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Abstract

IoT devices have significantly impacted our daily lives,
and detecting vulnerabilities in embedded systems early on
is critical for ensuring their security. Among the existing vul-
nerability detection techniques for embedded systems, static
taint analysis has been proven effective in detecting severe
vulnerabilities, such as command injection vulnerabilities,
which can cause remote code execution. Nevertheless, static
taint analysis is faced with the problem of identifying sources
comprehensively and accurately.

This paper presents LARA, a novel static taint analysis
technique to detect vulnerabilities in embedded systems. The
design of LARA is inspired by an observation that pertains
to semantic relations within and between the code and data
of embedded software: user input entries can be categorized
as URIs or keys (data), and identifying their handling code
(code) and relations can help systematically and comprehen-
sively identify the sources for taint analysis. Transforming the
observation into a practical methodology poses challenges.
To address these challenges, LARA employs a combination of
pattern-based static analysis and large language model(LLM)-
aided analysis, aiming to replicate how human experts would
utilize the findings during analysis and enhance it. The pattern-
based static analysis simulates human experience, while the
LLM-aided analysis captures the way human experts per-
ceive code semantics. We implemented LARA and evaluated
it on 203 IoT devices from 21 vendors. In general, LARA
detects 556 and 602 more known vulnerabilities than SATC
and KARONTE while reducing false positives by 57.0% and
54.3%. Meanwhile, with more sources and sinks from LARA,
EMTAINT can detect 245 more vulnerabilities. To date, LARA
has found 245 0-day vulnerabilities in 57 devices, all of which
were confirmed or fixed with 162 CVE IDs assigned.

�Corresponding Authors.

1 Introduction

The Internet of Things (IoT) has become an indispensable
part of our daily lives, and the number of devices in use is
expected to reach 27.1 billion by 2025 [2]. However, this
growth has also resulted in an increase in vulnerabilities in
embedded systems. According to recent statistics [6], weekly
attacks on IoT devices have increased by 41% per organiza-
tion in the first two months of 2023 compared to 2022. The
threat of IoT vulnerabilities includes numerous vulnerabili-
ties, some [4, 5, 47] of which are easily exploited and impact
an average of 14% to 49% of organizations worldwide on a
weekly basis. Hence, early detecting vulnerabilities in em-
bedded systems has become crucial. IoT devices with web
services are more susceptible to attacks compared to other IoT
devices [10]. This is because while web services provide a
convenient interface for device control and configuration, they
also create opportunities for remote attacks if the underlying
backend contains vulnerabilities. Thus, detecting vulnerabili-
ties in IoT devices relying on web services is crucial.

Most existing techniques [7,8,55,59] have limited effective-
ness in detecting vulnerabilities in the backend programs of
the web services in IoT devices. The testing techniques suffer
from low code coverage and only focus on memory-related
vulnerabilities. In comparison, static taint analysis is more
suitable for detecting a wider variety of vulnerabilities. Taint
analysis tracks and analyzes the flow of tainted information in
a program, using source, sink, and taint propagation [49]. The
source is where user inputs are introduced, the sink is where
potentially risky operations occur, and taint propagation anal-
ysis examines how tainted markers propagate along variable
dependencies in the program. Currently, most researches fo-
cus on taint propagation analysis, which employs techniques
such as multi-binary tracking or pointer analysis to obtain
more efficient and accurate analysis results [12,38]. However,
their effectiveness on embedded systems is not significant.
This is because traditional sources such as recv function are
not effective in revealing the characteristics of user input entry
identification and processing in embedded systems, thereby
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missing many potential vulnerabilities.
To address the source identification challenge, a recent ad-

vancement in static taint analysis called SATC [10] proposes
to leverage common input keywords between the frontend
and backend to identify the user input handling code in the
backend as sources. It can improve static taint analysis by
providing more sources. Nevertheless, SATC misses certain
sources (at least 82.5% according to our investigation) be-
cause some hidden user input handling code in the backend
does not have frontend counterparts and some non-hidden
user input entries are ignored due to the incomplete rules used
for extracting the keywords. Additionally, SATC still suffers
from high false positives (52.7%) for the detected sources
due to a lack of awareness of dangling keywords with no/un-
reachable handling code. The falsely identified sources could
affect the result of final vulnerability detection (missing over
87.3% with 75.2% false positives). In conclusion, static taint
analysis shows promise in detecting vulnerabilities in IoT
web services, but extracting sources systematically remains
an open problem.

To mitigate false negatives and false positives in source
identification, we conducted a comprehensive analysis of the
web services in mainstream devices and made an observation
relates to the characteristics of the user input entries. User
inputs for the web services are typically encoded as key-value
pairs organized by forms or form-like data [22]. Rather than
treating all user input entries equally, separating them into
URIs and keys enables better utilization of their mapping
to identify corresponding backend handling codes and more
sources effectively. Maintaining a mapping between them
can facilitate the identification of their corresponding back-
end handling codes. These code of the functions, in turn, can
reveal hidden URIs and keys, leading to the discovery of ad-
ditional sources. However, how to identify sources based on
the complex relations among URIs and keys and the corre-
sponding pattern between them and the backend code remains
a challenge. Additionally, the semantic information in the
backend code can facilitate more precise pattern-based static
analysis, such as inferring the purpose of a function. Effec-
tively perform semantic-based analysis and combine it with
pattern-based analysis is another challenge.

In this paper, we propose LARA2, a novel static taint analy-
sis technique for detecting vulnerabilities in embedded sys-
tems. LARA utilizes URIs and keys extracted from the fron-
tend to determine their corresponding handling code in the
backend. This process is achieved through a combination
of pattern-based static analysis and large language model
(LLM)-aided analysis, aiming to replicate how human experts
perform the identification based on previous experience and
code semantics. The pattern-based static analysis leverages
predefined rules and pattern matching, which simulates hu-
man experience, to address the first challenge. Meanwhile, the

2Lara Croft is a fictional archaeologist and adventurer who can use her
intuition and perception to spot hidden objects and secrets in tombs and ruins.

LLM-aided analysis performs the identification from the code
semantics aspect to address the second challenge, as LLMs
have been shown effective for summarizing the semantics
of functions [16, 25, 37]. LARA then combines the results
obtained from both analyses to generate two sets of codes that
handle URIs and keys, respectively. By analyzing the URI
and key handling codes, LARA can also identify the other
URIs and keys that are handled by the same functions. In
this manner, LARA can systematically and precisely identify
the key handling functions and use them to extract sources.
Regarding sinks, LARA analyzes the primary program and
its related shared libraries to identify calls to dangerous op-
erations as sinks. Finally, using the identified sources and
sinks, LARA performs the static taint analysis that supports
inter-process analysis to detect potential vulnerabilities.

We implemented LARA as a static taint analysis framework
and evaluated it on the dataset used by SATC, which includes
203 devices from 21 vendors such as DLink, Tenda, NetGear
and others. The evaluation results indicate that LARA can
detect significantly more vulnerabilities with fewer false posi-
tives than both SATC and KARONTE. Specifically, LARA can
detect 556 and 602 more known vulnerabilities than SATC
and KARONTE, respectively, while reducing false positives by
57.0% and 54.3%. Additionally, EMTAINT could detect 245
more vulnerabilities with the assistance of LARA. To com-
prehensively understand the capability of each component in
LARA, we also conducted an ablation study and the results
showed that the pattern-based static analysis, LLM-aided anal-
ysis, and sink extraction can all improve the overall perfor-
mance. Last but not least, we applied LARA to the firmware
dataset for vulnerability detection. In total, we have found
245 0-day vulnerabilities in 57 devices, with all confirmed or
fixed by the developers and 162 CVE IDs assigned.

In summary, we make the following contributions:

• We tackle the technical challenges and transform the
observation into a novel static taint analysis technique
called LARA. LARA can capture sources with low false
positive and false negative rates and thus is capable of
detecting more vulnerabilities.

• We implemented LARA and comprehensively evaluated
its performance in vulnerability detection, source iden-
tification and sink identification. The results show that
LARA can significantly outperform the state-of-the-art
IoT static taint analysis techniques by detecting more
vulnerabilities with fewer false positives.

• We discovered 245 0-day vulnerabilities in 57 devices
from 13 vendors. To date, all have been confirmed or
fixed and 162 CVE IDs have been assigned.

