed, an IPI is sent to halt other cores’ execution,
forcing them to execute a waiting function, which disables in-
terrupts and repeatedly checks a patching flag. Subsequently,
the handler performs the code patching by changing the code
page to writable, carrying out the instruction rewriting, flush-
ing the instruction cache, and changing the permission back.
Finally, the handler sets the patching flag to resume execution
on other cores and returns to re-execute at the fault location.

Prevent reading of uninitialized registers. For the 11 reg-
isters used for eBPF, the full-path analysis forbids the BPF
program to read them before they are initialized. To this end,
HIVE clears all possible uninitialized registers when the BPF
program interacts with the kernel. Specifically, HIVE zeros
all context-irrelevant registers at the program entry, and clears
all caller-saved registers during the helper function returns.

Register uses of HIVE. On AArch64, 12 registers are unused
in eBPF (%x5-6, %x8, %x13-18, %x23-24, %x28) and can be
used in HIVE. HIVE uses 2 registers (%x5-6) as temporary
registers, 6 registers (%x13-18) that store the base of descrip-
tor tables (for a BPF program type, up to 6 exclusive types can
be used simultaneously), 2 registers that store the frequently
used pointers (%x23 for the context, %x24 for the EXE_CNT).
When calling helper functions, HIVE does not need to store

USENIX Association 33rd USENIX Security Symposium 171

Table 3: Security equivalence analysis between HIVE and the verifier in the full-path analysis.
Line Security properties How HIVE ensures the corresponding security property Equal

1 BPF object OOB I/II
HIVE compartmentalizes all accessible areas of BPF objects into the BPF space, thus the object-granular OOB is relaxed to

✔space-granular OOB securely. The use of EL-based memory isolation prevents BPF programs from the BPF space OOB.

2 kernel object OOB I/II
Accesses to kernel objects are converted to use the descriptor table, which only contains accessible kernel objects. Besides,

✔whether the accessed fields of accessible objects are legal is verified during the probe process.
3 permission violation I The compartmentalized maps’ values and the packet slabs are mapped with the allowed permission into the BPF space. ✔

4 permission violation II The first access to a kernel object field will be captured and checked for access permission in the probe process. ✔

5
pointer leakage I/II, The independent BPF space eliminates the kernel layout information in inclusive type pointers that can be safely leaked.

✔offset leakage For exclusive type pointers, the type descriptors hide the real pointers and only indicate the use order of kernel objects.

6 type mismatch

HIVE matches the pointer type parameters at helpers call. For inclusive pointer types, HIVE uses the OR operation to ensure

✔

the pointer points to the BPF space to achieve type matching. This is because HIVE compartmentalizes all BPF objects into
BPF space, thus these types can be safely cast to their unified parent type mem_type, which is equivalent to the BPF space;
For exclusive pointer types, HIVE enforces to use of the corresponding type descriptor table during the helper call to ensure
type matching; For scalar type, HIVE performs nothing because casting to a scalar from a pointer is safe since pointers have
no kernel layout information anymore. Note the parameter type matching when calling between BPF functions is unneeded
because it serves the state tracking in the intra-procedure analysis of the verifier and is not required by HIVE.

7 uninitialized reg read
The verifier checks the registers are initialized before use to prevent kernel registers leakage. HIVE provides same guarantee

✔by clearing all BPF-used registers at the program’s entry and all non-caller-saved registers during the helper return.
8 uninitialized stk rd I/II BPF stack is decoupled with kernel stack and is initialized at program loading time. ✔

9
Spectre V1 filtering, The LSU instructions cannot be utilized to access the kernel speculatively due to the CSV3 patch. The LS instructions used

✔Spectre V1 masking, in HIVE are prevented from speculatively accessing kernel memory outside type descriptor tables and allowable kernel
Spectre V4 objects by using dedicated registers (to store the table base address) and masking the descriptor (to avoid the table OOB).

10 kernel stack crash I
BPF program may crash the kernel stack by nesting function calls, HIVE maps an unmapped guard page at the lowest

✔position of kernel stack to avoid overflow via continuously pushing registers and return addresses on the kernel stack.

11 kernel stack crash II
BPF program may crash the kernel stack by allocating a huge frame. Since HIVE separates the BPF stack from the kernel

✔stack, the frame size has no impact on the kernel stack—the size of the content HIVE pushes on the kernel stack is fixed.
12 timeout, deadlock HIVE times the execution of each BPF program, and it uninstalls the program if its execution exceeds the configured time. ✔

%x23 and %x24 due to they are callee-saved registers, %x13-18
will be protected by storing them in the kernel stack.

Inter-BPF isolation. Similar to the user space, the BPF space
only holds one BPF program’s data. HIVE switches BPF
space by switching the kernel page table (setting TTBR1_EL1)
for different BPF programs. In detail, HIVE allocates an ASID
and creates a kernel page table for each BPF program which
shares kernel space but has independent (shadow) BPF space.
To avoid unnecessary switching, HIVE merges BPF programs
with the same type and capability from the same user into one
BPF space and only switches page tables when different BPF
programs switch executions.

Additional helper functions handling. The verifier main-
tains a list, which is reused by HIVE, to ensure the BPF pro-
gram can only call the allowable helper functions based on
the program type. Among all 209 helper functions in Linux-
v6.6.1, 198 helpers can be handled by the aforementioned
methods to ensure argument safety. 11 helpers are discussed
separately because the full-path analysis performs additional
functional checks, and removing such analysis in HIVE could
affect the functionality. Take the bpf_spin_lock() as the
example, the full-path analysis needs to ensure there is no
spinlock acquired in the current program state. HIVE rewrite
such helpers by adding additional record-and-check logic in
them (detailed in Appendix D).

Security property customization. BPF programs are spec-
ified with capabilities, and the verifier only ensures part of
the security properties based on the specified capabilities.

There are 4 types of capabilities in eBPF, i.e., CAP_BPF,
CAP_NET_ADMIN, CAP_PERFMON, and CAP_SYS_ADMIN. For
example, the verifier ensures all security properties for pro-
grams with only CAP_BPF, while do not consider the pointer
leakage and Spectre for the BPF programs with CAP_PERFMON
or CAP_SYS_ADMIN. Similarly, the security properties guaran-
teed by HIVE can also be customized. For example, HIVE can
use the authentication-based method instead of the descriptor
table method (§5.3.3) on the patched code for that capability
combination. Now, HIVE supports all security properties by
default, we leave the customization as future work.

7 Security Evaluation

In this section, we not only analyze the security of HIVE but
also use real attacks to evaluate its security effectiveness.

7.1 Security Analysis of HIVE

HIVE brings two types of attacks: attacks on the security goals
of the full-path analysis, and attacks on HIVE framework.

