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Abstract
Graph neural networks (GNNs) play a crucial role in vari-
ous graph applications, such as social science, biology, and
molecular chemistry. Despite their popularity, GNNs are still
vulnerable to intellectual property threats. Previous studies
have demonstrated the susceptibility of GNN models to model
extraction attacks, where attackers steal the functionality of
GNNs by sending queries and obtaining model responses.
However, existing model extraction attacks often assume that
the attacker has access to specific information about the victim
model’s training data, including node attributes, connections,
and the shadow dataset. This assumption is impractical in real-
world scenarios. To address this issue, we propose STEAL-
GNN, the first data-free model extraction attack framework
against GNNs. STEALGNN advances prior GNN extraction
attacks in three key aspects: 1) It is completely data-free,
as it does not require actual node features or graph struc-
tures to extract GNN models. 2) It constitutes a full-rank
attack that can be applied to node classification and link pre-
diction tasks, posing significant intellectual property threats
across a wide range of graph applications. 3) It can handle
the most challenging hard-label attack setting, where the at-
tacker possesses no knowledge about the target GNN model
and can only obtain predicted labels through querying the
victim model. Our experimental results on four benchmark
graph datasets demonstrate the effectiveness of STEALGNN
in attacking representative GNN models.

1 Introduction

The success of GNNs heavily relies on large-scale datasets,
similar to deep learning algorithms for images and texts.
These datasets often contain sensitive information collected
from users [38, 41], enabling the development of powerful
GNN models in critical domains such as healthcare [18],
banking systems [37], and bioinformatics [17]. For example,
GNNs have been utilized to analyze brain networks using

*corresponding author

Table 1: Comparison with Existing Model Extraction Methods
for GNNs.

Method Data-Free Node Classification Link PredictionTransductive Inductive

DeFazio et al.’s work [4] ✓
Wu et al.’s work [39] ✓

Shen et al.’s work [33] ✓
STEALGNN ✓ ✓ ✓ ✓

fMRI data [17]. Furthermore, GNN model owners may of-
fer query API services, allowing others to access and benefit
from the knowledge acquired by their GNN models. Pre-
trained GNN models are also commonly shared with third
parties for various downstream tasks [20,22,43,44]. However,
the availability of these pretrained models, combined with the
sensitive data they were trained on, raises privacy concerns.
General model extraction attacks. Model extraction attacks
are designed to steal information about a model’s architec-
ture and parameters. These attacks can either reconstruct the
original model or create a substitute model that performs sim-
ilarly [13, 33]. In these attacks, the attacker crafts multiple
queries to be input into the victim model’s API and cap-
tures the corresponding output. Subsequently, a local model
is trained using this paired data (input, output). As real data for
queries is often limited, recent studies [14, 35] have explored
data-free model extraction attacks. These methods employ a
generator to synthesize query examples as input to the victim
model. The generator and surrogate model are trained in a
competitive manner, similar to the principles of Generative
Adversarial Networks (GANs) [1,10]. The surrogate model
aims to mimic the predictions of the victim model, while the
generator maximizes the disagreement between the victim
model’s predictions and the surrogate model’s predictions. It
is important to note that most existing efforts on data-free
model extraction attacks primarily focus on the Computer
Vision (CV) domain [21]. However, developing efficient and
effective data-free model extraction attacks for GNN models
remains an open challenge, primarily due to the involvement
of both graph structure and node attributes in GNN modeling.
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Limitations of current model extraction attacks against
GNNs. Current model extraction attacks on GNNs are de-
signed based on different levels of background knowledge
available to the attackers [4,33,34,39]. For instance, attackers
who have access to the node attributes of a set of adversarial
nodes can generate queries from these adversarial nodes and
utilize the responses to train a substitute GNN. One example
of such an attack is presented in [39], where discrete graph
structure learning methods (e.g., LDS [8]) are employed to
construct a connected substitute graph using these node at-
tributes. Another approach, as described in [33], involves ini-
tializing the graph structure using K-nearest neighbors (KNN)
based on the node attributes and then updating it using a graph
structure learning framework [2].

The availability of information about the real training data
is crucial for launching a successful model extraction attack in
all these scenarios. However, it is important to note that most
real-world graphs, such as social and economic networks,
involve human-related activities. Due to privacy concerns,
these graphs are typically highly protected and not accessible
to potential attackers. For example, in a social network, user-
related information like friend lists, profiles, likes, comments,
and other details are considered highly sensitive and private.
As a result, existing attacks become ineffective without access
to the actual training dataset.

Moreover, prior research has predominantly concentrated
on validating the effectiveness of these attacks within the
context of node classification tasks, largely overlooking the
critical evaluation of their applicability to another crucial
real-world scenario: link prediction tasks. Node classifica-
tion tasks involve predicting labels or attributes for individual
nodes within a graph, whereas link prediction tasks revolve
around forecasting the presence or absence of edges between
pairs of nodes. Both of these tasks play pivotal roles in vari-
ous domains such as social sciences, biology, and molecular
chemistry. Hence, it becomes imperative to ascertain whether
model extraction attacks can effectively compromise GNNs
when deployed for link prediction tasks. Tab. 1 provides a
comparative overview of STEALGNN in comparison to exist-
ing methods, shedding light on the specific scenarios and ex-
perimental tasks for which they were designed. STEALGNN
conducted experiments to assess the performance of both node
classification and link prediction tasks. This comprehensive
evaluation enables us to offer a more holistic understanding
of the attack’s potential impact across a broad spectrum of
graph applications. Notably, the studies by [4] and [39] pri-
marily focused on experimentation with transductive GNNs,
which are designed to make predictions exclusively for nodes
present during training, while [33] concentrated on induc-
tive GNNs, which possess the capability to predict previously
unseen nodes during inference.
Challenges of conducting data-free model extraction at-
tacks on GNNs. Data-free model extraction attacks against
GNNs present unique challenges when compared to data-free

attacks on other neural networks: (1) Graphs exhibit diverse
levels of connectivity and hierarchical organization, making it
difficult to generate graphs with specific structural properties
such as connectivity patterns, node degrees, or community
structures. (2) Graphs often include attributes associated with
nodes and edges in addition to structural information. Gener-
ating meaningful attributes while ensuring their consistency
with the graph structure adds an additional layer of complex-
ity. This complexity arises from the need to create attributes
that not only carry relevant information but also align seam-
lessly with the underlying graph topology and relationships,
maintaining coherence and relevance throughout the entire
graph analysis process. (3) Unlike pixel-level image data that
allows for smooth spatial transformations, graph structures
are discrete. This discrete nature poses challenges when ap-
plying traditional gradient-based optimization methods like
backpropagation.
Our contribution. This paper focuses on data-free model
extraction attacks, which is considered the most challenging
and widely deployed setting for such attacks on GNNs. Im-
portantly, STEALGNN does not require access to real-world
data. Instead, it utilizes a generative model to generate syn-
thetic graphs for launching the attack. A key innovation of
STEALGNN lies in its ability to conduct model extraction
without the need for access to real-world graph data. It lever-
ages a powerful graph generator during the training process to
create synthetic graphs for launching the attack. As illustrated
in Fig. 1, the attacker employs this innovative generator to
produce synthetic graphs specifically crafted for querying the
victim model. The surrogate model is trained to imitate the
victim model based on the input-output pair.

To address the challenge of lacking access to actual gradi-
ents of the victim model for updating the generator’s parame-
ters, we categorize the attacks based on the training scheme of
the generator into three types: (1) Type I Attack: In this type
of attack, gradients are propagated back through a surrogate
model and the gradient approximation of the victim model.
By leveraging the estimated gradients of the victim model and
the surrogate model’s gradients, the generator optimizes its
parameters to capture knowledge from both models. (2) Type
II Attack: This type of attack involves propagating gradients
back through only one surrogate model. While this strategy
simplifies the gradient flow, it still allows the generator to
learn from the surrogate model. (3) Type III Attack: In this
type of attack, gradients are passed back through two surro-
gate models. By utilizing the gradients derived from both
surrogate models, the generator benefits from diverse perspec-
tives and insights, enhancing the learning and knowledge ex-
traction process. Extensive experimentation has consistently
demonstrated the exceptional performance of STEALGNN
across all three attack scenarios. Our contributions can be
summarized as follows:

(1) STEALGNN: We introduce STEALGNN, a pioneering
research endeavor that addresses data-free model extraction
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attacks on Graph Neural Networks (GNNs). By developing
a trainable graph generator, STEALGNN demonstrates its
ability to train a high-quality surrogate model from black-box
GNN models, even when only hard labels are available.

(2) Systematic Study: We conduct a comprehensive inves-
tigation and propose three extraction attack scenarios based
on the updating scheme of the graph generator parameters.
These scenarios provide a systematic understanding of differ-
ent approaches within the STEALGNN framework.

(3) Task Flexibility: STEALGNN is highly adaptable and
robust, capable of effectively handling various tasks. It can
be applied to both node classification and link prediction
tasks, showcasing its versatility. The results obtained from
our experiments provide compelling evidence for the superior
performance of STEALGNN in these tasks.