We make the raw data, detailed information and source
code of LARA available on the LARA-Site: https://site
s.google.com/view/lara-data.
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int ModuleInitManagement(){
  ...
  websFormDefine("SetTriggerLEDBlink",sub_4395CC);
  websFormDefine("SetNetworkSettings",sub_43AF7C);
  ...
}

int sub_4395CC(char* a1){
  ...
  v4 = websGetVarString(a1,"/SetTrigger \
                        LEDBlink/Blink");
  ...
  sprintf(v6,"gpio 1 16 10 10 %s 1 1",v4);
  twsystem(v6,1);
}

int twsystem(char* a1, int a2){
  ...
  v18[2] = (int)a1;
  ...
  execv("/bin/sh",v18);
  ...
}
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<?xml version="1.0" encoding="utf-8">
  ...
  <SetNetworkSettings xmlns="...">
    <IPAddress></IPAddress>
    <SubnetMask></SubnetMask>
    <DeviceName></DeviceName>
    ...  
  </SetNetworkSettings>
  ...
</xml>

URI:SetNetworkSettings
Body: form-data (key-val)

URI:SetTriggerLEDBlink
Body: form-data (key-val)

URI

key

Form
5💥

int sub_43AF7C(char* a1){
  ...
  v7 = websGetVarString(a1,"/SetNetwork \
                        Settings/SubnetMask");
  ...
  sprintf(v39,"echo %s > /proc/ipinfo/netmask",v7);
  system(v39);
  ...
  websXMLBodyResponse(a1,"IPAddress"); 
  websGetResponseData(a1, v8, "Enabled"); 
}

Figure 1: Motivating Example

2 Motivating Example

2.1 Threat Model

In this paper, we focus on attacks against WEB services in
embedded systems. The threat model assumes that the at-
tacker can obtain the corresponding firmware from the vendor
website and access the target over a local (LAN) or wide area
(WAN) network and send malicious HTTP requests to the
services. On the service side, the backend programs, includ-
ing middleware, CGI programs, and related shared libraries,
handle these malicious data. Usually, the data in the HTTP
request has corresponding labels in the frontend, but there are
hidden data without frontend labels in the backend programs.
The vulnerability CVE-B shown in Figure 1 is caused by such
hidden data. By analyzing the backend program, attackers can
obtain these non-hidden and hidden data and then send crafted
HTTP requests that inject payloads to the vulnerable backend
handling code, leading to consequences like denial-of-service
(DoS) and remote-code-execution (RCE).

2.2 Observation

Figure 1 illustrates a motivating example that includes two
vulnerabilities detected by LARA in the firmware of the D-
Link DIR-882 router. The first vulnerability CVE-A 3 is trig-
gered through the following steps: ❶ The attacker interacts
with the web interface (frontend) of the router DIR-882 to
configure the networksettings. Inside the SubnetMask field,
the attacker inputs an injection payload such as “;rm −rf /;".
❷ The frontend generates an HTTP request using the form
SetNetworkSettings and the key-value pairs encoding the form
data. In this case, SetNetworkSettings is filled into the URI [52]
field of the HTTP packet, while SubnetMask and the payload

3CVE-A is CVE-2022-28896 and CVE-B is CVE-2022-28901.

are filled into the body field as one of the key-value pairs
(“SubnetMask=';rm −rf /;'") encoded as form−data [22]. ❸ When
receiving the HTTP request, the backend of the router finds
the corresponding function to handle it according to the URI
value of the form. In this case, the function is sub_43AF7C. ❹
After sub_43AF7C receives the content of the HTTP request,
it extracts the values of the keys with specific functions. In
this case, the function is websGetVarString. ❺ The backend
processes the extracted values as a command and invokes
the function system to execute the command, allowing the
attacker to execute arbitrary code on the router.

The second vulnerability, CVE-B, can be triggered with the
following process: ① The form for this vulnerability is hidden,
which means there is no corresponding frontend code. Hence,
the attacker needs to generate the HTTP request and send it to
the backend directly. In this case, the form used by the HTTP
request is SetTriggerLEDBlink. ② According to the URI value
of the form, the backend invokes the function sub_4395CC
to handle the HTTP request. ③ After sub_4395CC receives
the HTTP request, it extracts the value for the key Blink. ④
The extracted value is processed to form a command with
sprintf and send to the function twsystem. It is worth noting that
the function twsystem is not in the main binary of the router
(prog.cgi), but instead resides in the shared library libcrm.so.
⑤ Inside the function twsystem, the user-controlled value is
executed by execv and the vulnerability is triggered.

Existing techniques have difficulty in identifying vulner-
abilities similar to both CVE-A and CVE-B due to omitted
sources. To this end, we make an observation of why certain
sources are omitted from the examples in Figure 1.

The observation relates to the characteristics of the user
input entries. As shown in Figure 1, some user input entries
are non-hidden as they have corresponding frontend handling
logic (e.g., SubnetMask). In contrast, some user input entries
are hidden as they do not have corresponding frontend han-
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dling logic (e.g., Blink). The backend handling codes of all
the hidden and non-hidden user input entries can be used to
extract sources for taint analysis. A state-of-the-art technique,
namely SATC [10], suggests using the common keywords ex-
tracted from the frontend and backend to identify the sources
precisely. Although using the common keywords can help
with source identification to some extent, SATC fails to find
the sources for both CVE-A and CVE-B. For CVE-A, since
SATC uses predefined rules to capture the common keywords
and the proposed rules are incomplete, SATC fails to locate
the user input entry related to SubnetMask 4. For CVE-B, since
the user input entry lacks corresponding frontend handling
code and is not related to a common keyword, SATC cannot
detect it. To conclude, a systematic approach is needed to
identify the sources, regardless of whether they are related to
the hidden or non-hidden user input entries.

2.3 Findings based on the Observation

Based on the observation, we have uncovered two key find-
ings that inspire the design of LARA to enhance taint-based
vulnerability detection by identifying more accurate sources.

Finding 1. User input entries can be categorized as URIs
or keys. Identifying their corresponding handling codes
and relationships can help to identify both hidden and non-
hidden user input entries and locate the taint sources.

The first finding pertains to identifying more sources. User
inputs are often encoded as key-value pairs that are grouped by
forms or form-like data [22]. URIs serve as unique identifiers
for these forms, while the keys represent the names of the
user input parameters under each form. Figure 2 illustrates
the relationships between the URIs and keys in both frontend
and backend. In the figure, u and k represent the URIs and
keys in the frontend, while U and K represent those in the
backend. Though the backend always contains the URIs and
keys in the frontend, the inverse is not always true. There
are four possible types of relationships between URIs and
keys: ❶ both the keys and their corresponding URI are in
both frontend and backend; ❷ the URI is in both frontend and
backend, but some of the keys related to this URI are only in
the backend; ❸ the URI and its related keys are only in the
backend; and ❹ the keys do not have any related URIs.

Separating URIs and keys provides two advantages over
treating all user input entries the same. Firstly, separating
and recombining URIs and keys allows us to avoid counting
keys in unreachable functions as sources leading to false
postives. These keys are not reachable because they are not
linked to any URIs (relation ❹ in Figure 2). Secondly, we can
utilize the backend functions that handle URIs to identify the
functions that handle keys. By identifying these functions, we

4Detailed analysis of why SATC fails to detect CVE-A is in the case
study I on the LARA-Site

u

U K

k

Nonexistent
Code

1

2

3

4

Figure 2: The relationships between the URIs and keys on the
frontend and backend.

can uncover both more non-hidden URIs and keys (relation
❶) and more hidden URIs and keys (relation ❷ and ❸).

Although URIs and keys can be categorized as hidden and
non-hidden according to whether they are labeled in the fron-
tend, they share similar/same backend handling codes. In the
example in Figure 1, we can get the URI SetNetworkSettings
from the frontend. In the backend, we can infer that the func-
tion websFormDefine maps the URIs to their corresponding
handling functions. Through websFormDefine, we can then
identify SetTriggerLEDBlink as another URI even though it has
no corresponding frontend form. Moreover, from the fron-
tend, we can also see that SubnetMask is a key under the URI
SetNetworkSettings. From the code of the function sub_43AF7C,
we can see that webGetVarString handles the key SubnetMask,
and identify it as a key handling function. Following this, in-
side sub_4395CC, we can identify Blink as a key under the URI
SetTriggerLEDBlink. Therefore, we can use the backend func-
tions and their relations to systematically extract the URIs
and keys no matter whether they are hidden or not.

To this end, the rationale for how Finding 1 contributes to
improved source identification is clarified, but the key prob-
lem in converting it into methodology is how to identify the
backend URI and key handling codes. Intuitively, following
the analysis of the rationale for Finding 1, we can conclude
some patterns to identify these codes to address this chal-
lenge. The identification of non-hidden URIs and keys can
help identify other hidden and non-hidden URIs and keys
by revealing the corresponding handling codes. In the exam-
ple in Figure 1, the pattern-based static analysis can help to
identify websGetVarString (line 9 in prog.cgi) as a key handling
function because it takes SubnetMask as a argument. Further,
the hidden key Blink will be identified.

Finding 2. Due to the better understanding of code seman-
tics provided by LLM and the differences in false positive
sources between LLM-aided analysis and pattern-based
static analysis, LLM-aided analysis effectively enhances
the identification of more accurate sources.

The second finding pertains to identifying sources with
fewer false positives. The results of only using the pat-
terns are still worse than manual analysis because, besides
previous experience (pattern), human experts can also un-
derstand the semantics of the functions according to the
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Figure 3: The Overview of LARA

decompiled code with meaningful symbols. For example,
in Figure 1, the pattern-based analysis will falsely report
websXMLBodyResponse (line 14 in prog.cgi) as a key handling
function due to the appearance of IPAddress as a argument.
However, through the name of the function, a human ex-
pert can easily grasp the semantic of it and realize that it
is not a key handling function but a response generation
function. Therefore, semantic analyses are necessary. In re-
cent years, deep learning techniques have demonstrated great
performance in understanding code semantics [26, 31, 45].
Specifically, the emerging LLMs are superior choices for this
task [15, 17, 37, 44]. Therefore, combining the pattern-based
static analysis and LLM-aided analysis to mimic how human
experts work becomes the design choice of LARA.