Security equivalence analysis. In §5, we introduced how
HIVE achieves the security goals. Here we analyze how HIVE
ensures the security properties of the full-path analysis at the
implementation level. Table 3 shows the point-to-point anal-
ysis, and the results illustrate that HIVE can achieve equiv-
alent security. In sum, HIVE compartmentalizes and maps
BPF objects with allowed permission into the isolated and

172 33rd USENIX Security Symposium USENIX Association

Table 4: Real attacks against the security properties.
CVE ID Root Cause Target Property Status1

2020-27194 Incorrect bound of OR insn. dead loop ●

2021-3490 Incorrect 32-bit bound of bitwise. BPF obj OOB ●

2021-31440 Incorrect bounds of 32-64 convert. pointer leakage ●

2022-23222 Mischeck of *_OR_NULL Pointer. kernel obj OOB ●

2020-8835 Incorrect 32-bit Bound. kernel stack crash ●

2021-4204 Improper input validation. offset leakage ●

2023-2163 Incorrect branch pruning. type mismatch ●

2021-34866 Lack map pointer validation. permission violation ●

2021-33624 Mispredicted branch speculation. Spectre V1 ❍

1 ●: the attack is mitigated by HIVE, ❍: CVE is confirmed but lacks exploit.

address-independent BPF space to ensure BPF object (point-
ers) related properties (lines 1/3/5/6/9/10); HIVE proposes
the exception-based probing and the type-based descriptor
table mechanisms to ensure kernel object (pointers) related
properties (lines 2/4/5/6/9); HIVE initializes the BPF memory
and clears the BPF-used registers during the helper function
calls to ensure uninitialized read related properties (lines 7/8);
HIVE captures all exceptions and timing the execution time
to ensure the DoS-related properties (lines 11/12).

Particular attacks against HIVE. We then discuss the possi-
ble attacks on HIVE architecture as follows:

• Probe abusing attacks: The probing mechanism allows
kernel object access by transforming the LSU to the LS
dynamically. Attackers may abuse it to access arbitrary
kernel memory or trigger DoS. However, such an attack
cannot be conducted: 1) HIVE verifies the legality of ker-
nel objects at the first access time. The patched code forces
access to legal objects and fields; 2) Although the probe
triggers an exception, consuming more CPU time, the
kernel will not be DoSed because HIVE also times the
execution of the program, which will be uninstalled once
timeout. Based on our experiments on a large number of
BPF programs (§8), the kernel object access is concen-
trated (the probe count is in single digits), and legitimate
BPF programs will not be unloaded due to the probe.

• Descriptor replacement attack: In HIVE, the authentica-
tion is only performed on the first access of the descriptor,
which may allow attackers to corrupt the descriptor at
subsequent accesses. However, HIVE ensures that each
descriptor access point will only use a fixed and same type
of descriptor table and the descriptor will be masked to
ensure that it does not overflow the table. Therefore, even
if the descriptor is modified, the attacker cannot access the
kernel object (field) that is not allowed.

• Attacks on PA: Attackers may substitute exclusive type
pointers that are signed with the same modifier [24, 25].
Due to the historical unique modifier design in HIVE, such
an attack can only be conducted by massively executing
BPF programs to overflow the 61-bit EXE_CNT. However,
even the simplest BPF program with only prolog/epilog

1: /* precondition, R: R1 = 1, V: R1 lower
2: 32-bit = 1, upper 32-bit unknown */
3: R2 &= R1 // trigger bug, R: R1=1, V: R1=0
4: R2 = <OOB off> // R: R2 = off, V: R2 = off
5: R2 *= R1 // R: R2 = off, V: R2 = 0
6: ptr += R2
7: *ptr = 0xbad // OOB access

1: /* precondition, R1 stores ctx_ptr */
2: // R0: ctx_ptr, ctx_id in Hive
3: R0 = R1
4: if (R1->len > 4)
5: // R0: sock_ptr, sock_id in Hive
6: R0 = bpf_sk_fullsock(…)
7: R2 = *(u32*)(R0 + 0x4) // id replace

(a) Code snippet of CVE-2021-3490 (b) Descriptor id replacement attack

Fig. 6: Code snippet of the different attacks. For (a), R denotes
runtime value. V denotes verifier-deduced values.

costs 129 cycles at least, 261 executions would cost
almost 3,000 years (129 ∗ 261/3.2Ghz/3600/24/365 =
2,947.56), making this attack infeasible.

• Hardware configuration tampering: Attackers may di-
rectly disable LSU or E0PD through hardware configura-
tions. For example, one may disable LSU by enabling the
UAO bit in the PSTATE register or disable E0PD by setting
the TCR_EL1 register. However, both registers can only
be modified via privileged instructions, which cannot be
generated by the eBPF JIT compiler. Since the jitted code
is protected by the DEP mechanism, the BPF program
cannot inject such instructions via code self-modification.

7.2 Real Attacks against HIVE

To evaluate the security of HIVE, we investigated 9 CVEs
(shown in Table 4) in the verifier and conducted attacks
against specific security properties. To better explain how
HIVE mitigates these CVEs, we elaborate on the exploit paths
for CVE-2021-3490, which is a vulnerability due to the in-
correct 32-bit boundary deduction for bitwise operations. As
shown in Fig. 6 (a), it first constructs a register with the lower
32-bit value is 1 and the upper bit 32-bit value unknown, while
the runtime value is 1. Then it uses an AND operation to trigger
the bug, making the verifier mistakenly think R1 is 0 while the
runtime value is 1 (line 3). After the multiple and plus opera-
tion, the ptr is OOB, while the verifier still thinks it points to
the beginning. The confused value allows it to bypass the ver-
ification for an illegal store (line 7). After HIVE transformed
the memory access instruction into LSU, the store triggered
a permission fault. Then, HIVE caught the fault and tried to
authenticate the pointer. Since the pointer was forged, it failed
authentication, leading to program uninstallation.

As for the Spectre attack of CVE-2021-33624, the veri-
fier’s Spectre mitigation can be bypassed because the verifier
mispredicts the impossible branch. While its PoC was imple-
mented on an x86_64 machine, we were unable to perform it
on the AArch64 architecture. For other attacks, experiments
showed that HIVE can successfully mitigate them.