2 Background

2.1 Notations
We define an undirected, unweighted, and attributed graph
as G = (V,E), where V represents the set of nodes, and E
represents the set of edges. The adjacency matrix A is defined
as follows: Au,v = 1 if the edge (u,v) ∈ E, and 0 otherwise.
In this notation, n denotes the total number of nodes, d rep-
resents the dimension of the node features, and c indicates
the number of node classes. We use F ∈ Rn×d to denote the
node feature matrix, and Y ∈ Rn×c represents the node label
matrix. Furthermore, we refer to the graph generator as MG,
the feature generator as MGF , the structure generator as MGA ,
the victim GNN model as MV , and the surrogate GNN model
as MS.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) have garnered significant
attention in the field of graph-structured data learning for a
variety of tasks [40]. In general, most GNN models follow a
paradigm that includes neighborhood aggregation and mes-
sage passing [9]. At the k-th layer, the representation hk

v of
each node v is learned by iteratively aggregating the embed-
dings hk−1

u of its neighboring nodes u ∈ N (v):

hk
v = AGG

(
hk−1

v ,MSG
(

hk−1
v ,hk−1

u

))
,u ∈ N (v), (1)

where h0
v = Xv represents the node feature of node v. MSG

stands for message aggregation. It calculates the messages
exchanged between a node v and its neighbors u at layer k−1.
These messages typically encapsulate information about local
structural patterns and features. AGG is referred to as the ag-
gregation function. It combines information from the previous
layer’s representation hk−1

v and the messages generated by
the MSG function, which involves interactions between the
node of interest v and its neighboring nodes u ∈ N (v). After

K iterations of aggregation, a node representation, denoted
as hK

v , captures the structural information within its K-hop
network neighborhood.

3 Threat Model

3.1 Attacker’s Setting

Generally, the knowledge of an attacker regarding the threat
model in GNN-based attacks can be classified into two set-
tings: black-box attack and gray-box attack. (1) Black-Box
Attack: The attacker lacks access to the target GNN’s pa-
rameters, architecture details, and hyperparameters. They can
query the model for predictions. (2) Gray-Box Attack: In this
scenario, the attacker has partial knowledge about the target
model, like its structure, but no access to parameters.

In this paper, we address the most challenging adversarial
setting: black-box attacks. Our attack methodology funda-
mentally differs from previous black-box attacks on GNNs
[33, 39]. These attacks assume that the adversary has access
to the victim model’s original training data, such as node fea-
tures, structure, or shadow datasets. However, this assumption
often misaligns with real-world scenarios, where training data
is frequently treated as private and diligently protected from
potential attackers. For instance, a real-world deployment of a
GNN in a financial institution for fraud detection. The GNN is
trained on a vast dataset containing transaction histories, user
profiles, and behavioral patterns. In this context, the training
data is highly confidential and sensitive, as it may contain per-
sonal information and proprietary insights. Allowing external
access to this training data would not only violate privacy
regulations but also pose substantial security risks. Given
such real-world example and the broader context of privacy
concerns, the assumption that adversaries have access to the
victim model’s training data becomes increasingly unrealis-
tic. Therefore, our work addresses a more realistic scenario
wherein attackers are constrained to rely on synthetic datasets
to query the victim model and extract valuable information.

3.2 Attacker’s Goal

The objective of this attack is to extract information from
the target model by training a model that exhibits similar
behavior. The attack may focus on different aspects of the
target model’s information, leading to two primary goals in
model extraction: (1) The attacker aims to obtain a model that
achieves comparable accuracy to the target model. (2) The
attacker attempts to replicate the decision boundary of the
target model. Model extraction attacks pose a threat to the
security of models used in API services [26] and can serve
as a foundation for various privacy attacks and adversarial
attacks.
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Figure 1: Generator update strategies: (a) Gradients are propagated through both a surrogate model and an approximation of
the victim model. This approach aims to capture a broader understanding of the victim model’s decision-making process. (b)
Gradients are passed back through a single surrogate model. This simplifies the update process by relying on the knowledge
learned by a single surrogate model, potentially sacrificing some diversity in the learned knowledge. (c) Gradients are passed
back through two surrogate models. This allows the generator to benefit from the diverse perspectives captured by both surrogate
models, enhancing its ability to emulate the victim model more effectively.

3.3 Attacker’s Taxonomy

The computation of the model extraction loss is essential for
updating the parameters of the local graph generator through
backpropagation. In typical scenarios, gradients can be back-
propagated to the generator by utilizing both a victim model
and a surrogate model. However, in black-box scenarios, the
parameters of the victim model are inaccessible, rendering
it impossible to backpropagate gradients through the victim
model. Due to this constraint, we have developed three types
of attacks based on different sources of gradients for updating
the generator’s parameters.

Type I Attack: As illustrated in Fig. 1(a), in this type of
attack, the gradient is propagated back through the surrogate
model and estimated using a gradient approximation method
for the victim model. The zeroth-order gradient estimate, in-
troduced by Polyak and Juditsky [28], is a technique used to
approximate gradients when the analytical form of the model
is unavailable. Instead, it relies on querying the model at
various input points and observing the corresponding output
values to estimate the gradient. This approach is particularly
valuable in the context of black-box optimization problems.
By iteratively sampling and comparing model predictions, the
zeroth-order gradient estimate enables derivative-free opti-
mization and exploration of the model’s behavior.

By leveraging the estimated gradient of the knowledge-rich
victim model, the generator can enhance its graph generation
process to capture and incorporate the valuable knowledge
from the victim model into the agent model. This optimiza-
tion allows the generator to produce graphs that effectively
encapsulate the desired knowledge and transfer it to the agent
model, thereby improving the performance and capabilities
of the agent model.

Type II Attack: As illustrated in Fig. 1(b), in this type

of attack, the generator is trained exclusively using gradients
propagated back through the surrogate model. As the model
extraction process progresses, the surrogate model refines its
behavior, gradually aligning with that of the victim model.
This alignment enables the gradients derived from the sur-
rogate model to serve as a reasonable approximation of the
gradients of the victim model. Leveraging this approximation,
the generator can effectively train and optimize itself, facili-
tating the extraction of knowledge from the victim model and
its subsequent incorporation into the agent model.

Type III Attack: When the graph generated by the gener-
ator passes through both the victim model and the surrogate
model, two possible outcomes can occur: consistent predicted
categories between the victim and surrogate models or in-
consistent predicted categories. If the generated graph yields
consistent predicted categories, it does not contribute to the
imitation of the surrogate model from the victim model. As a
result, the surrogate model fails to gain additional information
that can improve its emulation of the victim model. However,
if the generated graph results in inconsistent predictions be-
tween the two models, the surrogate model can acquire deeper
and more complex knowledge from the victim model, gradu-
ally approaching the decision-making process of the victim
model.

As illustrated in Fig. 1(c), in this attack, we simultaneously
train two surrogate models and introduce a loss function that
enforces inconsistency in their predictions. When the same
graph is inputted to both surrogate models and the victim
model, the inconsistent predictions of the surrogate models
indicate that at least one of them has learned valuable infor-
mation inconsistent with the victim model. This approach
prevents the generator from solely generating simple graphs
to minimize the model extraction loss, as the surrogate model
would fail to learn any meaningful information.
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Figure 2: The framework for graph generators. It consists of
two types of graph structure generators: the cosine similarity
generator and the full parameterization generator.

Advantages, Disadvantages, and Real-World Applica-
bility of Attack Types: In practical scenarios, the choice of
attack type hinges on various factors, including the attacker’s
constraints on querying the victim model, available computa-
tional resources, and the depth and complexity of knowledge
extraction objectives. For a more detailed connection with
real-world scenarios, please refer to the appendix A.4.

(1) Type I Attack: This method effectively harnesses gradi-
ent estimation techniques, making it well-suited for intricate
proprietary models. However, it may introduce noise and con-
sume substantial computational resources, especially when
numerous queries are required to obtain accurate gradient
estimates. Type I attacks excel when multiple queries to the
victim model are feasible. (2) Type II Attack: These attacks
solely rely on surrogate model gradients, simplifying their im-
plementation. However, compared to Type I attacks, Type II
knowledge transfer may be slower, given the initial disparity
between surrogate and victim model gradients. This approach
proves advantageous when query access to the victim model
is limited (e.g., due to API rate restrictions) or when the
victim model’s behavior evolves gradually. Type II attacks
are computationally less intensive than Type I but remain
effective in accumulating knowledge over time. (3) Type III
Attack: Type III attacks aim to capture intricate and profound
knowledge from victim models. However, their implementa-
tion involves the complexity of deploying and training two
surrogate models, along with a loss function to enforce incon-
sistency. Simultaneously running and monitoring these two
surrogate models can be computationally demanding. This ap-
proach is suitable when attackers seek to ensure that surrogate
models acquire in-depth knowledge from the victim model,
particularly in scenarios where simplistic attacks may prove
insufficient or when the victim model resists direct extraction
attempts.

4 STEALGNN

4.1 Attack Framework

Given a victim model MV (G;θV ), the objective of STEAL-
GNN is to learn a surrogate model MS (G;θS) that closely

resembles the victim model in terms of its behavior and pre-
dictions. To achieve this, a graph generator MG (z;θG) is em-
ployed to generate synthetic graphs G. The generator is up-
dated based on the loss function LMG

. The surrogate model
MS (G;θS) is trained using input-output pairs (G,MV (G)),
where MV (G) represents the output of the victim model for a
given input graph G. By training the surrogate model based
on these pairs, the surrogate model learns to approximate the
behavior and predictions of the victim model.