Our preliminary analysis of code semantics with LLM re-
veals a noteworthy finding: Although false positives were
present in the results, the sources of false positives in LLM-
aided analysis results were distinct from those in pattern-
based static analysis results. False positives in pattern-based
static analysis are caused by code patterns, while false pos-
itives in LLM-aided analysis are due to misleading code se-
mantics, such as symbolic data. For example, in Figure 1, the
LLM-aided analysis will falsely report websGetResponseData
(line 15 in prog.cgi) as a key handling function due to the
function name and the arguments. However, both methods
produce accurate results. By taking the intersection of their
results, false positives can be eliminated. But effectively com-
bining these two methods remains a challenge. To address this
challenge, we designed LLM automatic interaction models
and algorithms that combines pattern-based static analysis
with LLM-aided analysis to identify more accurate sources.

3 Methodology

Figure 3 depicts the overview of LARA. The input for LARA
is the firmware image, and the outputs are alerts for potential
vulnerabilities. LARA works in four steps: ❶ Preprocessing.
The preprocessor is in charge of extracting the frontend files
and backend files. Mainly, backend files include the binary

handling HTTP requests and the related shared libraries. The
input entry analyzer extracts the URIs and keys from the fron-
tend. ❷ Source Extraction. This step involves extracting the
URIs from the backend and using the URI information to iden-
tify the keys and their handling code. The key handling code
is then used to extract the source. For URI extraction, LARA
first uses the URIs extracted from the frontend to identify the
URI handling code (substeps ① – ② in Figure 3) and then en-
riches the URI pool (substep ③). Similarly, for key extraction,
LARA first uses the keys extracted from the frontend to iden-
tify the key handling code (substeps ①,④) and then enriches
the key pool (substep ⑤). In addition, LARA also uses the
mapping between URIs and keys to filter out unreachable key
handling code (substep ⑥). ❸ Sink Extraction. With a prede-
fined dangerous functions list from system libraries, LARA
detects their appearances in the main binary and the shared
libraries. The caller functions of the dangerous functions are
called the wrapper functions. LARA recursively finds all the
wrapper functions, their callers, callers of the callers, and so
on, and uses them as the sinks. It is worth noting that taint
analysis is utilized to ensure that the parameters of the wrap-
per functions can affect the danger function calls. ❹ Taint
Analysis. With the sources and sinks, LARA performs static
taint analysis and reports alerts for vulnerabilities whenever
it encounters connections between sources and sinks.

3.1 Preprocessing
Extraction of Files to be Analyzed. The files are mainly
frontend files, backend programs, and related shared libraries.
There are three types of frontend files in IoT devices: HTML
files, XML files, and JavaScript files. The preprocessor tra-
verses the file system of the firmware and matches file types
to extract these frontend files. As for backend files, the prepro-
cessor uses path matching, file type matching, and keyword
matching to extract.
Extraction of Input Entries from the Frontend files. The
input entry analyzer of LARA uses regular expressions to
extract the input entries. Additionally, in LARA URIs and
keys are categorized according to the tags or node labels. For
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Algorithm 1: Extract URI from Backend Binary
Input: u, the set of URIs extracted form frontend

B , the set of binaries handling HTTP requests
Output: UF , the corresponding set of URI and URI handling

function

1 BindingTypeI, BindingTypeII, BindingTypeIII ← /0;
2 UF ← /0;
3 foreach ui ∈ u do
4 if {b ∈ B|b.name = ui.value} ̸= /0 then
5 BindingTypeIII +← ui;
6 else
7 address← get_xref(ui);
8 if address ∈ Segment(′′.data′′) then
9 BindingTypeII +← address;

10 if address ∈ Segment(′′.text ′′) then
11 AST ← Decompiler(address);
12 r1← LLM_URIAnalysis(address);
13 r2← /0;
14 while visit(AST) do
15 if is_call(expr) ∧ ui ∈ expr.arg then
16 r2 +← expr.name;

17 BindingTypeI +←Merge(r1, r2);

18 foreach Fi ∈ BindingTypeI do
19 foreach fi ∈ get_xref_func(Fi) do
20 AST ← Decompiler( fi);
21 while visit(AST ) do
22 if is_call(expr) ∧ expr.name = fi then
23 [u, f ]← get_arg(expr);

24 UF +← [u, f ];

25 foreach addi ∈ BindingTypeII do
26 if [addi, addi+o f f set] /∈UF then
27 while [addi, addi+o f f set] match [String, Func] do
28 UF +← [addi, addi+o f f set];
29 addi ← next_ins(addi);

30 foreach bi ∈ BindingTypeIII do
31 f ← /0;
32 foreach fi in bi. f unc do
33 if no_xref( fi) ∨ fi =

′′Main′′ then
34 f +← fi

35 UF +← [bi, f ];

36 return UF

example, in HTML files, URIs are identified by the action tag,
and keys are identified by tags such as input.

3.2 Pattern-based Static Analysis

3.2.1 Extraction of the URI Set

Starting with the URIs extracted from the frontend, LARA
extracts URIs from the backend program that handles HTTP
requests. This involves two steps: identifying the functions
that handle URIs in the program (substep ② in Figure 3) and
using these functions to identify more URIs (substep ③). We
studied the backend programs of mainstream firmware and
found that the code to bind URIs with URI handling functions
can be categorized into three types.

1
2
3
4
5

Binding Code Type 1 - Registration Function

int formDefineFirewall(){
  websFormDefine("BasicSettings",sub_44FFD0);
  websFormDefine("portForward",sub_44EFF0);
  websAspDefine("checkBridgeModeASP",sub_448F14);
}

Pattern-based Analysis {websFormDefine}

LLM-aided Analysis {websFormDefine,websAspDefine}

Composite Result {websFormDefine,websAspDefine}

Binding Code Type 2 - Constant Data

6
7
8
9
10
11
12
13
14
15
16
17
18

Binding Code Type 3 - Process Creation

19
20
21
22
23
24
25
26
27
28

int websCgiHandler(char *a1){
  cgiName = websGetCgiName(a1); // cigName:uri.cgi
  v36 = websLauchCgi(...,cgiName,data,...);
}
int websLaunchCgi(...){
  v24 = fork();
  if(!v24){
    if(execve(cgiName,a2,...)!=-1)
      ...
}

int HandleSocket(){
  for(j=0;;++j){
    v3 = ($0x15AD80)[2*j];
    ...
  }
}
.data:0x15AD80 DCD aGetStr // URI:getstr
.data:0x15AD84 DCD sub_AB16C // handling func
...
.data:0x15BDD8 DCD awifiCgi // URI:wifi.cgi
.data:0x15BDDC DCD sub_82A64 // handling func
...
.data:0x15C144 ALIGN 0x10

Figure 4: Examples of URI binding code types. The URIs
and URI registration functions are marked with blue color.

Binding Code Type I — Registration Function. In line 2
of Figure 4, BasicSettings is an URI, which is an argument for
the function websFormDefine, while the other argument is the
entry address of the function sub_44FFD0. It means that the
request body in the HTTP packet with the URI BasicSettings
will be processed in function sub_44FFD0. We refer to func-
tions such as websFormDefine and websAspDefine as registra-
tion functions, which are mainly used to bind the URIs with
their corresponding handling functions.

Binding Code Type II — Constant Data. The Define Con-
stant Data (DCD) instruction in lines 12 to 13 of Figure 4
allocates a continuous memory initialized with the address of
the string getstr and the function sub_AB16C to handle the URI
getstr. The URI and corresponding URI handling function are
stored in pairs in the .data segment memory addresses range
of the binary. When receiving an HTTP packet, the program
matches the URI by traversing the address range and uses the
content of next instruction as the corresponding URI handling
function entry address to invoke (lines 6 to 11).
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Binding Code Type III — Process Creation. As shown
in lines 19 to 28 of Figure 4, the function websGetCgiName
extracts the URI from HTTP requests and passes it to the func-
tion websLauchCgi as an argument. The function websLauchCgi
launches a new process using fork and passes HTTP requests
to the new process through an environment variable. This
newly launched process handles the user input in HTTP re-
quests, and the launched program is uri.cgi. The corresponding
URI handling function resides in the launched program.

Algorithm 1 describes how LARA extracts URIs in detail.
LARA utilizes the URIs extracted from the frontend to analyse
URI handling code in the program. If an URI value matches
a program name that handles HTTP requests, it is classified
as the type III (line 5). If the instruction calling the URI is
located in the .data segment, it is considered type II. However,
as multiple Address Ranges may exist, each instruction that
operates on the URI string must be recorded (line 9). If the in-
struction is in the .text segment, it is classified as type I. LARA
decompiles the function containing the instruction to generate
an abstract syntax tree (AST) (line 11). It then records the
function with URI as an argument in AST traversal (lines
14 to 16). Simultaneously, LLM analyzes this code segment
(line 12) and merges its results with the results obtained from
pattern-based static analysis (line 17).

For type I, LARA decompiles each function containing call
registration function instructions and then traverses the AST
to resolve the parameters of the registration functions (lines
19 to 24). For type II, LARA traverses upwards and down-
wards from the instruction calling the URI string address
(lines 27 to 29). For type III, the main function and functions
without callers are considered URI handling functions empiri-
cally (lines 32 to 35). For the main function, the reason is that
it’s often the handler of the base URI (e.g., upgrade.cgi). For
functions without callers, the reason is that some caller-callee
relations are lost during the decompilation and we aggres-
sively count functions without callers to avoid FNs.