To evaluate attacks against the HIVE framework, we wrote
a BPF program to conduct a descriptor replacement attack
(as mentioned before). Fig. 6 (b) gives the PoC that sets R0
as different exclusive type pointers on different paths, which
is illegal. Suppose on the first execution the R0 is ctx_ptr,

USENIX Association 33rd USENIX Security Symposium 173

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-2163
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34866
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33624

Table 5: Latency (in cycles) of basic operations in HIVE.
1st Set (Absolute Value) 2nd Set (Absolute Value)

Ops ldr ldtr str sttr pacda autda probing
Cycles 0.34 0.34 0.50 0.50 7.01 7.01 59.9K

3rd Set (Difference Value) 4th Set (Absolute Value)
Ops 1-in 1-ex 1-in & 1-ex 2-in & 2-ex E0PD PT REG_INIT

Cycles 8.60 8.62 8.72 8.82 48.12 30.06 11.03

after the probe, the jitted code for line 7 is authenticated
and rewritten into context-type-related descriptor code, which
loads the context pointer from its corresponding table and
performs the load operation. For the subsequent execution, no
matter which path it takes, it always performed the context
load operation, making the replacement attack ineffective.

8 Evaluation

Experiments setup. This section focuses on performance
and complexity evaluation. The experiments are conducted
on Linux v6.6.1, which runs on a Mac mini with an 8-core
M1 CPU with PA support and 16 GB RAM. The processor
is equipped with 4 efficiency cores and 4 performance cores,
and all experiments were conducted on performance cores.

8.1 Performance Evaluation
8.1.1 Micro-benchmark

HIVE makes four sets of transformations on a program: S1:
handling of inclusive pointer types; S2: handling of exclusive
pointer types; S3: handling of helper function parameters; S4:
preparing the environment at the program’s entry. Therefore,
we evaluated their latency separately (shown in Table 5).

For S1, we measured the latency of LSU instructions and
found they are as fast as regular instructions (shown in column
1st Set), which implies a high isolation efficiency.

For S2, we measured the instructions that related to the
sign and the authentication operations in PA and found they
are relatively efficient (shown in column 2nd Set). We also
evaluated the latency of one point-of-use probing and found
that the overhead of probing a single kernel object access
point is extremely high. But this is not a problem, because
the subsequent experiments show that all probings can be
completed in the first few executions of the BPF program.

For S3, we measured the instructions that handle helper
parameters. We use an empty helper with different parameters
(column 3rd Set) to calculate the latency difference of a call
with and w/o HIVE. The 1-in/ex represents one parameter
of inclusive/exclusive pointer type. The latency is relatively
small and does not depend much on the number of parameters.
The reason is that the handling between parameters has no
data dependence, thus processors can process it in parallel.

For S4, we measured the latency of switching E0PD (set-
ting TCR_EL1), switching page table (setting TTBR1_EL1), and

Table 6: lmbench latency (in µs) and HIVE slowdown.

Config
null null

stat
slct sig fork Mmap Page

call I/O TCP hndl proc Latency Fault

Native 0.13 0.15 0.27 2.21 0.72 112.49 24.0K 0.22
HIVE 0.15 0.18 0.31 2.34 0.81 125.12 24.8K 0.23

Slowdown(%) 23.2 20.9 14.5 5.9 12.4 11.2 3.7 3.8

dedicated registers initialization. As a comparison, we also
evaluated the SVC instruction for syscall, whose latency is
145.37 cycles. We can see that these three operations are rela-
tively efficient. Since the domain-switching affects the whole
system state, we also evaluated its impact on the kernel oper-
ations. We loaded an empty BPF program to hook all syscalls
and ran the lmbench [30]. The results (in Table 6) show HIVE
incurs significant overhead on null call and null I/O, which
only involve very little kernel operation. As a result, syscalls
with simpler operations tend to have higher overheads.

8.1.2 Real-world Applications

To evaluate the overhead on real-world applications, we chose
to load the BPF program in advance and then ran the applica-
tions to trigger the execution of the BPF program.

Workload. We chose two databases (Redis-7.2.4 and
Memcached-1.6.21) and two web servers (Nginx-1.24.0 and
Apache-2.4.59) as user applications. The experiments were
conducted in the local environment to eliminate the network
latency and evaluated with three configurations: without run-
ning BPF programs, running BPF programs with vanilla eBPF,
and running BPF programs with HIVE-equipped eBPF. Web
servers are evaluated with ApacheBench which sent a total
of 100K requests with different request file sizes varied from
32KB to 256KB. Databases are evaluated with the memtier
which sent 100K requests with different key sizes varied from
32B to 256B.

BPF program selection. The BCC project [35] provides a
collection of BPF programs for profiling, performance analy-
sis, network analysis, and security. We chose 32 programs and
loaded them into the kernel by running their corresponding
scripts at the same time. The Tracee [4] application contains
129 BPF programs for syscall tracing, which are loaded to-
gether by running the Tracee executable file. These BPF pro-
grams cover the majority of contemporary BPF ecosystem us-
age scenarios and are also used by other related works [28,29].

Performance results. We measured the throughput of the
applications to evaluate the performance overhead brought by
BPF programs. Table 7 gives the experimental results. The
baseline column shows the throughput without BPF programs.
The eBPF-Tracee/BCC and HIVE-Tracee/BCC columns show
the throughput under vanilla eBPF and HIVE, respectively.
The high overheads indicate that BPF programs are triggered

174 33rd USENIX Security Symposium USENIX Association

https://redis.io/
https://memcached.org/
https://www.nginx.com/
https://httpd.apache.org/
https:// httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/ RedisLabs/memtier_benchmark

Table 7: The experimental results of real-world applications when running BPF programs with and w/o HIVE.

App. config
baseline eBPF-Tracee eBPF-BCC HIVE-Tracee HIVE-BCC HIVE/eBPF-O/H4 exe_cnt/req5

THRU1 %CPU2 THRU1 O/H3 %CPU2 THRU1 O/H3 %CPU2 THRU1 O/H3 %CPU2 THRU1 O/H3 %CPU2 Tracee BCC Tracee BCC

Apache

32KB 18.50 98.6 10.48 76.6 98.4 6.17 199.9 99.1 10.11 82.9 98.6 6.03 206.9 99.1 3.48 2.28 555.1 568.8
64KB 16.17 98.9 8.80 83.8 99.0 5.32 203.9 98.9 8.54 89.5 98.9 5.27 206.9 98.6 3.02 0.99 654.1 693.3

128KB 12.52 99.0 6.65 88.3 99.0 3.60 248.1 99.1 6.42 95.0 99.4 3.46 262.2 98.4 3.46 3.90 809.6 1028.6
256KB 7.70 99.6 4.41 74.6 98.5 2.01 282.2 98.1 4.26 80.8 98.5 2.01 282.8 98.1 3.44 0.16 1171.5 1749.5