The proposed STEALGNN attack follows a specific data
flow, as shown in Fig. 1(a) with a blue arrow. It begins by
sampling a random noise vector z from a standard normal
distribution. The graph generator MG takes this noise vec-
tor as input and generates a graph G. This generated graph
is then used as input for both the victim model MV and the
surrogate model MS, which perform their respective infer-
ences and produce output predictions. The loss function is
computed based on the outputs of the victim model MV and
the surrogate model MS, measuring the discrepancy between
their predictions. This loss function serves as a measure of
how well the surrogate model can emulate the victim model.

We will now provide a detailed description of the graph
generator’s architecture and explain the training process for
both the generator and surrogate model.

4.2 Graph Generator
4.2.1 Feature Generator

The feature generator MGF (z) is a function defined as MGF :
R1×z → Rn×d . It transforms a one-dimensional noise vec-
tor z into a two-dimensional node feature matrix F with n
rows (representing the number of nodes in the graph) and d
columns (representing the dimension of the node features).
The purpose of this transformation is to ensure that the gen-
erated graph’s node features align with the expected input
feature dimension of the victim model. It is worth noting that
since the victim model is fixed, the required input feature
dimension can be determined from the specifications of the
victim model. Additionally, the number of nodes is a hyper-
parameter of the generator, allowing the attacker to choose
the desired size for the generated number of nodes. In Fig. 6,
we provide experimental results illustrating the outcomes of
different choices for this hyperparameter.

4.2.2 Structure Generator

The structure generator MGA (F) is a function MGA : Rn×d →
Rn×n with parameters θA which takes the node features F ∈
Rn×d as input and produces a matrix A ∈ [0,1]n×n as output.
Specifically, Ai j ∈ [0,1] indicates the presence of an edge
between nodes xi and x j. In order to conduct a comprehensive
analysis and promote flexibility and diversity during the graph
structure generation process, we have designed two distinct
graph structure generators. These generators are as follows:
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Cosine similarity graph structure generator: One ap-
proach to infer a graph structure is to utilize a similarity met-
ric and assign the edge weight between two nodes based on
their similarity [30]. In order to achieve sparsity in the graph
structure, we construct a similarity graph using the cosine sim-
ilarity of the node features. This approach only connects pairs
of nodes whose similarity exceeds a predefined threshold. To
be more specific, given the node features F, the element of
the adjacency matrix Acos can be computed as follows:

Acosi j = Cosine(Fi,F j) =
Fi ·F j

max
(
∥Fi∥2 ·

∥∥F j
∥∥

2

) . (2)

To promote sparsity in the learned adjacency matrix Acos and
reduce the impact of small values on the aggregation process
in GNNs, we adopt a thresholding mechanism. Entries in
Acos with values smaller than a given threshold τ are removed.
Specifically, we set a threshold value τ, and if Acosi j is larger
than τ, it is set to 1, indicating the presence of an edge between
nodes xi and x j. Otherwise, it is set to 0, indicating the absence
of an edge between the corresponding nodes.

Full parameterization graph structure generator: In
this generator, we employ the Full parameterization method
[8], which is also utilized in the SLAPS framework [7]. Given
the parameter matrix θA ∈ Rn×n, the generator function is
defined as Ã f p = MGA (F;θA) = θA. In other words, the gen-
erator disregards the input node features and directly opti-
mizes the adjacency matrix. The full parameterization in this
generator is simple and flexible, enabling the learning of any
adjacency matrix. Once the parameterized adjacency matrix
is generated, it undergoes additional processing to obtain a
well-defined symmetric adjacency matrix. Subsequently, self-
supervised learning is employed to train the learnable param-
eters within the structure generator.

(1) Adjacency processor: To address the issues of non-
symmetry, non-normalization, and potential negative val-
ues in the generated adjacency matrix Ã f p, we apply a se-
ries of transformations to obtain the final adjacency ma-
trix A f p. Specifically, we define A f p as follows: A f p =
1
2 DDD− 1

2
(
P(Ã f p)+P(Ã f p)

T
)

DDD− 1
2 . In this formulation, P rep-

resents an activation function that is applied element-wise
to its input, ensuring non-negativity. The sub-expression
1
2

(
P(Ã f p)+P(Ã f p)

T
)

guarantees that the resulting matrix
P(Ã f p) is symmetric. Finally, to normalize the resulting sym-
metric adjacency matrix, we compute its degree matrix DDD and
multiply it from the left and right with DDD− 1

2 . By applying
these transformations, we obtain a symmetric, non-negative,
and normalized adjacency matrix A f p. This ensures the com-
patibility and suitability of the generated adjacency matrix
for further processing and utilization in the model extraction
process.

(2) Self-supervision: This self-supervised task is inspired
by denoising autoencoders [36]. We define H : Rn× f ×
Rn×n → Rn× f as a GNN with parameters θH. It takes the

node features and the generated adjacency matrix as input
and produces updated node features of the same dimension
as output. We train H to denoise the input features by feeding
it a noisy version F̃ of the original features F and expecting
it to generate the denoised features F. During training, we
minimize the following loss function:

Ldenoise =
1

|Fidx| ∑i∈Fidx
Lreconstruction

(
Fi,H

(
F̃,A f p;θθθH

)
i

)
, (3)

where idx represents the indices corresponding to the ele-
ments of F to which we introduce noise. Similarly, Fidx refers
to the values at these selected indices. In each epoch, idx
consists of a random uniform selection of r percent of the in-
dices from F. The noise is introduced by replacing the values
at the indices specified by idx with 0. Lreconstruction denotes
the reconstruction loss between the denoised features Fi and
the corresponding predicted features H(F̃,A f p)i. We use the
mean-squared error loss. In this attack, the generator initially
optimizes the feature generator and structure generator param-
eters using Ldenoise. This optimization aims to minimize the
denoising loss, which encourages the GNN H to learn mean-
ingful representations capable of reconstructing the original
features accurately, even in the presence of noise. This self-
supervised training process plays a crucial role in capturing
informative and meaningful graph structures. Subsequently,
the resulting graph is fed into both the victim and agent mod-
els, facilitating the extraction of knowledge from the victim
model.

4.3 Training Surrogate Model
The surrogate model MS is trained using the responses ob-
tained from the victim model MV when provided with a query
graph G. Due to the unavailability of the victim model, the
attacker encounters different types of outputs when querying
the victim model, which can range from probability outputs
(referred to as soft labels) to one-hot label predictions (hard
labels). This paper specifically focuses on studying the most
challenging scenario, where the victim model exclusively pro-
vides hard labels as output.

The generator MG takes a noise vector z as input and gen-
erates a graph G (as described in Equation 4). This generated
graph G is then used to query both MV and MS, resulting in
the outputs

−→
YV and

−→
PS respectively (as shown in Equation 5).

It is important to note that
−→
YV represents hard labels obtained

from the victim model, while
−→
PS represents soft labels derived

from the surrogate model.

G = MG (z;θG) ; z ∼ N (0, I), (4)
−→
YV = MV (G,θV ) ;

−→
PS = MS (G;θS) . (5)

The surrogate model parameters θS are updated using the
cross-entropy loss function [3] to minimize the discrepancy
between

−→
PS and

−→
YV :

LMS
=CE(MS(G;θS),MV (G;θV )) =−∑

n
i=1

−→
YVi log

−→
PSi . (6)
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By training the surrogate model MS using the graph G and
the ground truth labels

−→
YV of the victim model MV , we can

extract the knowledge embedded in MV . This is achieved
by guiding MS to learn the exact mapping of MV , thereby
capturing its knowledge and replicating its behavior.

4.4 Training Graph Generator

To mitigate the issue of simplistic or duplicate graphs gener-
ated by the generator, we introduce a mechanism to encour-
age the production of more complex and diverse graphs. This
mechanism aims to increase the discrepancy between the sur-
rogate and victim models. Specifically, the generator model
MG is trained to maximize the disagreement between the pre-
dictions of the victim model MV and the surrogate model MS.
In other words, the loss function for the generator in the Type
I Attack and Type II Attack is defined as LMG

=−LMS
. This

formulation incentivizes the generator to produce diverse and
complex graphs, thereby amplifying the discrepancy between
the two models.

4.4.1 Type I Attack

Since the output of the victim model consists of hard labels,
which are discrete and non-probabilistic predictions, it can-
not be directly utilized to compute approximate gradients.
To address this, we employ a label-smoothing regularization
technique [23], which aims to soften the hard-label outputs of
the victim model into soft labels. This soft label output is then
utilized to approximate the gradient of the victim model, en-
abling us to perform gradient-based optimization. As shown
in Fig. 1(a), our objective is to update the parameters θG of the
generator model using gradient descent in order to minimize
the loss function LMG

as depicted in Equation 7:

θ
t+1
G = θ

t
G −η∇θG LMG

. (7)

To update θG, we need to compute the derivative of the loss
function ∇θG LMG

. This derivative can be decomposed into
two components, as shown in Equation 8.

∇θG LMG
=

∂LMG

∂θG
=

∂LMG

∂G
× ∂G

∂θG
. (8)

The second component corresponds to the derivative of the
generator’s output with respect to its parameters, which can be
easily computed by performing backpropagation through MG.
However, the first component, which represents the derivative
of the loss function with respect to the generator’s output,
poses a challenge. It requires access to the model parameters
of the victim model θV . Since the victim model MV is consid-
ered a black-box model from the attacker’s perspective, we
do not have direct access to θV . As a result, backpropagation
cannot be applied to compute this derivative.