3.2.2 Extraction of the Key Set

LARA uses a method similar to URI extraction to extract
key. When the program parses the HTTP request body, the
function that handles these data extracts the value corre-
sponding to the key. For example, in Figure 5, the key time
is extracted form the frontend. The function websGetVar

extracts the value corresponding to the key time from the
HTTP request represented by the wp variable in the URI
handling function formSetSchedLed and assigns it to the lo-
cal variable time_interval. LARA can also extract the hidden
key ledCloseType, which cannot be found in the frontend file,
through the same key handling function websGetVar.

LARA also needs to make sure that the extracted key is
associated with the HTTP request. That is, the function takes
the request packet as input and extracts the value matching the
key from it, rather than simply comparing or concatenating the

Key Handling Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Pattern-based Analysis {websGetVar,respCgiSendResp,strncmp,sub_1BB34}

LLM-aided Analysis
{websGetVar,get_mib_2cJSONString,GetResponse-
 ResultString}

Composite Result {websGetVar}

int formSetSchedLed(wp,path,query){
  time_interval = websGetVar(wp,"time","00:00-06:30"); // non-hidden
  close_type = websGetVar(wp,"ledCloseType","allclose"); // hidden
  if(!strncmp(old_sched_led_type,"time",4)&&!strncmp(sched_led_type,
     "close",5)){
    ResponseResultString = GetResponseResultString(v6);
    ...
    respCgiSendResp(v6,v7,"PWD_password",query);
  }
  get_mib_2cJSONString(root,"config","w15g.bss.wps.basic_have_config"
                       ,&wifi_buf_entry);
  ...
  return sub_1BB34("PWD_password",query);
}

Figure 5: An example of key handling code.The keys and key
handling functions are marked with green color.

Algorithm 2: Extract Key from Backend Binary
Input: k for the key set extracted from frontend

UF for the corresponding set of URI and URI handling
function

Output: KFunc for the key handling function set
UK for the URI, key corresponding set

1 KFunc← /0;
2 UK ← /0;
3 foreach ki ∈ k do
4 foreach f ∈ get_xref_func(ki) do
5 r1, r2← /0;
6 AST ← Decompiler( f );
7 r2← LLM_KeyAnalysis( f );
8 while visit(AST ) do
9 if is_call(expr) then

10 if ki ∈ expr.arg ∧ f .arg ∩ expr.arg ̸= /0 then
11 r1 +← expr.name;

12 KFunc +← r1 ∩ r2;

13 foreach [ui, fi] ∈UF do
14 AST ← Decompiler( fi);
15 K ← /0;
16 while visit(AST ) do
17 if is_call(expr) ∧ expr.name ∈ KFunc then
18 K +← getStringArg(expr);

19 UK +← [ui, K ];

20 return KFunc, UK

key string or extracting the Key-Value from other sources such
as environment variables or configuration files. In Figure 5,
string time is passed as an argument not only to websGetVar
but also to strncmp. If whether the key time is relevant to the
HTTP request is not checked, strncmp will also be treated as
a function that handles keys, which will cause the string close
to be incorrectly extracted as a key, maybe leading to a large
number of false positives. The solution is straightforward as
LARA needs to check if the parameters of the key handling
function and the URI handling function have an intersection.

Algorithm 2 describes how LARA extracts keys in detail.
At first, LARA decompiles the function which the instruction
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calling the key and generates the AST for the function (line 6).
LARA records the function that handles HTTP requests and
takes the key as an argument by traversing the AST (lines 8 to
11). Simultaneously, LLM analyzes this code segment (line
7) and the intersection of its results with pattern-based static
analysis is taken as key handling functions (line 12). Then,
LARA extracts the key set using the key handling functions.
The key set is extracted separately in each URI handling func-
tion and associated with its corresponding URI record. To
extract the key, LARA traverses the AST generated by decom-
piling the URI handling function and analyzes the parameters
called by the key handling function (lines 16 to 18).

3.3 LLM-aided Analysis

Large language model can effectively enhance the effective-
ness of pattern-based static analysis through code semantics
comprehension. It can help reduce false positives(FPs) and
false negatives(FNs) in the extraction results of URI and key.

LLM-aided analysis can identify more URI registration
functions for URI binding code type I with clear code struc-
tures. As shown in Figure 4, due to the limited URI extracted
from the frontend (substeps ① in Figure 3), pattern-based
static analysis can only identify websFormDefine. But LLM-
aided analysis can effectively identify all registration func-
tions, namely websFormDefine and websAspDefine.

LLM contributes more on reducing FPs when extract-
ing keys. In Figure 5, function formSetSchedLed handles key
time and ledCloseType, and the real key handling function is
websGetVar. Pattern-based static analysis and LLM-aided anal-
ysis generate FPs in their respective results. Due to the pres-
ence of two strings password and PWD_password extracted in
the frontend, so when functions respCgiSendResp, strncmp and
sub_1BB34 conform to the code patterns, they will be mistaken
for key handling functions by pattern-based static analysis.
For LLM-aided analysis, some misleading symbols lead to
false positives. Arguments wl5g.bss.wps.basic_have_config and
wifi_buf_enty misled the judgment of LLM, leading the func-
tion get_mib_2cJSONString to be misidentified as key handling
function. Additionally, the function GetResponseResultString
was mistaken due to the function name. However, despite the
misleading arguments PWD_password and query, the function
sub_1BB34 is not considered as a key handling function. This
is because LLM also takes into account the code structure
and contextual information of the function. It is worth noting
that FPs in both cases have inconsistent reasons, so intersect-
ing the results can effectively eliminate them. As shown in
§2.2 on the LARA-Site, the pattern-based static analysis ex-
tracted 1,032 key handling functions, the LLM-aided analysis
extracted 1,206, but only 388 were in both sets.

We designed corresponding LLM interaction models for
extracting URIs and keys based on the LMQL [3], enabling
LLM-aided analysis to produce valid results without manual
interactions. The model consists of three parts three com-

LLM interaction model  for extracting URI Registration Function

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

query:
 [CoT Prompts]
  f = Locate_function(URI_reference_address)
 "Analyze the function f pseudocode and identify each called function"
 funcs = []
 "[FUNCs]"
 funcs += (FUNCs.list())
 result = []
 for func in funcs:
  "Whether the function func is with registration functionality?"
  "[A2]"
  if A2 == "YES":
   result.append(func)
from "GPT-3"
where
 FUNCs over OPTIONS.split(",") and
 STOPS_AT(A2, "YES")OR STOPS_AT(A2, "NO")

Figure 6: The Model for extracting URI Registration Func-
tion.

ponents: the query clause, the from clause and the where
clause. The Figure 6 shows the model for automatically iden-
tifying URI registration functions. The query clause serves
as the core and models the process of interaction with LLM.
In the query clause, the text [CoT Prompts] [51] marked with
blue color serves as specific few-shot examples that can be
referred to when LLM runs. The text marked with green color
indicates the parsed answers retrieved from LLM or the calls
on them. For unmarked text, the content within quotation
marks serves as prompts for interacting with LLM, which
prompts can be a combination of strings and previous results,
while the rest consists of Python programming statements,
which also makes use of control-flow and branching behav-
ior. The from clause denotes which LMQL backend to use,
like GPT-3 model available via the OpenAI API [35]. The
where clause directly operates on tokens, constraining the
LLM in what it can generate. Constraints can be an arbitrary
conjunction or disjunction of condition expressions which
allow comparison and membership checks between standard
python expressions [3]. For the example on line 16 in Fig-
ure 6, STOPS_AT(A2, "YES") expresses when the answer A2 is
decoded, the decoding should stop as the specified phrase
"YES" is encountered. In summary, the process of LLM-aided
analysis is controlled by the Python programming statements
in the query clause. When sending the prompt, the LMQL
backend specified by the from clause is selected, and the an-
swer of LLM is parsed according to the constraint defined in
the where clause. Figure 7 shows the model for automatically
identifying key handling functions, with the same underlying
concept but a different design.

Prompt Design. For URI registration function, prompts check
if the code fragment referencing a URI includes a function
with registration functionality. For key handling function,
prompts first check if the function arguments originate from
HTTP requests, then infers from the code implementation
whether the primary purpose of the function is to retrieve
some information and assign a value.

Merge Operation. For URI binding code type I, LARA first
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1 int save_encrypted_data(char *a1, char *a2){
2 memset(s, 0, 0x200);
3 snprintf(s, 0x200, "echo -n %s | openssl ... -out %s",

a1, a2);↪→

4 return popen(s, "r");
5 }

Listing 1: An Example of the Wrapper Function

takes the intersection of the results of pattern-based static
analysis and LLM-aided analysis to identify potential URI
registration functions. Any additional results identified by
LLM-aided analysis are then evaluated to determine if they
conform to the code patterns, i.e., having one string and one
function as parameters. For type II and III, pattern-based static
analysis is sufficient on its own, as LLM involvement offers
minimal benefits. For key handling function, the intersection
of LLM-aided analysis and pattern-based static analysis re-
sults is taken. While LLM-aided analysis provides additional
results compared to pattern-based analysis, these additional
results cannot be verified using valid code patterns and are
therefore discarded. This approach leads to a small and ac-
ceptable number of FNs (explained in §C).