Geomean - - - 80.6 - - 231.1 - - 86.9 - - 237.4 - 3.34 1.08 766.1 917.9

Nginx

32KB 27.25 99.0 13.94 95.5 99.3 5.52 393.8 100.0 13.41 103.3 99.3 5.42 402.7 99.9 3.82 1.77 481.3 701.7
64KB 23.96 99.0 12.34 94.1 99.5 4.48 434.8 99.9 11.86 102.1 99.8 4.40 444.8 99.8 3.95 1.83 584.6 823.9

128KB 19.95 99.4 9.07 119.9 99.5 3.30 505.3 99.6 8.67 130.0 99.5 3.25 513.1 99.8 4.37 1.28 761.9 704.6
256KB 12.98 93.4 5.85 121.8 99.5 2.26 474.9 98.0 5.58 132.5 99.0 2.19 492.5 99.5 4.60 2.97 1089.0 1912.4

Geomean - - - 107.1 - - 450.2 - - 116.1 - - 461.2 - 4.18 1.87 695.1 939.5

Memc-
ached

32B 1584.39 98.5 941.77 68.2 99.3 471.06 236.3 99.9 907.77 74.5 99.4 459.56 244.8 99.9 3.61 2.44 8595.7 13117.5
64B 1583.11 98.6 939.88 68.4 99.3 467.08 238.9 99.9 906.88 74.6 99.4 458.95 244.9 99.8 3.51 1.74 8602.8 13110.0

128B 1577.85 98.4 938.74 68.1 99.8 464.41 239.8 99.8 906.19 74.1 99.5 452.39 248.8 99.5 3.47 2.59 8647.7 13119.9
256B 1551.61 98.6 923.09 68.1 99.5 461.82 236.0 99.6 883.12 75.7 99.3 455.12 240.9 99.6 4.33 1.45 8685.5 13115.6

Geomean - - - 68.2 - - 237.7 - - 74.7 - - 244.8 - 3.71 2.00 8632.9 13115.8

Redis

32B 1342.35 88.7 861.30 55.9 90.0 698.98 92.0 66.7 836.33 60.5 81.0 689.23 94.8 67.9 2.90 1.39 975.9 1088.0
64B 1304.76 100.0 861.96 51.4 81.7 663.63 96.6 65.7 836.59 56.0 82.0 659.54 97.8 64.6 2.94 0.62 1028.6 1399.3

128B 1300.93 90.0 858.71 51.5 82.0 664.15 95.9 66.1 827.77 57.2 79.3 657.55 97.8 69.8 3.60 0.99 1020.9 1398.1
256B 1292.59 90.0 855.05 51.2 90.0 656.88 96.8 70.0 821.67 57.3 80.0 652.03 98.2 68.0 3.90 0.74 1015.0 1408.2

Geomean - - - 52.4 - - 95.3 - - 57.7 - - 97.2 - 3.31 0.89 1009.9 1315.8
1 The application’s throughput (thousands of requests per second). 2 The CPU utilization (%). 3 The overhead (%) of vanilla eBPF and HIVE compared to baseline which does not load BPF programs.
4 The overhead (%) of HIVE compared to the vanilla eBPF, which is calculated using the throughput directly. 5 The average number of times BPF programs are executed per request.

0%

50%

100%

150%

200%

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

ov
er

he
ad

(%
)

The CPU cycles consumed by BPF programs in vanilla eBPF

overhead = cycles_in_Hive/cycles_in_eBPF - 1
trendline (exponential distribution)

Fig. 7: HIVE’s overhead on the CPU time for BPF programs.

extensively. The HIVE/eBPF-OH column shows the overhead
of HIVE compared with vanilla eBPF. On average, HIVE de-
creases the throughput by up to 4.18% and 2.00% when run-
ning Tracee and BCC compared to vanilla eBPF, respectively.
It shows that HIVE is very efficient in practical applications
even for such an extreme scenario of eBPF (i.e., running a
huge number of BPF programs simultaneously).

To demonstrate that HIVE is fully evaluated, we also count
CPU utilization and BPF program execution frequency. The
results show that the CPU is saturated and the execution of
the BPF program has little impact on the CPU utilization,
except for Redis when running BCC. This is because Redis
is a single-thread server and each BCC program has its inde-
pendent process, causing process switching frequently. On
average, each request triggered 695.1 to 13115.8 executions
of BPF programs, showing that BPF programs were executed
on the critical kernel path during the experiment.

Statistic of probing times. Since each probing will trigger
an exception that consumes more CPU time, we performed
statistics on point-of-use probes. The results show that a single
probe consumes about 60k CPU time, and the number of
probes of each BPF program is less than 3 times, which
shows that the access to kernel objects is very concentrated.

Statistic the CPU time consumed by BPF programs. We
counted the execution time of the same execution of BPF pro-
grams with or w/o HIVE. The determination method for the

same execution under different configurations is the same BPF
program, program parameters, and helper calling sequence
at the same time. As Fig. 7 shows, when the BPF program’s
execution time is relatively short (e.g., consuming less than
2,000 CPU cycles in vanilla eBPF), HIVE can bring up to
165% overhead. With the BPF program executing longer, the
overhead decreased (e.g., less than 5% when vanilla eBPF
consumes over 6,000 CPU cycles). This is because most of the
overhead comes from the entry and exit code (e.g., domain-
switching), while the overhead from instrumentation in the
program’s body (e.g., register masking) is negligible.

8.2 Complexity Evaluation

As kernel developers claimed, the ultimate goal of eBPF is to
“replace kernel modules as the de-facto means of extending
the kernel”. Therefore, we used real-world kernel modules to
evaluate the complexity promotion of HIVE. We also used a
system call speed-up scenario to show the potential of HIVE.

8.2.1 Supporting Real-world Kernel Modules

We compiled 10 in-tree kernel modules, i.e., polynomial,
crc-ccitt, libarc4, prime_numbers, ghash, sha3,
xxhash, libchacha, libsha256, and des, from crypto
utilities and general libraries into BPF programs. And we
loaded them with the vanilla or HIVE-equipped eBPF. The
vanilla eBPF rejected all of them due to non-constant loops
(7), too many branches (1), or the computation of inclusive
type pointers (2). Since loops and branches are no longer
limited, and the calculation of inclusive type pointers is
allowed w/o leaking the kernel layout, HIVE can successfully
load and run these BPF programs. We obtained their output by
using a user program to read the maps, compared them with
that of the kernel modules, and confirmed the correctness.

USENIX Association 33rd USENIX Security Symposium 175

https://lwn.net/Articles/909095/
https://lwn.net/Articles/909095/

0

5000

10000

15000

0

100

200

2 4 8 16 32 64 128 256 512 1K 2K 4K

I/
O

 p
er

 S
ec

on
d

A
cc

el
er

at
io

n(
%

)

I/O Size (Byte) for In-memory File Access

baseline
HIVE
acceleration

Fig. 8: IOPS (I/O per second) of pread() (baseline) and
BPF program run in HIVE against different buffer sizes. The
percentage number is the acceleration ratio of HIVE.