To overcome this limitation, we resort to an alternative
approach that involves performing additional queries to ap-
proximate the gradient. Specifically, we employ zeroth-order
gradient estimation techniques [25, 28] to estimate the gradi-
ent without explicitly accessing the victim model’s parame-
ters:

∇̂GLMG
(G;ui) =

d ·
(
LMG

(G+ εui)−LMG
(G)

)
ε

ui, (9)

where ui represents a random variable drawn from a d-
dimensional unit sphere, with each component being uni-
formly distributed. Additionally, ε denotes a small positive
constant. To estimate the gradient, we adopt an averaged ver-
sion of the random gradient estimate, as proposed in previous
works [6, 14, 19]. This involves computing the forward differ-
ence using m random directions, denoted as {u1,u2, ..um}. In
our experiments, we set m to 2, utilizing two random direc-
tions to estimate the gradient. This choice is based on a trade-
off between computational efficiency and gradient estimation
accuracy. While increasing the value of m could potentially
provide a more accurate gradient estimate, it also incurs a
higher computational cost. Our experiments demonstrated
that using two random directions already yielded sufficiently
accurate gradient estimates for our specific application, strik-
ing a balance between accuracy and computational efficiency.

∇̂GLMG
(G) =

1
m

m

∑
i=1

∇̂GLMG
(G;ui) . (10)

The expression ∇̂GLMG
represents an estimate of the true

gradient ∇GLMG
. By substituting this gradient estimate into

Equation 8, we obtain an approximation for the gradient of
the generator’s loss function, denoted as ∇̂θG LMG

. This esti-
mated gradient can be utilized to perform gradient descent,
enabling the update of the generator model’s parameters θG
according to Equation 7. Through this parameter update, the
generator model MG is trained to generate synthetic graphs
that facilitate the process of model extraction.

4.4.2 Type II Attack

As shown in Fig. 1(b), in this type of attack, the attacker solely
relies on the gradient computed through surrogate MS. During
the training process, the surrogate model learns to mimic the
victim model, serving as an appropriate proxy to encourage
the generator in generating diverse and informative graphs.

4.4.3 Type III Attack

Fig. 1(c) illustrates an overview of this attack type. When pro-
vided with a black-box Victim model, two surrogate models,
surrogate 1 and surrogate 2, are generated. The final extracted
model is an ensemble that consists of these two surrogate mod-
els. The model output is obtained through an equal-weight
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soft voting mechanism, combining the predictions of the two
surrogates. In accordance with a previous study by Rosen-
thal et al. [29], the generator training in this work incorpo-
rates disagreement losses to update the generator model. The
disagreement loss measures the disparity between the pre-
dictions of a pair of surrogate models. In cases where two
clones exhibit inconsistent predictions on specific samples,
two scenarios arise: 1) If one of the clones aligns with the vic-
tim model’s prediction, this sample assists the other clone in
learning from the victim model. 2) If both clones’ predictions
do not match the victim model’s prediction, they can both
learn from this sample. Mathematically, the disagreement loss
quantifies this difference by leveraging the standard deviation
of the surrogate models’ outputs for each corresponding node.

LMG
=− 1

N

N

∑
i=1

[Std(PS1i ,PS2i)] , (11)

where Std denotes the standard deviation across the surrogate
models. PS1i and PS2i represent the predictions of the two
surrogate models, respectively. This loss function encourages
the generator to produce data that prompts disagreement be-
tween two surrogate models when making predictions. The
standard deviation quantifies this disagreement between the
surrogates on generated data. By minimizing this loss, the
training process aims to create data that exposes differences
between the surrogates, allowing one of them to adapt and
align better with the behavior of the victim model. This ap-
proach helps improve surrogate model accuracy by leveraging
discrepancies in their predictions on generated data.

4.4.4 Training Procedure

Given the loss functions LMG
and LMS

, similar to the training
approach used in Generative Adversarial Networks (GAN)
[10], we adopt an alternating training strategy for the genera-
tor and surrogate model, resembling a two-player game. The
training process can be formulated as:

min
MS

max
MG

Ez∼N (0,1)[D(MV (MG(z)),MS(MG(z)))], (12)

where D (·) represents the discrepancy between the victim
and surrogate models. The loss function used to update the
generator MG is identical to that of the surrogate model MS,
with the exception that the objective is to maximize it.

We provide a concise summary of the STEALGNN algo-
rithm in Algorithm 1 (available in the appendix A.1). Our
objective is to acquire a surrogate model MS from a black-
box victim model MV . Initially, both the surrogate model and
generator are randomly initialized. During the generator opti-
mization, the surrogate model parameters remain static, while
the generator parameters θG are updated based on the chosen
attack type. This procedure enables the generator to produce
synthetic graphs for efficient knowledge extraction from the
victim model. Conversely, in the surrogate training phase, the

Table 2: Summary of datasets.
Dataset #Nodes #Edges #Features #Classes

Cora [31] 2,485 5,069 1,433 7
Pubmed [24] 19,717 44,324 500 3

A-Computers [32] 13,381 245,778 767 10
OGB-Arxiv [11] 169,343 1,166,243 128 40

generator remains fixed, and the surrogate model parameters
θS are updated. This training phase centers on replicating
the victim model’s behavior, ensuring the surrogate model
captures the targeted knowledge. To maintain balanced train-
ing for both the generator and surrogate model, each training
phase repeats nG and nS times, respectively, before advancing
to the next epoch. This repetition enhances the learning and
convergence of both models. Training iterations persist until
the query budget Q is depleted, indicating that the attacker
has exhausted the allotted number of queries for knowledge
extraction from the victim model.

5 Evaluation

In this section, we conduct experiments to evaluate the effec-
tiveness of STEALGNN. We present the experimental setup
and provide evaluation results for node classification tasks,
including both transductive and inductive scenarios. Addi-
tionally, we evaluate the performance of STEALGNN on the
link prediction task. Finally, we provide a detailed analysis
of the model and parameters used in our experiments. For
experimental results on the transductive scenario, please refer
to the appendix A.3.

5.1 Experimental Setup
5.1.1 Datasets

To assess the effectiveness of our proposed framework, we
conduct experiments using four publicly available benchmark
datasets. The dataset statistics are summarized in Tab. 2. For
Cora, Pubmed, and A-Computers, we follow the splitting
strategy employed in previous work [32], where 20 nodes
from each class are randomly sampled as labeled nodes, 30
nodes are used for validation, and the remaining nodes are
assigned to the test set. For OGB-Arxiv, we adopt the random
split configuration of 90K/29K/48K as established in prior
research [12].

Using the same or similar data splits as previous research
enables researchers to compare their results directly with ex-
isting literature. It ensures consistency in evaluation, making
it easier to gauge the effectiveness of new methods or com-
pare them with established approaches. We also explored
alternative splits for these datasets, utilizing a 60%/20%/20%
division for training, validation, and testing sets. This parti-
tioning strategy allocated a larger proportion of nodes to the
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training dataset, resulting in higher accuracy for the victim
model when evaluated on the test set. Detailed results of these
experiments can be found in the Tab. 5.

5.1.2 Victim Model (MV ) and Surrogate Model (MS)

To evaluate the performance of the STEALGNN framework,
we employ widely used GNN models, namely GCN, GAT, and
GraphSAGE. The victim model is also trained using the data
partitioning scheme described above. Various architectures
of the victim model, including different numbers of layers
and hidden units, are trained and tested. The model with the
highest test accuracy is then selected as the final victim model.
Therefore, for different datasets and different models, their
model architectures may vary. The architecture and accuracy
of the victim model selected for the final experiment can be
seen in Tab. 7 in the appendix A.2.

Experiments involving different types of surrogate models
and architectures are presented in the Model Analysis and
Parameter Analysis sections. In the main experiment, we have
chosen to utilize a GCN model with 2 layers and 256 hidden
units as the default surrogate model because it consistently
performed well across different datasets, as shown in Fig. 4
and Fig. 5.

5.1.3 Generator (MG)

In our experiments, the choice of hyperparameters for the
generator was motivated by their effectiveness in achieving
our objectives. For the feature generator, we adopted a design
inspired by [35], known for generating informative features.
The hyperbolic tangent function was chosen as the final acti-
vation to ensure generated features fall within the range [-1,
1]. Regarding the structure generator, we used cosine simi-
larity, which does not require additional training parameters
to generate the adjacency matrix, simplifying the model. For
the self-supervised training of the full parameter generator, a
GCN model with 2 layers and 512 hidden units was selected
to strike a balance between complexity and efficiency.

5.1.4 Implementation

For the node classification task, we perform comprehensive
experiments on both inductive and transductive graph neu-
ral networks (GNNs). However, due to space limitations, the
model experiments presented below default to the inductive
scenario, where the learned GNN model is capable of gen-
eralizing to previously unseen graphs during training. Ex-
periments conducted on transductive scenarios can be found
in the appendix A.3. Our experiments are trained using the
Adam optimizer [15]. During training, each query consists of
the generator being trained nG = 2 times with a learning rate
of 1e−6, while the surrogate model is trained nS = 5 times
with a learning rate of 0.001. The total number of queries
Q is set to 100. By training the models for a maximum of

100 epochs, we ensure that the models have ample opportuni-
ties to converge and achieve satisfactory performance on our
experimental dataset.