3.4 Sink Extraction
The sinks are operations that may violate security rules lead-
ing to vulnerabilities when supplied with distrusted inputs.
We categorize these sinks into function-call sinks, which in-
clude dangerous functions from standard library and their
wrapper functions, and non-function-call sinks.

Some dangerous functions may not be invoked directly.
Instead, they are wrapped up by some wrapper functions in
either the main binary or shared libraries. Wrapper functions
may pertain to a straightforward but easily overlooked sce-
nario where the dangerous function that triggers the vulnera-
bility is not in the same binary as the code that handles user
inputs. It is worth noting that this scenario differs from the
multi-binary scenario that KARONTE [38] addresses, as there
is no inter-process communication involved. Listing 1 illus-
trates a wrapper function, save_encrypted_data, defined in a
shared library and used to save encrypted data by dangerous
function popen, which poses a command injection risk. In the
case of CVE-B in Figure 1, the absence of the correspond-
ing sink twsystem is also one of the reasons why SATC can-
not detect this vulnerability. To date, all existing techniques
have overlooked this type of sinks, resulting in the failure
to detect many vulnerabilities. Therefore, the program and
its shared library should be analyzed when extracting sinks.
The dangerous function calls can be detected via function
name matching, while for wrapper functions, we can collect
all related programs and shared libraries, then recursively ex-
tract the wrapper functions of the dangerous functions. When
analyzing wrapper functions, there may be multiple layers
wrapper functions. Therefore, we have designed two strate-

gies to improve accuracy of extracting wrapper functions in
the backend programs and its shared libraries recursively. ❶
Using taint analysis ensures that the input to the dangerous
function is user-control. ❷ Filtering out the wrapper functions
which do not include any URI or key handling code.

It is worth noting that directly analyzing shared libraries
during taint analysis and extracting wrapper functions from
the shared libraries as sinks have the same effect. However,
pre-analyzing shared libraries to extract wrapper functions
can reduce the overhead caused by repetitive propagation and
locating functions within the shared library.

For non-function-call sinks, vulnerabilities are caused by
direct variable operations, which may affect the contents of
variable values, the positions of array reads, the number of
controlled loop iterations, and so on. Non-function-call sink
can also exist within shared libraries, and it can be identi-
fied simultaneously during the process of extracting wrapper
functions through taint analysis.

3.5 Taint Analysis

LARA uses a key-sensitive taint analysis engine to analyze
the backend program that handles HTTP requests and tracks
the data flow of the user input entries to detect potential vul-
nerabilities. The engine can decompile program binaries to
produce AST and traverses the AST to propagate the taint
information and detect security issues.
The Taint Source. During the analysis process, a taint source
is considered to be the variable to which the value correspond-
ing to the key is assigned. This variable can be an argument
or a return value of the function.
Taint Tracking. Taint analysis begins at the URI handling
function where the processing of the HTTP request body be-
gins. Based on the AST, LARA can quickly obtain the type of
each data and operation during the taint propagation process.
We have defined a variable triplet consisting of the taint prop-
erty, allocated memory or value, and maximum allocatable
memory to record the state of each data. The taint property is
categorized as uninitialized, tainted, and not_tainted. LARA
leverages this triplet to record the memory size and taint prop-
erty changes of each affected array, pointer, writable global
variable, and data in classes and structures.
Taint Analysis. Taint propagation rules involve intra-function
and inter-function propagation. Intra-function propagation is
path-sensitive and utilizes ASTs and forward analysis to track
data flow. It performs separate taint propagation for different
branches and summarizes the results at branch convergence
points. Taint status is assigned as tainted if a variable is tainted
within a branch. Inter-function propagation follows the rules
of analyzing only function calls with taint property parame-
ters and categorizing functions into dangerous, imported, and
general types for separate analysis. Dangerous functions, in-
cluding standard library functions and their wrapper functions,
are used as sinks and analyzed based on predefined rules. For
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imported functions, LARA forcefully sets taint properties of
return values and parameters to tainted. Although this may
lead to errors in taint propagation, it also reduces the over-
head caused by analyzing those functions in detail. For gen-
eral functions, LARA decompiles them based on their entry
addresses and performs taint analysis on the ASTs, propagat-
ing taint to variables corresponding to function parameters
with taint attributes. And LARA determines the presence of
vulnerabilities in the function based on contextual informa-
tion before and after function calls and records whether other
function parameters and return values are tainted.
Vulnerability Detection. LARA checks variable triplet and
determines if a vulnerability can be triggered based on the
sink models. Non-function-call sink models and dangerous
standard library function sink models are predefined. Wrapper
function models are extended based on the results of wrapper
function extraction. LARA checks constraints when tainted
data reaches a sink. For example, it assesses buffer overflow
risks at strcpy by evaluating buffer constraints from functions
like memset and stack length. Constraints from strncpy-like
functions are also considered. Additionally, LARA evaluates
other constraints, such as the impact of %s and %d on string
formatting result, and only the first parameter of execv can
lead to command injection vulnerability.

4 Evaluation

Implementation. We implemented the LARA prototype with
over 10,200 non-comment lines of Python code. LARA lever-
ages several other existing libraries or tools. The keyword
analyzer is based on the standard XML processing library
and JavaScript parsing library Js2Py [14]. All data flow analy-
sis, including pattern-based static analysis, sink extractor and
taint analyzer, is implemented using the disassembly engine of
IDA Pro [20], which supports the analysis of programs across
different architectures and the IDAPython [21] plugin. We
implemented LLM-aided analysis using the LMQL model
written in Python [42] and by invoking the GPT-3 model
through the OpenAI library [35]. LARA focus on detecting
memory-corruption vulnerabilities and command injection
vulnerabilities, but also supports format string vulnerabilities,
path traversal and other taint-style vulnerability detection.
Evaluation Questions. We evaluated LARA on real-world
embedded systems to answer the following research questions
(RQs):

• RQ1. How is the performance of LARA comparing with
the state-of-the-art tools? (§4.2)

• RQ2. How effective each part of LARA is for discovering
vulnerabilities? (§4.3)

• RQ3. Can LARA discover previously unknown real-world
vulnerabilities in firmware? (§4.4)

Table 1: Experiment Configurations of LARA Variants.
Experiment Mode Key-sensitive

Taint Analysis
Key-pattern

Analysis
URI-pattern

Analysis
LLM-aided

Analysis
Sink

Extraction
LARA-Sink ✔ ✗ ✗ ✗ ✔
LARA-Key ✔ ✔ ✗ ✗ ✗
LARA-Pattern ✔ ✔ ✔ ✗ ✗
LARA-LLM ✔ ✗ ✗ ✔ ✗
LARA-Combined ✔ ✔ ✔ ✔ ✗
LARA ✔ ✔ ✔ ✔ ✔

4.1 Evaluation Setup

Dataset. To evaluate LARA, we collected samples from
SATC [10], KARONTE [38], EMTAINT [12], FIRMAE [27]
and other real-world devices as firmware dataset. The dataset
comprises 203 firmware samples from 21 vendors, including
10 different device types, covering 80 Routers, 37 APs, 20
Switches, 19 IPCameras, 17 Firewalls, 11 Range Extenders,
6 VPNs, 6 Modems, 4 Bridges, 3 NAS. The selection process
was guided by several crucial criteria, including popularity,
frequency of being tested, development activeness, and func-
tionality diversity. To have a fair ground truth, we collected
all known buffer overflow vulnerabilities and command injec-
tion vulnerabilities that exist in these firmware samples from
CVE records [13], while filtering out vulnerabilities without
detailed information. For example, AXIS have no relevant
vulnerabilities, whereas most of the vulnerability information
for NetGear and Zyxel is not publicly available. In the end,
we totally collected 646 known vulnerabilities, as illustrated
in the fourth column in TABLE 2. Furthermore, we manually
determined the URI binding code type for each vulnerability
and checked whether the source was from hidden data. Our
findings indicate that the dataset comprehensively covers all
types of URI binding code, and that 84 of 645 vulnerabilities
were attributable to hidden data.
Baselines. We compared LARA with three SOTA tools
and various variants of LARA presented in TABLE 1.
KARONTE [38], SATC [10] and EMTAINT [12] are the most
relevant tools, while the variants of LARA are used to demon-
strate the benefits of each technique in the paper.

• KARONTE, which focuses on vulnerabilities caused by in-
teractions between multiple binaries. Its idea was integrated
by SATC and LARA.

• SATC, which uses sources extracted from the frontend, and
sinks are predefined functions.

• EMTAINT, which utilizes on-demand alias analysis to en-
hance taint tracking. Its sources and sinks are predefined.

• LARA-Sink, which uses the same sources with SATC and
the sinks provided by sink extraction. Comparing LARA
with this variant helps to evaluate the effectiveness of the
sink extraction module (§3.4).

• LARA-Key, which considers key pattern to extract sources
and uses the same sinks with SATC. Comparing LARA
with this variant helps to evaluate the effectiveness of the
key-pattern analysis module (§3.2.2).

• LARA-Pattern, which combines URI and key patterns to
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Table 2: Vulnerability Detection Result of LARA and SOTAs on the Dataset. (x(y) means #All(#Hidden). “Prec." and
“Reca."Indicate Precision and Recall, respectively. Time is overall analysis time which unitIs min.)