8.2.2 Eliminating Context Switches in System Calls

User-kernel context switching often causes prominent over-
head. Existing literature eliminated such overhead by running
the syscall-intensive component in the kernel [22, 39]. The
eBPF was not adopted because complex code could not pass
the verification. However, this is no longer a problem in HIVE.

We followed the experiment used in UB [39] that accel-
erates the file I/O requests. The original program iteratively
reads a file to a userspace buffer via pread() syscall. We
compiled the syscall-intensive code into a BPF program and
loaded it into the kernel. The syscall invoking was trans-
formed into helper calling. The BPF program and the user
program communicated through maps and a dedicated syscall.
The vanilla eBPF rejected the BPF program due to the non-
constant loop whose iterations number is passed from the user
program, while HIVE can run it successfully. We gradually in-
creased the buffer size for each read and evaluated the acceler-
ation ratios. As Fig. 8 shows, HIVE accelerated syscall-based
I/O up to 181% when the I/O size is small. For larger I/O
sizes, IOPS acceleration drops due to the file accessing time
becoming the dominant factor rather than context-switching.

9 Discussion

BPF-infrastructure abusing attacks on HIVE. While our
threat model assumes a secure kernel, it is important to con-
sider the implications if the kernel has vulnerabilities. As a
representative work that abuses BPF infrastructure, EPF [19]
uses the BPF interpreter and JIT compiler for privilege escala-
tion attacks. In eBPF which is equipped with HIVE, EPF can
still conduct such attacks by modifying the interpreter and
the JIT compiler to inject gadgets. The defenses proposed by
EPF and HIVE provide complementary approaches to isolate
the kernel and BPF bidirectionally.

The Spectre V2 attack can exploit unprivileged eBPF to
inject gadgets into the kernel to access the kernel memory
speculatively [8]. HIVE transforms most of the memory ac-
cess instructions into LSU form which cannot be used to leak
the kernel data speculatively, but a very few regular memory
access instructions are still used to access the kernel objects
which could be abused by attackers: they could control the
table base register (%x23 in Fig. 4) to point to an arbitrary

location speculatively. However, it could be mitigated by
transforming the code to use the PC-relative addressing form
to enforce accessing the descriptor table.

Since the kernel has arbitrary access to the shadow BPF
space, this makes “return-to-bpf” attacks possible: the kernel
can de-reference a corrupted data pointer to access the pay-
load stored in the shadow BPF space. This attack is similar
to the classic return-to-user attack [20]. The difference is that
the payload of the latter is stored in user space, so we could
reuse the existing PAN-based protection mechanism against
return-to-user attacks in Linux. Specifically, HIVE disables
the shadow BPF space. Since the BPF space is set to be the
U-pages, the kernel code cannot access it due to the PAN
mechanism. Legal access of helpers can be through using the
LSU instructions or disabling PAN temporarily.

Applied to the X86 platform. Since X86 does not have LSU-
like instructions, we cannot de-privilege BPF memory ac-
cesses. The domain-based isolation hardware PKS [16] can
be used to isolate the BPF program and the kernel in different
domains and switch domains when accessing kernel objects or
calling helper functions. PA technology can be implemented
in software at low cost because HIVE only performs the sign
and auth operations when the exclusive type pointers are gen-
erated and used for the first time. Since X86 has a smaller
number of general-purpose registers (only 2 unused), while
HIVE needs to use up to 10 registers, we can use floating
point registers as “swap” registers.

10 Related Work

Enhancing eBPF security. Many works noticed the security
issue and tried to harden the execution environment of BPF
programs by using the Intel PKS [28] or SFI methods [26].
These works only considered memory safety and failed to
harden all security properties which also exposed vulnera-
bilities. Even for memory safety, their security is weak due
to the lack of complete BPF memory compartmentalization
and object-granular protection of kernel objects. For example,
they don’t separate the metadata in maps, and the memory
pages where the kernel objects are located are accessible.

Use of load/store unprivileged instructions. The LSU in-
structions have already been used for security [7, 10, 23, 38].
However, these works differ from HIVE in both scenario and
design. To protect the system on ARM Cortex-M processors,
Silhouette [38] and uXOM [23] transform regular load/store
instructions to LSU instructions to protect the shadow stack
and the code, respectively. uSFI [7] enforces the trusted code
to use LSU instructions to access all memory. To protect
the system on ARM Cortex-A processors (especially on
AArch64), ILDI [10] and PANIC [36] protect the sensitive
data in the kernel or user process by using PAN+LSU — the
data are placed into U-Pages, and regular load/store instruc-
tions at EL1 cannot access them due to the PAN feature. They

176 33rd USENIX Security Symposium USENIX Association

can only be accessed legally by using LSU instructions. Dif-
ferent from ILDI and PANIC, HIVE proposes to use LSU
instructions to de-privilege the memory accesses of malicious
BPF programs, thus protecting the trusted kernel. Especially,
HIVE uses the EL-based memory isolation not the PAN.

Use of pointer authentication. PA has been used to pro-
tect the pointers in vulnerable software. PACStack [24] and
PACTight [17] ensured the integrity of code pointers against
the control flow hijacking attacks. PARTS [25] protected all
code and data pointers. PTAuth [12] used PA to attach some
information to data pointers to ensure the temporal memory
safety of the heap. Differing from these works, HIVE uses PA
to protect the pointers against malicious BPF programs. The
biggest difference is that during the compilation phase, HIVE
does not know at which points to authenticate.

11 Conclusion

The use of a static verification method in eBPF limits the com-
plexity of BPF programs and brings security vulnerabilities.
This paper presents a security-equivalent isolated execution
environment on AArch64 for running BPF programs, which
ensures kernel security at runtime and allows complex BPF
programs to be loaded with low runtime overhead.

Acknowledgments

We thank the anonymous reviewers for their insightful sug-
gestions and comments. This research was supported by the
National Natural Science Foundation of China (NSFC) under
Grants 62272442, 61902374, U1736208, and the Innovation
Funding of ICT, CAS under Grant No.E161040.

References

[1] Alexei Starovoito. allow extended BPF programs access
skb fields. https://lwn.net/Articles/636647/, 2015.

[2] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In USENIX ATC, 2018.

[3] Andrew Werner. verifier escape with iteration helpers
(bpf_loop, ...). https://lore.kernel.org/bpf/CAEf4BzZ-
NGiUVw+yCRCkrPQbJAS4wMBsT3e=eYVMuintqKD
Kqg@mail.gmail.com/T/, 2023.