5.1.5 Evaluation Metric

In model extraction attacks, the objective is to closely align
the behavior of the surrogate model with that of the victim
model. To evaluate the performance of our attack, we employ
two metrics: (1) Accuracy: We measure the accuracy of the
attacker’s surrogate model on the test dataset. The accuracy
is computed as the ratio of correct predictions to the total
number of predictions made by the surrogate model. This
metric provides an assessment of the attack’s effectiveness in
replicating the victim model’s behavior. (2) Fidelity: The fi-
delity metric quantifies the agreement between the predictions
made by the surrogate model and the victim model. Fidelity
serves as a complementary evaluation metric, capturing the
similarity in prediction outcomes between the surrogate and
target models. To mitigate the impact of randomness during
training, we conduct multiple runs of each experiment with
different random seeds. Specifically, we perform 5 runs for
each experiment and report the average and standard deviation
of both accuracy and fidelity across these runs. This approach
allows us to capture the overall performance and the degree of
variability in the results, providing a more robust evaluation
of the attack method.

5.1.6 Baselines

STEALGNN is the first study to address data-free model ex-
traction specifically for GNNs. While there have been related
methods in the past, they differ in important aspects. Firstly,
methods like GNN model extraction or stealing [33, 39], al-
though related, are not data-free techniques as they require
access to some original data information. Secondly, there
exist techniques such as GNN’s data-free knowledge distil-
lation [5, 44], but they are primarily designed for graph clas-
sification tasks and operate in white-box scenarios where
gradient information of the teacher model is accessible. For
each dataset, we conducted several experiments to compare
the performance of our model:

• Real Data: We used real training data for model extrac-
tion. This allowed us to assess the impact of using artifi-
cial graphs for the extraction process.

• Random Graph: We generated random graphs using ran-
dom noise without updating the parameters of the gener-
ator during the training process.

• Graph Structure Experiments: For each type of attack,
we conducted experiments using three different graph
structures:
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Table 3: Experimental Results on the Induction Scenario for Node Classification Task. The table presents the mean and variance
of 5 training runs. The brackets indicate the difference between the accuracy of the surrogate model and the accuracy of the
victim model. Entries displayed in red font indicate that the surrogate model outperforms the victim model.

MV
Dataset Cora Pubmed A-Computers OGB-Arxiv

MS(GCN) Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

GAT

Real Data 80.09±0.89 (+0.53) 92.96±0.51 76.94±0.31(-0.12) 89.96±2.51 79.20±1.67 (-0.89) 90.51±1.12 53.89±1.02 (-0.77) 88.73±1.94

Random Graph 68.26±3.84 (-11.30) 73.70±2.95 59.35±2.86 (-17.71) 71.79±2.49 55.63±4.61 (-24.46) 52.29±3.62 36.78±5.26 (-17.88) 63.52±4.39

Attack I-E 81.11±0.50 (+1.55) 93.09±0.26 77.57±0.78 (+0.51) 92.09±2.56 65.68±1.91 (-14.41) 73.48±2.13 52.17±2.94 (-2.49) 80.26±2.23

Attack I-Acos 80.79±0.75 (+1.23) 93.90±0.42 77.15±0.93 (+0.09) 90.34±2.94 70.73±1.90 (-9.36) 81.18±1.18 51.72±2.31 (-2.94) 78.77±1.68

Attack I-A f p 81.23±0.68 (+1.67) 94.10±0.38 77.40±0.87 (+0.34) 90.90±2.76 71.12±1.78 (-8.54) 81.45±1.10 52.15±2.23 (-2.51) 79.22±1.58

Attack II-E 80.98±0.57 (+1.42) 92.78±0.39 77.18±0.68 (+0.12) 91.14±1.34 68.76±1.98 (-11.33) 78.95±1.78 51.93±3.11 (-2.73) 79.34±2.58

Attack II-Acos 81.17±0.71 (+1.61) 93.19±0.47 77.44±0.84 (+0.38) 91.60±2.82 71.78±1.38 (-8.31) 83.92±1.66 51.81±2.78 (-2.85) 79.01±2.08

Attack II-A f p 81.35±0.66 (+1.79) 93.50±0.43 77.58±0.79 (+0.52) 91.88±2.78 72.05±1.32 (-7.80) 84.10±1.62 51.98±2.65 (-2.68) 78.87±1.99

Attack III-E 81.12±0.52 (+1.56) 93.02±0.36 77.30±0.64 (+0.24) 91.40±1.28 70.12±1.92 (-9.54) 79.12±1.62 51.78±2.88 (-2.63) 79.12±2.43

Attack III-Acos 81.45±0.62 (+1.89) 93.80±0.41 77.65±0.74 (+0.59) 92.12±2.72 72.50±1.26 (-6.68) 84.35±1.56 52.05±2.58 (-2.61) 79.45±1.91

Attack III-A f p 81.68±0.58 (+2.12) 94.05±0.39 77.80±0.70 (+0.76) 92.45±2.66 73.20±1.18 (-5.46) 84.68±1.50 52.32±2.50 (-2.34) 79.68±1.82

GCN

Real Data 81.09±0.69 (+0.49) 92.84±0.29 77.06±0.41 (+0.30) 97.86±0.49 79.50±0.66 (-1.13) 87.34±1.63 63.51±0.84 (-3.24) 85.93±0.92

Random Graph 69.83±2.61 (-10.78) 81.79±2.28 62.78±2.49 (-13.98) 76.54±1.92 51.14±6.21 (-29.49) 63.85±3.28 49.73±9.37 (-17.02) 68.59±4.27

Attack I-E 80.67±0.45 (+0.06) 93.57±0.96 75.93±0.72 (-0.83) 89.57±1.29 68.94±2.12 (-11.69) 80.69±2.34 60.15±0.26 (-6.60) 82.29±1.36

Attack I-Acos 80.68±0.29 (+0.07) 93.77±1.37 76.73±0.47 (-0.03) 95.82±1.03 69.55±2.75 (-11.08) 82.61±1.95 61.34±0.51 (-5.41) 80.76±1.26

Attack I-A f p 80.91±0.24 (+0.30) 93.96±1.24 76.79±0.39 (+0.03) 95.98±0.81 70.12±2.54 (-10.51) 82.83±1.76 61.76±0.41 (-4.99) 80.96±1.02

Attack II-E 79.79±0.23 (-0.82) 92.81±0.79 74.18±1.57 (-2.58) 86.60±2.98 69.57±1.32 (-11.06) 83.01±1.48 60.37±1.39 (-6.38) 83.33±1.57

Attack II-Acos 80.07±0.59 (-0.54) 92.84±0.31 76.47±0.80 (-0.29) 93.86±1.73 70.09±1.49 (-10.54) 83.28±1.63 62.10±0.85 (-4.65) 81.50±0.93

Attack II-A f p 81.12±0.28 (+0.51) 93.65±0.12 76.74±0.51 (+0.11) 94.97±0.23 69.59±0.92 (-11.04) 83.32±0.93 62.59±0.45 (-4.16) 80.97±0.47

Attack III-E 80.78±0.31 (+0.17) 93.39±0.15 76.43±0.55 (-0.33) 94.51±0.37 70.11±1.05 (-10.52) 83.21±1.05 62.06±0.52 (-4.69) 81.16±0.55

Attack III-Acos 81.05±0.25 (+0.44) 93.62±0.10 76.69±0.45 (-0.07) 94.83±0.18 69.79±0.83 (-10.84) 83.42±0.89 62.46±0.40 (-4.29) 80.97±0.41

Attack III-A f p 81.28±0.21 (+0.67) 93.79±0.08 76.85±0.38 (+0.22) 95.05±0.11 70.21±0.66 (-10.42) 83.64±0.68 62.87±0.32 (-3.88) 80.81±0.35

SAGE

Real Data 79.84±1.25 (+0.51) 92.57±0.28 76.76±0.20 (-0.47) 92.64±0.77 79.61±1.59 (+0.37) 88.72±0.95 65.35±0.79 (-3.83) 85.72±1.45

Random Graph 60.39±2.95 (-18.94) 78.39±3.38 58.75±3.38 (-18.48) 80.28±2.96 52.75±4.67 (-26.49) 68.39±4.21 49.89±3.82 (-19.29) 69.93±2.83

Attack I-E 81.32±0.65 (+1.99) 93.01±0.12 77.09±0.17 (-0.14) 92.97±0.44 65.39±2.49 (-13.85) 76.44±1.36 58.22±3.85 (-10.96) 78.36±2.03

Attack I-Acos 80.89±0.47 (+1.56) 93.97±0.49 77.24±0.57 (+0.01) 94.74±0.96 69.88±2.22 (-9.36) 83.26±1.27 57.46±3.79 (-11.72) 74.29±2.57

Attack I-A f p 81.10±0.35 (+1.77) 93.85±0.33 77.40±0.42 (+0.17) 94.52±0.82 69.76±1.93 (-8.42) 83.48±1.12 57.76±3.45 (-11.48) 74.15±2.24

Attack II-E 81.28±0.67 (+1.95) 93.92±0.70 76.88±0.32 (-0.35) 93.11±1.40 67.39±3.08 (-11.85) 78.92±2.27 57.15±3.59 (-12.03) 73.38±1.93

Attack II-Acos 81.01±0.51 (+1.68) 95.14±0.17 77.13±0.40(-0.10) 93.54±1.84 70.17±1.89 (-9.07) 84.06±1.95 57.69±3.51 (-11.49) 75.59±1.73

Attack II-A f p 80.98±0.41 (+1.65) 93.68±0.39 77.21±0.48 (-0.02) 94.38±0.89 69.99±2.08 (-9.25) 83.32±1.18 57.91±3.62 (-11.27) 73.94±2.48

Attack III-E 81.56±0.45 (+2.23) 93.28±0.09 77.22±0.13 (-0.01) 93.36±0.29 69.02±2.23 (-10.22) 81.78±1.14 58.61±3.56 (-10.57) 78.74±1.73

Attack III-Acos 81.45±0.63 (+2.12) 93.10±0.10 77.20±0.15 (-0.03) 92.80±0.42 69.50±2.46 (-9.74) 83.60±1.30 58.00±3.75 (-11.18) 78.20±2.00

Attack III-A f p 81.55±0.61 (+2.22) 93.15±0.09 77.25±0.14 (+0.02) 92.90±0.41 70.55±2.43 (-8.69) 86.65±1.32 58.55±3.78 (-10.63) 78.25±1.97

(a) Self-Loop Graph Structure (E): In this case, the graph
structure consisted of only self-loops, and the adjacency
matrix was represented by matrix E.