Vendor Samples URI Type #Vuln LARA SATC KARONTE
TP FP FN Prec. Reca. Time TP FP FN Prec. Reca. Time TP FP FN Prec. Reca. Time

Tenda 19 I&II 233 (51) 231 (51) 28 2 89.2% 99.1% 4,306 64 (1) 89 169 41.8% 27.5% 8,903 12 23 221 34.3% 5.2% 9,120
TOTOLink 11 II&III 134 (13) 134 (13) 32 0 80.7% 100.0% 736 8 23 126 25.8% 6.0% 5,280 0 5 134 0.0% 0.0% 4,667
H3C 13 I&I&III 88 88 9 0 90.7% 100.0% 894 0 22 88 0.0% 0.0% 6,240 0 11 88 0.0% 0.0% 6,240
DLink 14 I&II&III 67 (11) 62 (11) 13 5 82.7% 92.5% 1,603 0 42 67 0.0% 0.0% 6,720 8 22 59 26.7% 11.9% 5,903
TRENDnet 13 I&II&III 23 (2) 23 (2) 11 0 67.6% 100.0% 1,103 3 10 20 23.1% 13.0% 5,080 0 3 23 0.0% 0.0% 5,914
Wavlink 3 III 21 21 9 0 70.0% 100.0% 96 1 6 20 14.3% 4.8% 903 0 2 21 0.0% 0.0% 1,003
NetGear 34 I&II&III 16 (1) 16 (1) 15 0 51.6% 100.0% 8,799 1 11 15 8.3% 6.3% 16,011 11 15 5 42.3% 68.8% 14,080
Cisco 4 II&III 10 10 8 0 55.6% 100.0% 153 1 16 9 5.9% 10.0% 603 3 6 7 33.3% 30.0% 667
Linksys 13 I&II&III 9 (3) 9 (3) 0 0 100.0% 100.0% 768 0 15 9 0.0% 0.0% 2,301 0 3 9 0.0% 0.0% 3,005
DrayTek 9 I&II&III 9 9 5 0 64.3% 100.0% 1,203 0 0 9 0.0% 0.0% 3,908 0 0 9 0.0% 0.0% 4,320
TPLink 8 I 9 (1) 8 (0) 3 1 72.7% 88.9% 803 1 0 8 100.0% 11.1% 1,608 0 0 9 0.0% 0.0% 1,303
Zavio 1 III 9 9 1 0 90.0% 100.0% 82 0 2 9 0.0% 0.0% 480 0 0 9 0.0% 0.0% 480
Motorola 2 I 6 (2) 6 (2) 2 0 75.0% 100.0% 147 0 3 6 0.0% 0.0% 960 0 1 6 0.0% 0.0% 960
Belkin 3 II&III 5 5 0 0 100.0% 100.0% 283 3 4 2 42.9% 60.0% 803 2 1 3 66.7% 40.0% 966
SonicWall 2 II&III 4 4 1 0 80.0% 100.0% 182 0 0 4 0.0% 0.0% 960 0 0 4 0.0% 0.0% 960
ASUS 18 I&II 1 1 0 0 100.0% 100.0% 2,108 0 3 1 0.0% 0.0% 5,166 0 3 1 0.0% 0.0% 3,806
QNAP 5 III 1 1 0 0 100.0% 100.0% 603 0 3 1 0.0% 0.0% 1,608 0 0 1 0.0% 0.0% 1,303
Fortinet 1 II 1 1 2 0 33.3% 100.0% 20 0 0 0 0.0% 0.0% 480 0 0 0 0.0% 0.0% 480
Zyxel 25 I&III 0 0 0 0 0.0% 0.0% 3,260 0 0 0 0.0% 0.0% 9,605 0 0 0 0.0% 0.0% 7,221
Mercury 3 I&III 0 0 3 0 0.0% 0.0% 228 0 0 0 0.0% 0.0% 1,440 0 0 0 0.0% 0.0% 920
AXIS 2 III 0 0 0 0 0.0% 0.0% 51 0 0 0 0.0% 0.0% 452 0 0 0 0.0% 0.0% 960
Total 203 — 646 (84) 638 (83) 142 8 81.8% 98.8% 27,428 82 (1) 249 563 24.8% 12.7% 79,511 36 95 609 27.5% 5.6% 74,278

extract sources and uses the same sinks with SATC. Com-
paring LARA with this variant helps to evaluate the effec-
tiveness of the pattern-based static analysis module (§3.2).

• LARA-LLM, which only adopts LLM-aided analysis to
extract sources and uses the same sinks with SATC. Com-
paring LARA with this variant helps to evaluate the effec-
tiveness of the LLM-aided analysis module (§3.3).

• LARA-Combined, which combines pattern-based static
analysis with LLM-aided analysis to extract sources and
uses the same sinks with SATC. Comparing LARA with
this variant helps to evaluate the effectiveness of the entire
source extraction module.

Configurations. LARA and its various variants were executed
on a host machine with an 8-core Intel Xeon Processor and
128GB of RAM running the Ubuntu 18.04 operating system.
Firmware analysis was conducted and any analysis exceeding
8 hours was recorded as 8 hours.

4.2 RQ1: Comparison with the SOTA tools
We conducted a comparative analysis between LARA, SATC
and KARONTE, focusing on their capabilities in finding
known vulnerabilities, extracting source and sink informa-
tion, and incurring time overhead.
Overall Results. TABLE 2 presents the results of LARA,
SATC and KARONTE on firmware samples. LARA identified
780 potential vulnerabilities, with a precision of 81.8%. It
missed 8 vulnerabilities, having a recall of 98.8%. On the
other hand, SATC reported 331 potential vulnerabilities with
a precision of 24.8%. Moreover, SATC achieved a low recall
of 12.7%. KARONTE reported 131 potential vulnerabilities
with a precision of 27.5% and a recall of 5.6%. In particular,
all vulnerabilities detected by SATC and KARONTE are cov-
ered by LARA. In summary, LARA significantly outperformed
SATC and KARONTE concerning precision and recall in de-

tecting vulnerabilities in firmware samples; i.e., it improved
the precision of SATC by 57.0% and KARONTE by 54.3%,
while improving recall by 86.1% and 93.2%.

Regarding detecting of vulnerabilities triggered by hidden
data, LARA successfully identified 83 of 84 vulnerabilities,
while SATC only caught one. Upon further manual analysis,
we discovered that SATC only coincidentally identified the
vulnerability. This is because the key which caused the vul-
nerability was also in the frontend file, but with a different
corresponding URI. SATC only analyzed the key, resulting
in the detection of the hidden vulnerability.

FP Analysis for LARA. We analyzed all false positives in
LARA, and summarized two reasons. 105 false positives oc-
curred due to LARA disregarding critical key operations be-
tween the source and sink, like filtering or format-checking
functions. For example, a string check on user input filters
out certain special characters to avoid command injection vul-
nerabilities. However, incomplete filtering can be bypassed
leading to command injection vulnerabilities. Vulnerability
CVE-2022-45996 that found on Tenda W20E by LARA al-
lows for command injection using the character $, despite
the code checking for characters ; \ &. Additionally, incorrect
identification of sinks leads to 37 false positives. This in-
cludes cases where conditional checks are used in wrappers
functions to prevent data from reaching dangerous functions.

FN Analysis for LARA. 8 vulnerabilities were not detected
by LARA due to either the complex inter-process communica-
tion (IPC) method or problems with the disassembly engines
itself. Some embedded systems use complex IPC commu-
nication methods without keywords, leading to untraceable
inter-process data flows and resulting in 3 false negatives. In
addition, some functions cannot generate pseudo-code due
to the disassembly engine itself, specifically missing func-
tion parameters, which prevents regular data flow analysis.
After manual intervention and testing, the pseudo-code was

USENIX Association 33rd USENIX Security Symposium    7077



Table 3: Overall Comparison Results of LARA with Baselines.

Tools Vulnerability Detection URI Registration Fun. URI Key Handling Fun. Key
#Alert TP Prec. Reca. # TP Prec. # TP Prec. # TP Prec. # TP Prec.

SATC 331 82 24.8% 12.7% — — — 5,201 4,329 83.2% — — — 34,081 17,959 52.7%
LARA-Sink 269 168 62.5% 26.0% — — — 5,201 4,329 83.2% — — — 34,081 17,959 52.7%
LARA-Key 782 498 63.7% 77.1% — — — — — — 1,032 383 37.1% 168,952 102,597 60.7%
LARA-Pattern 685 498 72.7% 77.1% 203 70 34.5% 24,969 24,969 100.0% 1,032 383 37.1% 155,664 102,433 65.8%
LARA-LLM 690 504 73.0% 78.0% 188 122 64.9% 27,823 27,714 99.6% 1,206 388 32.2% 133,266 102,611 77.0%
LARA-Combined 603 504 83.6% 78.0% 132 122 92.4% 27,781 27,714 99.8% 388 383 98.7% 102,905 102,597 99.7%
LARA 780 638 81.8% 98.8% 132 122 92.4% 27,781 27,714 99.8% 388 383 98.7% 102,905 102,597 99.7%

Table 4: Vulnerability Detection Result of EMTAINT.
Tools TP FP FN Prec. Reca.