[4] Aqua. Aqua Tracee: Runtime eBPF threat detection en-
gine. https://www.aquasec.com/products/tracee/, 2024.

[5] Arm Limited. Whitepaper Cache Speculation Side-
channels, 2020.

[6] Arm Limited. Arm A-profile A64 Instruction Set Archi-
tecture, 2023.

[7] Zelalem Birhanu Aweke and Todd Austin. usfi: Ultra-
lightweight software fault isolation for iot-class devices.
In DATE, 2018.

[8] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
Cross-Privilege spectre-v2 attacks. In USENIX Security,
2022.

[9] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space. In
USENIX ATC, 2019.

[10] Yeongpil Cho, Donghyun Kwon, and Yunheung Paek.
Instruction-level data isolation for the kernel on arm. In
DAC, 2017.

[11] eBPF.io authors. Dynamically program the kernel for
efficient networking, observability, tracing, and security.
https://ebpf.io/, 2023.

[12] Reza Mirzazade farkhani, Mansour Ahmadi, and Long
Lu. PTAuth: Temporal memory safety via robust points-
to authentication. In USENIX Security, 2021.

[13] Luis Gerhorst, Benedict Herzog, Stefan Reif, Wolfgang
Schröder-Preikschat, and Timo Hönig. Anycall: Fast
and flexible system-call aggregation. In Proceedings of
the 11th Workshop on PLOS, 2021.

[14] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In PLDI,
2019.

[15] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu,
Qian Wang, Chao Shen, Zhi Wang, and Qi Li. Rapid-
patch: Firmware hotpatching for real-time embedded
devices. In USENIX Security, 2022.

[16] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper Manuals., 2023.

[17] Mohannad Ismail, Andrew Quach, Christopher Jeles-
nianski, Yeongjin Jang, and Changwoo Min. Tightly
seal your sensitive pointers with PACTight. In USENIX
Security, 2022.

[18] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams,
Michael V. Le, and Tianyin Xu. Kernel extension verifi-
cation is untenable. In Proceedings of the 19th Workshop
on HOTOS, 2023.

[19] Di Jin, Vaggelis Atlidakis, and Vasileios P. Kemerlis.
EPF: Evil packet filter. In USENIX ATC, 2023.

USENIX Association 33rd USENIX Security Symposium 177

[20] Vasileios P. Kemerlis, Georgios Portokalidis, and Ange-
los D. Keromytis. kGuard: Lightweight kernel protec-
tion against Return-to-User attacks. In USENIX Security,
2012.

[21] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In S&P, 2019.

[22] Dmitry Kuznetsov and Adam Morrison. Privbox: Faster
system calls through sandboxed privileged execution. In
USENIX ATC, 2022.

[23] Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungy-
oung Lee, Yeongpil Cho, and Yunheung Paek. uxom:
efficient execute-only memory on arm cortex-m. In
USENIX Security, 2019.

[24] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-
Erik Ekberg, and N Asokan. Pacstack: an authenticated
call stack. In USENIX Security, 2021.

[25] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan. Pac
it up: Towards pointer integrity using arm pointer au-
thentication. In USENIX Security, 2019.

[26] Soo Yee Lim, Xueyuan Han, and Thomas Pasquier. Un-
leashing unprivileged ebpf potential with dynamic sand-
boxing. 1st Workshop on eBPF and Kernel Extensions,
ACM SIGCOMM, 2023.

[27] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In USENIX Security, 2018.

[28] Hongyi Lu, Shuai Wang, Yechang Wu, Wanning He,
and Fengwei Zhang. Moat: Towards safe bpf kernel
extension, 2023.

[29] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma.
Merlin: Multi-tier optimization of ebpf code for perfor-
mance and compactness. In ASPLOS, 2024.

[30] Larry McVoy and Carl Staelin. Lmbench: Portable tools
for performance analysis. In USENIX ATC, 1996.

[31] MITRE. BPF CVE list. https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=BPF, 2024.

[32] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-informed
kernel synchronization primitives. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022.

[33] Joseph Ravichandran, Weon Taek Na, Jay Lang, and
Mengjia Yan. Pacman: attacking arm pointer authenti-
cation with speculative execution. In ISCA, 2022.

[34] The Linux Foundation. XDP, eXpress Data Path.
https://www.iovisor.org/technology/xdp, 2016.

[35] The Linux Foundation. BCC: BPF Compiler Collection.
https://www.iovisor.org/technology/bcc, 2023.

[36] Jiali Xu, Mengyao Xie, Chenggang Wu, Yinqian Zhang,
Qijing Li, Xuan Huang, Yuanming Lai, Yan Kang, Wei
Wang, Qiang Wei, and Zhe Wang. Panic: Pan-assisted
intra-process memory isolation on arm. In CCS, 2023.

[37] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, et al. Xrp:in-kernel
storage functions with ebpf. In OSDI, 2022.

[38] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John
Criswell, and Robert J. Walls. Silhouette: efficient pro-
tected shadow stacks for embedded systems. In USENIX
Security, 2020.

[39] Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou,
and Zhou Li. Userspace bypass: Accelerating syscall-
intensive applications. In OSDI, 2023.

A The Description of Security Properties

We summarized the descriptions of the security properties in
Table 8. The verifier tracks all the BPF objects’ sizes and per-
missions, and the pointers’ bounds point to them, thus when-
ever a BPF object is accessed, it forbids underflow/overflow
and permission mismatch (lines 1/2/5). For BPF-accessible
kernel objects, the verifier uses its whitelist, which records all
readable/writable fields of each type of kernel object, ensuring
legal fields with correct memory access width (lines 3/4/6).

When calling a helper function, it ensures each parameter
matches the formal arguments in the signature (line 7). It
maintains the status of each stack slot, thus pointers can be
spilled into the stack and restored to the register. However, the
BPF program cannot store pointers in other memory, because
their later usage is not tracked, thus unable to prevent pointer
leakage (line 8). Any operation that may leak the pointers
indirectly (e.g., bitwise, compare) is not allowed (lines 9/10).

The stack memory and BPF registers may contain residual
kernel information (e.g., pointers), it forbids operation that
may lead to uninitialized access (lines 11/12/13).

It only considers Spectre V1 and V4 attacks, which are
mitigated via different solutions. For example, Spectre V1
attack is mitigated by the alu_sanitizer, which adds mask
instructions to prevent possible OOB speculative access. It
also restricts stack access to simplify the Spectre V1 analysis

178 33rd USENIX Security Symposium USENIX Association

https://lore.kernel.org/lkml/20210505112325.000317999 @linuxfoundation.org/

Table 8: Security properties related to the full-path analysis.
Security property Description

1 BPF object OOB I Accessing BPF objects disallow underflow or overflow.
2 BPF object OOB II BPF stack access is checked to prevent exceeding 512B.