(b) Cosine Similarity Graph Structure (Acos): The graph
structure was generated based on cosine similarity, and
the adjacency matrix was represented by matrix Acos.

(c) Full Parameterization Graph Structure (A f p): The
graph structure was generated using a parametric ap-
proach, and the adjacency matrix was represented by
matrix A f p.

By conducting these experiments with different graph struc-
tures and utilizing both real data and random graphs, we aimed
to evaluate the effectiveness and performance of our model
extraction approach.

5.2 Performance Evaluation

Based on the node classification results presented in Tab. 3
and the link prediction results in Tab. 4, it can be observed that
all three types of model extraction attacks yield promising
results. The Real Data approach, which utilizes real training
datasets for extraction, demonstrates a high level of effective-
ness. This method resembles traditional knowledge distilla-
tion techniques, resulting in a surrogate model that closely
approximates the behavior of the victim model. The surro-
gate model’s performance is very similar to that of the victim
model, indicating successful extraction of knowledge. On the
other hand, the results obtained from the Random Graph ap-
proach are noticeably inferior. This can be attributed to the
randomly generated graph, which lacks any form of training.
Consequently, the distribution of the real training data sig-
nificantly differs from that of the randomly generated graph,
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Table 4: Experimental Results on Link Prediction Tasks. The
table displays the accuracy results of the experiments. Note
that the OGB-Arxiv dataset is excluded from the analysis due
to OOM issues.

MV Dataset Cora Pubmed A-computers

GAT
Real Data 89.30±0.59 (-0.38) 65.70±1.58 (-4.67) 84.64±1.78 (+1.89)

Random Graph 75.32±2.12 (-14.36) 50.21±3.89 (-20.16) 66.79±2.78 (-15.96)

Attack I- E 89.01±0.56 (-0.67) 64.78±1.61 (-5.59) 80.29±1.48 (-2.46)

Attack I- Acos 88.71±0.32 (-0.97) 64.98±1.92 (-5.39) 80.62±1.19 (-2.13)

Attack I- A f p 89.12±0.22 (-0.56) 64.25±1.38 (-6.12) 79.92±0.92 (-2.83)

Attack II- E 88.96±0.63 (-0.72) 64.58±1.82 (-5.79) 80.19±1.19 (-2.56)

Attack II- Acos 89.38±0.47 (-0.30) 64.39±1.25 (-5.98) 79.89±0.92 (-2.86)

Attack II- A f p 88.95±0.62 (-0.73) 66.12±1.61 (-4.25) 78.98±1.28 (-3.77)

Attack III- E 88.95±0.50 (-0.73) 66.78±1.32 (-3.59) 79.47±0.98 (-3.28)

Attack III- Acos 89.25±0.53 (-0.43) 65.78±1.42 (-4.59) 79.42±0.95 (-3.33)

Attack III- A f p 89.45±0.35 (-0.23) 66.25±1.15 (-4.12) 80.02±0.86 (-2.73)

GCN
Real data 89.59±0.23 (-0.09) 87.72±0.18 (-0.38) 90.70±0.48 (-3.14)

Random Graph 80.12±2.18 (-9.56) 72.85±3.29 (-15.25) 80.68±4.56 (-13.16)

Attack I- E 90.78±0.73 (+1.10) 85.54±1.09 (-2.56) 85.49±1.39 (-8.35)

Attack I- Acos 90.83±0.41 (+1.15) 84.20±1.67 (-2.90) 84.54±1.10 (-9.30)

Attack I- A f p 89.70±0.60 (-0.02) 87.45±0.85 (-0.76) 86.55±1.42 (-7.29)

Attack II- E 89.95±0.52 (+0.27) 87.69±0.74 (-0.41) 86.95±1.29 (-6.89)

Attack II- Acos 89.09±0.25 (-0.59) 88.05±0.28 (-0.05) 85.19±1.41 (-8.65)

Attack II- A f p 89.30±0.22 (-0.38) 88.25±0.25 (+0.15) 85.50±1.28 (-8.34)

Attack III- E 90.25±0.45 (+0.57) 87.85±0.62 (-0.25) 87.15±1.05 (-5.69)

Attack III- Acos 90.40±0.42 (+0.72) 88.09±0.55 (-0.01) 87.35±0.98 (-5.49)

Attack III- A f p 90.65±0.40 (+0.97) 88.12±0.52 (+0.02) 87.48±0.98 (-5.36)

SAGE
Real data 91.15±0.20 (-1.32) 87.90±0.09 (+1.06) 90.38±1.64 (+4.08)

Random Graph 77.25±1.35 (-10.54) 75.60±1.75 (-11.34) 71.10±0.92 (-11.69)

Attack I- E 88.68±0.54 (-3.79) 85.79±0.48 (-1.05) 83.07±1.26 (-3.23)

Attack I- Acos 87.79±0.96 (-4.68) 86.94±0.51 (+0.00) 82.79±1.57 (-3.51)

Attack I- A f p 88.05±0.45 (-4.42) 87.30±0.55 (+0.36) 84.10±1.20 (-2.20)

Attack II- E 89.01±0.56 (-3.46) 86.77±0.39 (-0.07) 82.45±1.38 (-3.85)

Attack II- Acos 90.04±0.47 (-2.43) 88.26±0.08 (+1.42) 81.25±1.49 (-5.05)

Attack II- A f p 88.50±0.35 (-4.97) 87.80±0.50 (+0.96) 82.28±0.90 (-4.02)

Attack III- E 90.05±0.50 (-2.42) 87.32±0.30 (+0.48) 83.53±1.30 (-2.77)

Attack III- Acos 90.31±0.40 (-2.16) 88.15±0.10 (+1.31) 83.93±1.30 (-2.37)

Attack III- A f p 90.59±0.40 (-1.88) 87.43±0.25 (+0.59) 84.78±1.20 (-1.52)

making it challenging to extract knowledge from the victim
model into the surrogate model. As a result, the surrogate
model’s performance suffers.

The experimental results demonstrate that all three types
of attacks have achieved notable performance. Attack Type I
and Attack Type II exhibit comparable results, while Attack
Type III outperforms the other two and consistently achieves
the highest accuracy in several datasets. Attack Type III lever-
ages the prediction inconsistency between the two surrogate
models to train the generator. This approach ensures that the
training process continuously generates informative graphs,
facilitating the surrogate model’s improved learning from the
victim model. As a result, Attack Type 3 exhibits superior
performance, achieving optimal accuracy in multiple experi-
mental settings.

Among the three graph structure generation methods, the
full-parameter approach stands out as the most effective. It
excels due to its capability to generate a diverse range of
graph structures through self-supervised training. With a full-
parameter model, the generator has access to a larger param-

Table 5: Experimental Results for a 60%/20%/20% Data Split-
ting Scheme. Values within parentheses indicate improve-
ments compared to another data partitioning scheme. MS is
also GCN.

Dataset Cora Pubmed A-Computers OGB-Arxiv

MV (GCN)
88.72±0.32

(+8.11)
89.59±0.16

(+12.83)
85.46±0.64

(+4.83)
69.58±0.48

(+2.83)

MS (Attack I-A f p)
87.55±0.61

(+6.64)
87.98±0.73

(+11.19)
77.51±1.11

(+7.39)
64.52±0.75

(+2.76)

MS (Attack II-A f p)
87.84±0.73

(+6.72)
88.06±0.82

(+11.32)
77.89±1.52

(+8.30)
65.92±0.64

(+3.33)

MS (Attack III-A f p)
88.14±0.65

(+6.86)
88.72±0.67

(+11.87)
78.35±1.25

(+8.14)
67.33±0.82

(+4.46)

eter set, allowing it to capture a broader spectrum of graph
structures during training. This flexibility enables the genera-
tor to produce diverse graph structures, contributing to more
effective knowledge transfer from the victim model to the
surrogate models. In contrast, the Self-Loop and cosine sim-
ilarity methods may be limited in generating diverse graph
structures. Self-Loop lacks a specific training process, and
cosine similarity structure generation doesn’t require training
parameters, potentially restricting their ability to generate a
wide range of graph structures compared to the full-parameter
method. The superior performance of the full-parameter ap-
proach underscores the significance of diverse graph struc-
tures in facilitating effective knowledge transfer during model
extraction attacks.