EMTAINT Prototype 14 275 632 4.8% 2.2%
EnhanceI 212 162 434 56.7% 32.8%EMTAINT+LARA EnhanceII 259 168 387 60.7% 40.1%
EnhanceI 45 226 601 16.6% 7.0%EMTAINT +SATC EnhanceII 47 231 599 16.9% 7.3%

fixed, and LARA could detect these five previously missed
vulnerabilities. An in-depth investigation of the URIs and
keys responsible for these vulnerabilities revealed that LARA
had identified them already.
FP and FN Analysis for SATC. The false positive is caused
by imprecise identification of key in the backend binary and
harmless processing operations. First, the key extracted by
SATC is called at multiple locations, where only one repre-
sents a controllable user input while the others are uncontrol-
lable strings. A path from an uncontrolled string to a dan-
gerous function may lead to a false positive. Second, some
keys are in unreachable functions. However, for LARA, these
false positives can be avoided by separating and recombining
URIs and keys and extracting the key through key handling
code. Additionally, Our manual analysis of false negatives
for SATC found two primary reasons: SATC failed to extract
some non-hidden or hidden keys and lacked certain sinks.
Out of 563 vulnerabilities not found compared with LARA,
441 were caused by failure to extract corresponding keys, 105
were due to the lack of sinks, and 17 were attributed to the
absence of both keys and sinks.
FP and FN Analysis for KARONTE. KARONTE focuses on
the shared data between binaries but ignores on the entry
points of the user input. Thus uncontrolled sources (such as
fgets) lead to most false positives. The dataset contained a
total of 58 IPC vulnerabilities, out of which KARONTE failed
to detect 22. Among these, 13 were attributed to unrecognized
IPC paradigms (such as apmib_set and apmib_get), while the
remaining 9 were due to a lack of sources.
Time Overhead. The analysis time overhead of KARONTE,
SATC and LARA is presented in TABLE 2. It shows that
LARA requires less time than SATC and KARONTE. Overall,
the total analysis time was reduced by 65.5% and 63.1%.
Source Extraction. TABLE 3 presents an overview of the
URI and key extraction results obtained by LARA in the
dataset. LARA extracted a total of 27,781 URIs and 102,905
keys from the dataset with a precision of 99.8% and 99.7%,

Table 5: Results of Sink Extraction in the Dataset by LARA.
Sample Type #Sink Func. Max Wrap Times FP

DLink DIR816 Router 9 2 1
Tenda AC9 Router 12 3 0
TOTOLink A7100RU Router 31 3 2
NetGear EX6200 AP 42 3 4
H3C H100 AP 23 3 1
TRENDnet TV-IP110WN IPCamera 2 2 0
Cisco RV110W FireWall 18 2 0
Draytek G1282 Switch 21 3 2
Total — 158 — 10

including 9,299 hidden URIs and 15,411 hidden keys. In con-
trast, SATC identified 5,201 URIs and 34,081 keys with a
precision of 83.2% and 52.7%. Additionally, LARA detected
23,385 more URIs and 84,638 more keys than SATC, repre-
senting an increase of 5.4 times and 4.7 times. This indicates
that some non-hidden data is not being detected by SATC,
due to the incomplete keyword matching rules employed.

Sink Extraction. TABLE 5 presents the Sink extraction re-
sults of 8 firmware samples. The samples were selected based
on the number of known vulnerabilities collected make sure
that they come from different vendors or device types. LARA
identified 158 such functions in 8 firmware samples, with 10
false positives identified with manual analysis, indicating a
precision rate of 93.7%. These false positives are caused by
ignoring data checks, i.e., the wrapper functions may check
the data, leading to the user-controlled data not reaching the
dangerous operations. The maximum number of wrapper func-
tion calls for these dangerous functions was 3, highlighting
the significance of identifying them.

Enhanced EMTAINT Evaluation. To better assess the im-
pact of additional sources and sinks, we conducted an analysis
of EMTAINT that utilizes SSE-based on-demand alias analy-
sis technique to enhance the analysis in embedded systems.
As shown in TABLE 4, EMTAINT could find 14 known vul-
nerabilities. The uncontrolled sources, disregarding sanitizer
operations cause false positives, while incomplete recogni-
tion of indirect calls and IPC methods lead to false nega-
tives. With more sources from LARA and SATC, EMTAINT-
EnhanceI could detect 212 and 45 vulnerabilities. Meanwhile
with more sources and sinks from LARA and SATC, EM-
TAINT-EnhanceII could detect 259 and 47 vulnerabilities.
Note that EMTAINT only used the provided sources and sinks
in the enhanced evaluation. The results proves that our source
and sink extraction methods are more effective than SATC,
which leads to higher precision and higher recall.
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Summary to RQ1: The performance superiority of LARA
is evident. Compared with SATC, LARA detected 556
more vulnerabilities, extracted 5.4 times more URIs and 4.7
times more keys, and incurred 65.5% less time overhead.
Compared with KARONTE, LARA detected 602 more vul-
nerabilities and incurred 63.1% less time overhead. With
more sources and sinks from LARA, EMTAINT could detect
245 more vulnerabilities.

4.3 RQ2: Ablation Study
Contribution of Source Extraction. To evaluate the contri-
bution of source extraction, we compared variants of LARA
with SATC. The detailed results are represented in TABLE 3.
Specifically, compared with SATC, LARA-Combined (with
the same sink) detected an additional 422 vulnerabilities, thus
achieving a 58.8% and 65.3% improvement in precision and
recall, respectively. This can be attributed to the fact that
LARA-Combined extracted 23,385 more URIs and 84,638
more keys than SATC while maintaining a higher precision
rate. The detection of additional vulnerabilities was facilitated
by both pattern-based static analysis and LLM-aided analysis,
which contributed to an increase in precision. Specifically,
with pattern-based static analysis enabled, LARA-Pattern iden-
tified 498 true vulnerabilities, achieving a precision rate of
72.7%. Similarly, with LLM-aided analysis enabled, LARA-
LLM detected 504 true vulnerabilities, albeit with a precision
rate of 73.0%. However, by combining these two methods, the
precision rate improved significantly to 83.6%. Meanwhile,
extracting key based on URI has been shown to enhance the
precision of vulnerability detection, as evidenced by the data
presented in the third and fourth row in TABLE 3. Specifi-
cally, compared to LARA-Key, LARA-Pattern improved the
precision by 9.0% with regards to vulnerability detection and
5.1% in terms of key identification.
Contribution of LLM-aided Analysis. LLM-aided analy-
sis contributes more on reducing the FPs than reducing the
FNs. TABLE 3 shows that compared with LARA-Pattern,
LARA-Combined reduces the FPR of vulnerability detection
by 10.9%, the FPR of URI registration function identification
by 57.9%, the FPR of key handling function identification by
61.6%, and the FPR of keys by 33.9%. Meanwhile, LARA-
Combined reduces the FNs by detecting 6 more vulnerabil-
ities, 52 more URI registration functions, 2,745 more URIs,
and 164 more keys. Detailed data as show in §2.2 at LARA-
Site, LLM-aided analysis detects more registration functions,
leading to more URIs extracted in 44 firmware samples. Com-
bining pattern-based static analysis and LLM-aided analysis,
the key handling functions of 196 firmware samples were
manually confirmed to be completely accurate.
FP Analysis for Source Extraction. There are 5 FPs in
the combined results of key handling functions, which leads
to 308 FPs of keys. Further analysis of the misstated keys
showed that they lead to no FPs in vulnerability detection.

Table 6: 0-Day Vulnerabilities Discovered by LARA.

Vendor #Series #0-Day Vuln #Hidden #Wrapper Func.LARA SATC KARONTE
Tenda 8 81 26 1 5 3
TOTOLInk 16 48 0 0 6 23
DLink 4 33 0 0 13 16
H3C 3 21 0 0 4 0
TRENDnet 5 15 7 4 1 3
Linksys 3 13 3 5 2 2
QNAP 3 12 0 0 0 0
Draytek 4 9 0 0 1 5
TPLink 4 4 0 0 0 0
ASUS 3 3 0 1 0 0
Cisco 2 3 0 0 0 0
Zavio 1 2 0 0 0 0
NetGear 1 1 0 0 0 0
Total 57 245 36 11 32 52

Contribution of Sink Extraction. Each sink has the potential
to lead to a vulnerability with user-controllable data . The re-
sults presented in TABLE 3 indicate that LARA-Sink has iden-
tified 86 additional vulnerabilities in comparison to SATC.
Moreover, LARA has identified 134 more vulnerabilities com-
pared to LARA-Combined. This proves that sink extraction
can effectively improve the ability to discover vulnerabili-
ties. Despite a slight decrease in precision of 1.8%, it’s an
acceptable trade-off due to improved vulnerability detection.

Summary to RQ2: The evaluation proves the effectiveness
of every component of LARA. Source extraction and sink
extraction significantly contributes to detecting 556 addi-
tional vulnerabilities. Furthermore, the utilization of LLM-
aided analysis and URI-pattern analysis helps to minimize
FPs and FNs in the extraction of URI and key, resulting in
a notable improvement in precision by 57.0%.

4.4 RQ3: Real-world Vulnerabilities

We also applied LARA to detect unknown vulnerabilities of
the firmware dataset in the wild. Each vulnerability was ver-
ified on the latest version of the firmware sample. As illus-
trated in TABLE 6, LARA uncovered a total of 245 previously
unknown vulnerabilities. So far, all 245 vulnerabilities have
been confirmed by the corresponding vendors, and 162 of
them have been assigned CVE IDs following responsible dis-
closure. Among these confirmed vulnerabilities, 32 (13.1%)
were due to hidden data, and 52 (21.2%) were caused by
dangerous wrapper functions.