3 kernel object
OOB I

Computation of pointers to kernel objects (e.g., context
objects) is disallowed, and the immediate offset in
memory access instruction is checked based on a white-
list to ensure the BPF program accesses legal fields.

4 kernel object
OOB II

The whitelist is used to rewrite kernel object access
based on the immediate offset in the instruction to
ensure the BPF program accesses legal fields.

5
permission Read-only maps cannot be written to, and the same
violation I applies to packets for specific BPF program types.

6
permission Specific fields of kernel objects are read-only, ensured
violation II by the whitelist check.

7 type mismatch

Argument pointers must be matched to prevent BPF
programs from using helper functions to arbitrarily
access kernel objects. Pointers cannot be passed as
scalars to prevent pointer leakage.

8 pointer leakage I
Pointers are disallowed as BPF function return value
or for writing into memory, except for pointer spill
due to maintained stack slot states.

9 pointer leakage II
Pointers are disallowed from performing certain
calculations like bitwise or inter-pointer calculations.

10 offset leakage
Pointers cannot be compared with other pointers or
non-zero scalars to prevent offset leakage.

11 uninit reg read Registers must be initialized before use.
12 uninit stack read I The BPF stack must be initialized before use.

13 uninit stack
read II

BPF programs cannot write to the stack with variable
offsets, as the full-path analysis needs to maintain the
state of each stack slot. If the variable offset relates
to an uninitialized slot, it cannot decide whether this
write will initialize it or not.

14
Spectre V1 BPF programs cannot read from the stack with

filter variable offsets to simplify the Spectre V1 analysis.

15 Spectre V1
masking

Pointer arithmetic instructions with possible Spectre
V1 attack is masked with the max range deducted
by the full-path analysis.

16
Spectre V4 Store with possible Spectre V4 attacks are identified

barrier and instrumented with barrier instruction.

17
kernel stack The max depth of BPF call frame cannot exceed 32

crash I to avoid kernel stack crash.
18 kernel stack The size of the combined BPF stack for each BPF

crash II function cannot exceed the upper limit (512B).
19 timeout BPF program cannot contain dead loops.
20 deadlock BPF program cannot cause deadlock.

(lines 14/15). The barrier instruction mitigates Spectre V4 if
a possible speculative store is detected (line 16).

The call frame of the BPF program cannot be too deep
(e.g., less than 32) because it may crash the kernel stack (line
17). Similarly, the size of the combined BPF program stack
of the deepest call frame cannot be too large (line 18).

The kernel disables the preemption when the BPF program
executes, thus the BPF program cannot stuck (e.g., dead loop,
deadlock) to keep the kernel functional (lines 19/20).

B Complexity Issue Intensify with bpf_loop

Fig. 9 gives an example for the bpf_loop() helper, the orig-
inal loop uses the i < len statement as the loop condition.
Since the len variable may be unknown at the loading time,
the full-path analysis has to speculate its range as large as pos-
sible (e.g., u32_max), thus failing to enumerate all program

1: int test_loop (int len) {
2: int sum = 0;
3: for (int i = 0; i < len; ++i)
4: sum += i;
5: return sum;
6: }

1: struct callback_ctx { int output; };
2: void bar (int idx, struct callback_ctx *ctx) {
3: ctx->output += idx;
4: }
5: int test_loop (int len) {
6: struct callback_ctx arg;
7: bpf_loop (len, bar, &arg);
8: return arg.output;
9: } rewritten loop

bpf_looptest_loop(n): Calculate the
cumulative sum from 1 to n.

original loop

Fig. 9: The code example of bpf_loop().

1: int passed (int len, int base) {
2: int sum = base, local[16];
3: if (len >= 16) return -1;
4: for (int i = 0; i < len; ++i) {
5: sum += i;
6: local[i] = sum;
7: }
8: return local[base%len];
9: }

1: struct callback_ctx {int sum; int *buf; };
2: void bar (int idx, struct callback_ctx *ctx) {
3: ctx->sum += idx;
4: ctx->buf[idx] = sum; // rejected
5: }
6: int test_loop (int len, int base) {
7: int local[16];
8: if (len >= 16) return -1;
9: struct callback_ctx arg;

10: arg.sum = base;
11: arg.buf = local;
12: bpf_loop (len, bar, &arg);
13: return local[base%len];
14: } rewritten loop

bpf_loop

test_loop(n): Calculate and
store the cumulative sum.

original loop

1: int test_loop (int len) {
2: int sum = 0;
3: for (int i = 0; i < len; ++i)
4: sum += i;
5: return sum;
6: }

1: struct callback_ctx { int output; };
2: void bar (int idx, struct callback_ctx *ctx) {
3: ctx->output += idx;
4: }
5: int test_loop (int len) {
6: struct callback_ctx arg;
7: bpf_loop (len, bar, &arg);
8: return arg.output;
9: } rewritten loop

bpf_looptest_loop(n): Calculate the
cumulative sum from 1 to n.

original loop

Fig. 10: The negative example of bpf_loop().

states, leading to program rejection. The bpf_loop() helper
tries to solve this problem by encapsulating the loop body
into a new function (bar() in the example), callback it using
bpf_loop() with len as its call count and arg as its argument.
The bpf_loop() will call the bar() for len times and pass
the index from 0. Inside the bar(), it stores the computed
result and returns 0, which means continue for the loop, while
returning 1 means break the loop.

While this helper aims to address the complexity issue, it
could worsen the problem. As the Fig. 10 shows, the original
function can pass the verification but fails after being rewritten
by the bpf_loop(). This is due to the inability to pass states
between the loop body and condition. For example, in the
original function, the i variable is always less than len (which
is less than 16), thus the memory access instruction in line 6
is safe. After the loop body becomes an independent function,
which is verified independently, the full-path analysis cannot
ensure the range of idx, thus rejecting the BPF program for
possible OOB access. Besides, this callback style function
restricts pointer passing between function calls, thus the loop
body cannot use any self-defined pointers (buf in line 4),
which is another limitation.

C The Details of Compartmentalization

C.1 The BPF Stack Handling

The BPF stack is on top of the current kernel stack. Besides,
the return address and callee-saved registers (metadata) are
also stored in the kernel stack and are only accessed by %sp.