Tab. 5 presents the results of using an alternative data par-
titioning scheme. Employing a 60%/20%/20% data split in-
creases the number of nodes in the training dataset, resulting
in improved accuracy for the victim model. Correspondingly,
the surrogate model, which extracts model information from
a better victim model, also exhibits enhanced accuracy. This
underscores the effectiveness of STEALGNN - as the vic-
tim model’s accuracy improves, it imparts richer knowledge
to the surrogate model, showcasing the knowledge transfer
capabilities of the framework.

The experimental results reveal a noteworthy trend where
the surrogate model’s accuracy often exceeds that of Real
Data and occasionally surpasses the victim model’s perfor-
mance (highlighted in red). One plausible explanation, sup-
ported by prior research [33], revolves around the presence
of noise in real training data. Real-world data can inherently
contain noise, including inconsistencies and inaccuracies. To
mitigate this, various data denoising techniques have been
proposed [42]. In our approach, a unique feature is the use of
a graph generator explicitly trained for model extraction. This
generator produces synthetic data tailored for the extraction
process, resulting in cleaner and more suitable training data
for surrogate models. As a result, we obtain surrogate models
that not only replicate the victim model’s behavior but, in
some cases, even outperform it.
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Figure 3: Training with Different Percentages of Real Data.
The red curve represents the results as the percentage of real
data used for model extraction gradually increases.The inter-
section point in the graph indicates the required rate of real
training data to achieve the same performance as our data-free
Attack.

5.3 Model Analysis

In order to gain a deeper understanding of the effectiveness
of our data-free attack model, we conducted further analysis
to evaluate the role of the generated graphs. Specifically, we
compared the performance of the generated data with varying
percentages of real data to quantify its impact. Furthermore,
we also examined how the structure of the victim model and
the surrogate model impacts the performance of the attack. By
varying the architecture and parameters of these models, we
can assess their influence on the effectiveness of the extraction
attack. This analysis provides insights into the sensitivity of
the attack to different model structures and can help identify
optimal configurations for achieving higher performance.

5.3.1 Comparison with Existing Methods

Directly comparing with existing GNN model extraction
methods is challenging due to differing setups. They assume
access to original node features or structures, while ours are
generated. We held StealGNN’s node features or adjacency
matrix fixed as real data, while the other was generated (w/ A
w/o X : real adjacency matrix, generated node features). From
Tab. 6, it is evident that our model consistently outperforms
existing works. This highlights that our framework not only
addresses scenarios with no access to any real data but also
exhibits superior performance in scenarios where partial real
data information is available.

Table 6: Comparison between the work by Wu et al. [39]
and STEALGNN. "w/ A w/o X" denotes that the adjacency
matrix of the generated graph is based on real data, while node
features are synthetic. Conversely, "w/ X w/o A" indicates
that node features are real data, while the adjacency matrix is
synthetic.

w/ A w/o X w/ X w/o A
Dataset Work [39] Attack III-A f p Work [39] Attack III-A f p

Cora 79.80±0.52 80.49±0.34 79.29±0.46 80.95±0.57
Pubmed 73.65±0.86 77.03±0.62 75.19±0.38 76.86±0.51

A-Computers 70.88±0.73 74.52±0.79 69.73±0.82 72.37±0.55
OGB-Arxiv 56.35±0.59 62.28±0.68 57.49±0.83 61.71±0.47

5.3.2 Quantitative Analysis: Role of the Generated
Graph

We conduct a detailed analysis of the impact of both the gener-
ated graphs and the real data on the performance of the surro-
gate model. To perform this analysis, we vary the percentages
of real data from 0% to 100% and observe the corresponding
attack results presented in Fig. 3. In the figure, the x-axis
represents the percentage of real training data required, while
the y-axis denotes the accuracy rate. The intersection point
between the attack’s straight line and the curve representing
the real data corresponds to the percentage of real data needed
to attain our performance. The results reveal an interesting
finding: a substantial proportion of real data is required to
achieve accuracy levels comparable to our data-free attacks.
This implies that the generated graphs play a crucial role in
the knowledge transfer process. As the percentage of real data
decreases, the attack accuracy decreases as well, indicating
that the generated graphs become increasingly essential in
compensating for the lack of real data. They demonstrate that
the generated graphs effectively capture and transfer valuable
information from the victim model, enabling the surrogate
model to achieve high accuracy even in the absence of real
data.

5.3.3 Impact of Different Combinations of Surrogate
and Victim Models

In real-world scenarios, attackers do not have access to the
architecture of the victim models. To assess the reliability of
our attacker in extracting victim models under such circum-
stances, we conducted experiments using different combina-
tions of surrogate and victim models for Attack I-Acos. With
our experimental setup, which includes three victim mod-
els and three surrogate models, we explored nine different
combinations for each dataset. Fig. 4 demonstrates that our
attacker is capable of constructing viable surrogate models
across various combinations. This observation confirms the
effectiveness of our attack in successfully extracting useful
knowledge from victim models, regardless of the specific
combination of surrogate and victim models.
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Figure 4: Performance of Different Victim Models with Dif-
ferent Surrogate Models.

5.3.4 Impact of Different Surrogate Model Structures

To assess the robustness of our attack in different scenarios,
we perform ablation experiments to examine the influence of
different surrogate model architectures on the attack’s effec-
tiveness. Fig. 4 demonstrates that using GCN as a surrogate
model consistently leads to more reliable model extraction.
We further investigate the impact of various GCN architec-
tures on the performance of our attack I-Acos. From the obser-
vations in Fig. 5, we draw the following conclusions: (1) Ac-
curacy tends to be higher when the surrogate model employs
a two-layer structure with 256 hidden units. (2) In contrast,
the effect is significantly poorer when the number of hidden
units is only 16. These findings indicate that the number of
hidden units in the surrogatemodel has a substantial impact
on the success of model extraction. Surrogate models with a
higher number of parameters are more effective in extracting
the unknown architecture of the victim model.

5.4 Parameter Analysis

5.4.1 Impact of the Size of Generated Graph

We investigate how the size of the generated graph, specif-
ically the number of nodes, affects the performance of our
attack. We conduct experiments on the Cora and Pubmed
datasets, varying the node number of the generated graph
from 5 to 400, as shown in Fig. 6: (1) Even with a generated
graph containing only 50 nodes, our data-free model extrac-
tion attacks still achieve satisfactory accuracy. This highlights
the effectiveness of our approach, as even a relatively small
graph can capture and transfer valuable model information.
(2) In Fig. 6 (b), we observe that the attack’s performance

(a) Cora (b) Pubmed

(c) A-Computers (d) OGB-Arxiv

Figure 5: Impact of Different Surrogate Architectures: Num-
ber of Layers and Hidden Units in the Surrogate Model.

(a) Cora (b) Pubmed

Figure 6: Impact of Generated Graph Size: Number of Nodes
in Generated Graph. The legend means (Victim-surrogate)

tends to improve as the number of nodes in the generated
graph increases. This suggests that a larger generated graph is
more effective in capturing the complex and rich information
of the victim model. In all of our experiments, we set the
number of generated nodes to 250, which yields favorable
results.

5.4.2 Impact of the Threshold τ

The threshold τ of the generated structures plays a crucial
role in controlling the sparsity of the adjacency matrix. When
the threshold exceeds 0.11, the model extraction performance
significantly decreases due to the sparse nature of the gen-
erated graph, where there are almost no edges present. To
understand the impact of threshold τ on the attack perfor-
mance, we conducted experiments by varying τ from 0.005
to 0.11 on the Cora and A-Computers datasets. The results
are shown in Fig. 7. From the figure, we observe that smaller
thresholds, corresponding to denser graphs, lead to lower ac-
curacy in the attack. This can be attributed to the fact that
overly dense graph structures introduce significant dispari-
ties between the distribution of real data and generated data,
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Figure 7: Impact of Threshold τ.

hindering the learning process of the surrogate model. In our
experiments, we set τ to 0.1 as it achieved satisfactory results.

6 Discussion

Limitation. An inherent limitation is its reliance on query
access to the target GNN model. In practical scenarios, un-
restricted query access may not always be feasible due to
factors like access restrictions, cost considerations, or privacy
concerns. These limitations can hinder the attacker’s ability
to execute a sufficient number of queries. Additionally, query-
based attacks may not be suitable for all applications, where
the cost or impact of querying the target model might be
prohibitive. Future research should explore alternative attack
strategies that reduce reliance on query access, thereby ex-
panding the practical scope of GNN model extraction attacks
and addressing scenarios with limited query access.

Defense. Prior defense strategies against model extraction
attacks have often focused on adding noise to the output
probabilities while maintaining the label outputs, effectively
perturbing the probability distribution while preserving the
top-1 label [16, 27]. However, it is crucial to note that this
type of defense approach prove ineffective against STEAL-
GNN due to its inherent hard-label setting. In STEALGNN,
the attacker solely relies on the data’s label information for
model extraction, making it impervious to perturbations in
output probabilities that do not alter the top-1 label. There-
fore, traditional noise injection defenses that preserve label
accuracy might not deter STEALGNN effectively. Moreover,
employing a defense strategy that deliberately introduces in-
correct labels to the victim model’s output can be detrimental
to its performance. While this approach may disrupt model
extraction attempts, it comes at the cost of degrading the ac-
curacy and reliability of the GNN model’s predictions, which
is undesirable in practical applications.