Meanwhile, SATC and KARONTE were applied to analyze
these firmware samples. The results were disappointing, with
36 and 11 vulnerabilities detected. Furthermore, after analy-
sis of the vulnerabilities that not detected by SATC, LARA
detected 32 more vulnerabilities caused by hidden data, at
least 125 more vulnerabilities caused by non-hidden data and
52 more vulnerabilities caused by wrapper functions.

Summary to RQ3: LARA identified 245 vulnerabilities on
different devices, including vulnerabilities caused by hid-
den or non-hidden data and multi-layer wrapper functions.
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5 Discussion and Limitation

Adaptation for Other Protocols. Our evaluation focuses on
detecting vulnerabilities caused by the HTTP protocol in the
embedded systems. We also analyzed vulnerabilities caused
by other key-value pairs-based protocols. LARA can detect
vulnerability CVE-2021-27239 caused by the SSDP protocol
and vulnerabilities [28] caused by the DHCP options field
using methods similar to pattern-based static analysis.
Sanitizer for Taint Analysis. Some false alarms are often
caused by incomplete consideration of user input legitimacy
checks. Some operations, such as type conversion and length
check, have been considered. However, some checks can be
bypassed, such as CVE-2022-45996 mentioned in §4.2.
Unique Advantages of Taint Analysis. For fuzzing, black-
box testing targeting real devices faces challenges in code
coverage and crash monitoring. The web program of some
devices restarts quickly after crashing, making it difficult to
judge the crash through response packets. Additionally, some
devices cannot be accessed by shell, which also brings diffi-
culties to monitoring. Meanwhile, emulation-based fuzzing is
limited by the success rate of emulation [53]. FIRMAE [27]
successfully emulated 892 out of 1,124 firmwares. Out of
102 randomly selected firmwares from 1,124, FIRMAE deter-
mined that 80 were successfully emulated, but after manually
confirmation, only 45 met the fuzzing requirement. Further-
more, the setup of specific complex functions is necessary
before they can be tested. For symbolic execution, it requires
a lot of time to solve constraints and explore paths. However,
Time overhead is also an important criterion for evaluating
the efficiency of static analysis. TABLE 2 shows that SATC
still has significant time costs even when analysis paths are
provided for the symbolic execution engine. Taint analysis is
more efficient for complex data flows and diverse data struc-
tures, and IDA pro [20] provides a well-structured AST to
support pseudocode analysing.
Threat to Validation. First, LARA only supports backend
programs developed with C and C++. Second, the precision of
the disassembly engine may impact the outcomes of data flow
analysis for intricate program. Third, there may be potential
errors in the labeling/ground truth manually confirmed.
Responsible Disclosure. We have responsibly disclosed all
vulnerabilities we found. We provided detailed information
and PoC to the vendors for each vulnerability, facilitating
them to confirm and reproduce the vulnerability.

6 Releated Work

Static Analysis. Various static analysis techniques [30,
32, 57] have been developed to detect IoT vulnerabilities.
Karonte [38] tracks interactions between multiple binaries,
but overlooks user input resulting in many false positives.
SATC [10] extends Karonte [38] by focusing on the frontend
user input, but it is not enough. DTaint [11] detects taint-

style vulnerabilities in firmware using pointer aliases, inter-
procedural data flow, and data structure layout similarities,
but also overlooks the backend logic. EmTaint [12] comes up
with indirect call resolution and accurate taint analysis scheme
based on a structured symbolic expression-based on-demand
alias analysis technique. However, EmTaint only strengthens
the analysis of function pointers and cannot pinpoint pre-
cise source in the program to guide the discovery of more
vulnerabilities. Firmalice [41] uses concolic execution and
program slicing to detect authentication bypass vulnerabilities
in firmware, but the constraint solver limits its effectiveness.
NeuTaint [40] tracks information flow using neural program
embeddings and performs better than other taint analysis tools.
They all miss many sources and sinks, which leads to numer-
ous undetectable vulnerabilities.
Dynamic Analysis. Many works are based on fuzzing tech-
niques [50, 55, 58] to detect vulnerabilities in IoT devices.
SRFuzzer [59] and IoTFuzzer [8] employ black-box fuzzing
to detect vulnerabilities. Simulation-based fuzzing has also
become a research trend to reduce costs, with FirmAFL [60]
and Fuzzware [39] improving on the simulation method of Fir-
madyne [7]. Static analysis techniques have been combined
with fuzzing to improve testing efficiency [9, 33, 43]. Other
works [18,23,54,56] focus on firmware rehosting or verifying
specific vulnerabilities. However, they suffer from low code
coverage and only focus on memory-related vulnerabilities.
LLM for Program Analysis. With the popularity of LLMs,
many researchers have begun to focus on their applica-
tions in program analysis, particularly in vulnerability de-
tection [1, 34, 46, 48], program repair [24, 36], software test-
ing [16, 17, 29] and program comprehension [19]. In addition,
the work [37] has surveyed the assistance of GPT models in
reverse engineering and reports promising results.

7 Conclusion

In this paper, we proposed LARA, a novel static taint analysis
technique for detecting vulnerabilities in embedded systems
by leveraging semantic relations in code and data, which is
motivated by two key findings. First, user input entries can
be classified into URIs or keys. Analyzing their relations
and correspondence between the frontend and backend can
systematically locate more sources. Second, due to the dis-
tinct sources of false positives between LLM-aided analysis
and pattern-based static analysis results, LLM-aided analysis
based on code semantic comprehension can effectively help
to identify more accurate sources. The evaluation indicates
that, in comparison to other state-of-the-art tools, LARA has a
clear advantage in detecting more vulnerabilities with fewer
false positives. Moreover, LARA identified 245 vulnerabilities
in popular real-world embedded system firmwares, including
162 CVE IDs.
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A Case Study

LARA-Site provides a detailed analysis of previously undis-
closed vulnerabilities from various sources, including non-
hidden data, hidden data, and multi-layer wrapper functions.

B Rules Adopted by SATC and LARA

The URI and key identification rules adopted by LARA and
SATC are specifically listed to illustrate their differences and
clarify the gaps.

• URI identification rules: For URI binding code I, SATC
introduces a URI-like concept but doesn’t link URIs and
keys for vulnerability detection or analyze backend code
for them. LARA take this into account. For identification
rules defined in URI binding code II and III, they are
unique to LARA.

• Key identification rules: SATC only uses the backend
location of the shared keywords extracted from the fron-
tend as the source. LARA first identifies the key handling
function and then extracts the key in the backend, taking
into account the corresponding pattern of URIs and keys.

• LLM-aided analysis rules: LLM-aided analysis identi-
fies registration functions as URI handling functions and
identifies functions that retrieve information from HTTP
requests as potential source functions. This feature is
unique to LARA.

• Handle unreachable keywords through URIs: This
rule is adopted both by LARA and SATC, but the differ-
ence is that SATC only applies to certain URIs of URI
binding code I.

• Exclude key handling functions that share no argu-
ments with URI handling functions: This rule is unique
to LARA.

C Detail in Compare URI and Key Extraction

The detailed data is presented in §2.2 on the LARA-Site, show-
ing the results of URI and key extraction in each firmware
sample by LARA and SATC in the dataset.

And since LLM-aided are not used for URI binding code
type II and III, so URI extracted by LLM-aided and Combined
are used from P.A. It means 27,823 = 17,138 + 10,685.

In two firmware samples (G0 and G0-POE), there were
2 key handling functions missed , namely cJSON_GetDouble
and cJSON_GetObjectItem. While LLM-aided analysis was

able to extract these two functions (total four functions for
two samples), they were not extracted by key-pattern analysis.
However, since we took the intersection of the analysis results,
we missed these two functions, resulting in 14 fewer keys
being extracted. Further analysis of the missed key showed
that they did not lead to any vulnerability.

In two firmware samples (BS228FX and BS252FX), IDA
Pro does not support analysis of the eh_frame section, which
makes it impossible to extract URIs.

D The Model for extracting key Handling
Function.

LLM interaction model  for extracting key handling function

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18

19
20
21
22
23
24
25
26
27
28
29

query:
 [CoT Prompts]
 "Analyze the following C pseudocode and identify each called function"
 funcs = []
 "[FUNCs]"
 funcs += (FUNCs.list())
 result = []
 for func in funcs:
  "Whether the function func has the ability to retrieve information?"
  "[A2], [info]\n"
  if A2 == "YES":
   "Whether the source of info comes from an HTTP request?"
   "[A3]\n"
   if A3 == "YES":
    code = Decomplie([func])
    "Analyze the pseudocode code and speculate on the usage environment
, intended purpose and detailed function of func respectively"
    "[A4]\n"
    "Based on A4 judge whether the main purpose of function func is re-
lated to retrieving information"
    "[A5]"
    if A5 == "YES"：
     result.append(func)
from "GPT-3"
where
 FUNCs over OPTIONS.split(",") and
 STOPS_AT(A2, "YES") or STOPS_AT(A2, "NO") and
 STOPS_At(info, "\n") and
 STOPS_AT(A3, "YES") or STOPS_AT(A3, "NO") and
 STOPS_AT(A4, "\n") and 
 STOPS_AT(A5, "YES") or STOPS_AT(A5, "NO")

Figure 7: The Model for extracting key Handling Function.
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