USENIX Association 33rd USENIX Security Symposium 179

local

bar’s local

ret addr
callee-saved

original kernel stack

foo’s local
callee-saved

ret addr

local

bar’s local

ret addr
callee-saved

kernel stack

foo’s local

callee-saved
ret addr

BPF stackx25

sp x25

sp

stack
separation

1: /*BPF prolog*/
2: push callee-saved
3: mov %x25, %sp
4: sub %sp, #size
5:
6: /* function body*/
7: /* all locals are
8: accessed by %x25 */
9:

10: /*BPF epilog*/
11: add %sp, #size
12: pop callee-saved
13: ret

jitted code
1: /*BPF prolog*/
2: push callee-saved
3: mov %x25, #addr
4: sub %sp, #size
5:
6: /* function body*/
7: /* all locals are
8: accessed by %x25 */
9:

10: /*BPF epilog*/
11: add %sp, #size
12: pop callee-saved
13: ret

jitted code

Fig. 11: The stack separation process. The kernel calls the
bar() in BPF, and the bar() calls the foo() in BPF.

As shown in Fig. 11, HIVE moves the local variables into
BPF space by replacing the initialization of %x25 in the pro-
logue (mov %x25, %sp) with another instruction (mov %x25,
#addr), and leaving the metadata on the kernel stack. The
stack adjustment instructions (lines 4/11) are optimized away.
HIVE instruments instructions to adjust the %x25 to manage
the BPF stack when entering the BPF program and calling
BPF functions. Without full-path analysis, HIVE does not
know the size of each stack frame, so it uses the upper limit
(512B) allowed in eBPF as the fixed size of each frame. The
size of the BPF stack is set to be 8MB by default, HIVE only
allocates the bottom two pages at load time, and the remaining
pages are allocated lazily via the page fault exception.

Since the control flow safety is guaranteed (forward con-
trol flow is ensured by the first two stages of the verifier,
and backward control flow is ensured by return address isola-
tion), instructions that operate %sp are emitted/instrumented
by the JIT compiler and cannot be abused by attackers. The
advantage of this design is that there is no need to switch
the physical stack pointer %sp when the kernel function and
the BPF function call each other. During the BPF program’s
execution, the interrupt handlers and the helpers can be called
directly as they both use the kernel stack.

C.2 The Maps Separation

There are 33 distinct types of maps in the current eBPF with
mainly two types of implementations: array maps and hash
maps. The shadowing process is straightforward for array
maps since they are stored continuously and of a fixed size.
eBPF provides map properties to page-align the values, which
helps HIVE to only shadow the data area of the maps.

However, the hash maps are stored non-contiguously, pre-
venting HIVE from shadowing the hash maps directly into
the BPF space. To this end, we slightly adjust the structure
of the maps, separating all values from the maps and leaving
a pointer to point to the new location of the values. Fig. 12
gives the separation of the hash_map structure, all values are
separated and stored in the BPF space, while the metadata
remains in the kernel space. The change in the map structure
does not affect the normal functionality of BPF programs.

1

bucket bucket

hlist*
hash
value

hlist*

hlist*
hash
value

hlist*

bucket bucket

hlist*
hash

value

hlist*

hlist*
hash

value

hlist*
value* value*

replace the values with
the pointers to them

Fig. 12: The hash map separation.

D Miscellaneous Helpers Rewriting

The 11 helpers that need rewriting are introduced as follows:

• bpf_spin_[lock|unlock]. The full-path analysis needs to
ensure no spinlock is acquired in the current program state
when calling the bpf_spin_lock(), and the lock must be
released before the BPF program exits. To this end, HIVE
handles these helpers by adding additional record-and-
check logic in them. For example, HIVE maintains a per-
program spinlock table for the bpf_spin_lock(), each
time this helper is called, HIVE checks if the current BPF
program has acquired a spinlock already, if true, the BPF
program will be uninstalled. Otherwise, HIVE updates the
spinlock table. This table also ensures the BPF program
will release the spinlock through the bpf_spin_unlock()
helper before the BPF program exits.

• bpf_timer_[init|set_callback|start|cancel]. eBPF provides
callback timer functions via these 4 functions, and the full-
path analysis ensures all the timers are initialized by use, as
well as their integrity. Since these functions all require the
state of the timers, HIVE maintains a timer table for them,
and updates the table based on their functionalities (e.g.,
insert an entry in the table when the textttbpf_time_init
is called). Once a timer is corrupted by the BPF program,
HIVE can detect that in the helper by the timer table.

• bpf_dynptr_[from_mem|read|write|data]. A dynptr is a
pointer that stores metadata alongside the address. The full-
path analysis ensures it is read-only to the BPF program
and can only be used through helpers. To this end, HIVE
maintains a dynptr table for them. Each time a dynptr is
generated, it will be recorded into the table, and HIVE
checks the table when the dynptr is used. Different from
the full-path analysis, the BPF program can corrupt the
dynptr, but it will be identified once the dynptr is used.

• bpf_kptr_xchg. Unlike other PTR_TO_BTF_ID helpers,
the btf_id in this helper is determined dynamically by the
full-path analysis, which ensures the corresponding argu-
ment has BTF information in the maps when calling this
helper. Since HIVE cannot determine which path contains
which map with BTF information, it needs to dynamically
find the map by the pointer value and ensure the corre-
sponding map contains the BTF information.

180 33rd USENIX Security Symposium USENIX Association

https://lwn.net/Articles/895885/

	Introduction
	Background
	Extended Berkeley Packet Filter (eBPF)
	Hardware Features on AArch64

	Understanding the eBPF Verifier
	The Workflow of the Verifier
	The Internals of Full-path Analysis
	The Methodology of Study
	The Security Properties in Full-path Analysis

	The Dilemma of Full-path Analysis

	Overview
	Threat Model
	High-level Design
	Challenges

	Detailed Design
	eBPF Pointer Types
	Handling Inclusive Pointer Types
	BPF Memory Compartmentalization
	BPF Memory Isolation (SG-1)
	Information Leakage Prevention (SG-2)

	Handling Exclusive Pointer Types
	The Design of Modifier and the Sign
	The Authentication and Security Checks (SG-1)
	The Design of Type Descriptor Table (SG-2)

	Secure and Passive DoS Prevention (SG-3)

	System Implementation
	Security Evaluation
	Security Analysis of Hive
	Real Attacks against Hive

	Evaluation
	Performance Evaluation
	Micro-benchmark
	Real-world Applications

	Complexity Evaluation
	Supporting Real-world Kernel Modules
	Eliminating Context Switches in System Calls

	Discussion
	Related Work
	Conclusion
	The Description of Security Properties
	Complexity Issue Intensify with bpf_loop
	The Details of Compartmentalization
	The BPF Stack Handling
	The Maps Separation

	Miscellaneous Helpers Rewriting