To address the vulnerability of GNN models to STEAL-
GNN and similar model extraction attacks, it is imperative
to explore alternative countermeasures that strike a balance
between security and model performance. Some potential
countermeasures and research directions include: (1) Adap-
tive Defenses: Developing adaptive defense mechanisms that
dynamically adjust the model’s behavior in response to poten-

tial model extraction threats. Such defenses could selectively
introduce perturbations or noise when they detect suspicious
querying patterns while maintaining performance in normal
use cases. (2) Privacy-Preserving Techniques: Incorporating
privacy-preserving techniques, such as differential privacy,
into GNN models can add an additional layer of protection
against model extraction attacks. These techniques can help
obscure sensitive information in model responses.

7 Related Work

Model extraction attacks against GNNs. Graph learning
models are indeed vulnerable to model extraction attacks,
which aim to construct a surrogate model that closely matches
the performance or prediction distributions of the target model.
Our proposed extraction attack approach differs from existing
methods in the context of Graph Neural Networks (GNNs).
Prior model extraction attacks against GNNs, such as the
work by Defazio et al. [4] and Wu et al. [39], typically assume
that the attacker has access to information about the victim
model’s original training data, including node features, graph
structure, or subgraphs. These attacks involve perturbing sub-
graphs or reconstructing missing attributes/edges based on
auxiliary information to train a surrogate model that mim-
ics the target model’s behavior. These approaches primarily
focus on transductive GNNs, and the problem of predicting
unseen nodes has not been extensively explored. While Shen
et al. [33] consider model stealing attacks against inductive
GNNs and perform security risk assessments, their assump-
tion of having access to node features from the same graph
distribution used to train the victim model is also unrealistic
in many real-world scenarios.

8 Conclusion

In this study, we explored data-free model extraction attacks
on GNNs to assess their vulnerability without access to origi-
nal training data. Through extensive experiments and analy-
sis, we uncovered the effectiveness and limitations of these
attacks. Our findings reveal that data-free model extraction
can achieve high success rates in extracting knowledge from
victim GNN models. These attacks employ synthetic graph
generation and surrogate models to approximate the victim
model, resulting in accurate proxies that capture its behavior.
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Algorithm 1 STEALGNN
Input: Query budget Q, victim model MV (G;θV ), generator
iterations nG, surrogate iterations nS,
generator learning rate η1, surrogate learning rate η2.
Output: A comparable surrogate model MS (G;θS).

1: Randomly initialize MS (G;θS) and MG (z;θG);
2: for i = 1, · · · ,Q do
3: //Training Generator
4: for j = 1 · · ·nG do
5: Generate graph G from z with MG (z;θG);
6: if launch Type I Attack then
7: Approximate gradient ∇θG LMG

;
8: else if launch Type II Attack then
9: Compute ∇θG LMG

only through MS;
10: end if
11: θG = θG −η1∇θG LMG

;
12: if launch Type III Attack then
13: Compute ∇θG LStd through MS1 and MS2;
14: θG = θG −η1∇θG LStd;
15: end if
16: end for
17: // Training Surrogate Model
18: for j = 1 · · ·nS do
19: Generate graph G from z with MG (z;θG);
20: Calculate gradient ∇θS LMS

;
21: θS = θS −η2∇θS LMS

;
22: end for
23: end for

A Appendix

A.1 Algorithm

Algorithm 1 iteratively improves the surrogate model’s per-
formance by leveraging the generated synthetic data and op-
timizing both the generator and surrogate model parameters.

A.2 Victim Model Selection

Our framework is designed to extract knowledge from
message-passing-based GNN models. In our experiments,
we consider three representative GNN models: GCN, GAT,
and GraphSAGE, which serve as the victim models. To select
the most suitable pre-trained victim model, we conduct ex-
periments with various architectures for each of these three
models. We explore different combinations of the number
of layers and hidden units, ranging from 1 to 5 and 16 to
256, respectively. The goal is to find the architecture that
achieves the highest accuracy. After thorough experimenta-
tion, we determine the final architecture and accuracy of the
chosen victim models, which are presented in Tab. 7. These

models serve as the targets for our data-free model extraction
attacks.

A.3 Tranductive Node Classification
Tab. 8 presents the results of node classification experiments
in transductive scenarios. The table compares the performance
of the three attacks using Real data and Random Graph. The
results demonstrate that our framework achieves excellent
performance even in the transductive scenario. This finding
further confirms the versatility of our model, which can be
successfully applied in various scenarios, including both trans-
ductive and inductive settings for node classification and link
prediction tasks.

A.4 Connection with Real-World Cases
Type I Attack: Knowledge Transfer through Estimation:

(1) Real-World Scenario: Imagine a scenario in which a
company has developed a highly effective recommendation
system using a proprietary graph neural network for personal-
ized content recommendations to users. Competing compa-
nies may want to extract knowledge from this system without
direct access to the model’s parameters or training data.

(2) Application: In this case, attackers can use a surrogate
model to estimate gradients of the victim model’s behavior
by querying it with various inputs (e.g., user profiles, con-
tent features). They use these gradients to improve their own
recommendation system, effectively transferring the valuable
knowledge from the victim model.

Type II Attack: Gradual Alignment with Surrogate
Model:

(1) Real-World Scenario: Consider a situation where a
pharmaceutical company has developed a GNN-based model
to predict the effectiveness of drug compounds for specific
diseases. Competing research groups want to emulate this
model’s predictions without having access to its internals.

(2) Application: Attackers can train a graph generator that
is only based on surrogate model’s predictions. As surrogate
model gains more data and refines its predictions, it gradually
aligns with the victim model’s behavior. Over time, the sur-
rogate model becomes a closer approximation of the victim
model, and the attacker can extract valuable drug compound
prediction knowledge.

Type III Attack: Exploiting Inconsistent Predictions:
(1) Real-World Scenario: Suppose there is a financial insti-

tution using a GNN for credit risk assessment. A competitor
may be interested in understanding the decision-making pro-
cess of this model to improve risk assessment strategy.

(2) Application: Attackers can simultaneously train two
surrogate models, each of which attempts to mimic the victim
model’s behavior. If these surrogate models make inconsistent
predictions for certain credit applications (e.g., one surrogate
approves while the other rejects), it indicates that they have
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Table 7: Architecture selection and accuracy of the victim model in two tasks.
Dataset Cora Pubmed A-Computer OGB-Arxiv

Node Classification

GAT Architecture 1-32 1-32 1-128 2-256
Accuracy 79.56±0.76 77.06±0.54 80.09±1.67 54.66±0.36

GCN Architecture 3-128 2-256 2-256 3-256
Accuracy 80.61±0.74 76.76±0.20 80.63±1.00 66.75±0.16

SAGE Architecture 2-256 3-128 2-64 3-256
Accuracy 79.33±0.50 77.23±0.09 79.24±2.54 69.18±0.10

Link Prediction

GAT Architecture 1-16 1-32 1-32
Accuracy 84.24±0.58 63.04±0.55 81.84±2.14

GCN Architecture 1-128 2-256 3-128
Accuracy 89.70±0.30 88.10±0.18 93.84±0.35

SAGE Architecture 2-32 2-32 5-32
Accuracy 92.47±0.50 86.91±0.29 86.42±2.96

Table 8: Experimental Results on the Transductive Scenario for Node Classification Task. The table presents the mean and
variance of 5 training runs.

MV
Dataset Cora Pubmed A-Computers OGB-Arxiv

MS(GCN) Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

GAT

Real Data 83.68±0.25 94.47±0.74 78.62±0.05 92.21±1.01 83.72±0.91 91.72±1.06 56.73±1.08 89.23±0.69

Random Graph 74.39±2.95 81.69±1.87 67.81±1.59 83.09±2.29 75.85±3.84 83.22±2.92 48.08±3.74 78.25±3.89

Attack I-E 83.41±0.21 94.12±0.67 78.37±0.01 91.78±0.94 83.48±0.83 91.03±0.94 55.89±0.98 88.73±0.59

Attack I-Acos 83.26±0.17 93.63±0.61 78.46±0.03 90.93±0.86 83.35±0.79 91.23±0.94 56.02±0.96 88.35±0.55

Attack I-A f p 83.37±0.22 93.79±0.64 78.51±0.02 91.11±0.91 82.92±0.82 91.35±0.96 56.48±1.01 88.60±0.61

Attack II-E 83.21±0.19 93.59±0.63 78.41±0.01 90.99±0.89 83.28±0.81 91.22±0.98 56.42±0.99 88.52±0.57

Attack II-Acos 83.14±0.15 93.43±0.59 78.35±0.02 90.81±0.83 82.91±0.77 91.12±0.92 55.76±0.53 88.28±0.51

Attack II-A f p 83.29±0.18 93.92±0.62 78.29±0.03 91.67±0.88 83.34±0.78 91.01±0.95 56.43±0.96 88.66±0.54

Attack III-E 83.55±0.19 93.87±0.65 78.38±0.02 91.82±0.91 83.39±0.75 91.08±0.97 56.55±0.94 88.81±0.52

Attack III-Acos 83.45±0.17 94.12±0.61 78.36±0.04 91.95±0.86 82.68±0.73 91.16±0.94 56.49±0.98 88.71±0.57

Attack III-A f p 83.62±0.21 94.01±0.67 78.42±0.03 91.71±0.93 83.56±0.80 91.24±0.91 56.57±0.92 88.96±0.55

GCN

Real Data 83.85±0.28 91.15±0.85 78.87±0.17 94.72±0.51 83.41±0.68 90.22±0.76 65.03±0.96 92.03±0.82

Random Graph 72.19±1.89 80.53±2.07 63.56±2.38 81.39±2.19 72.08±2.34 77.92±2.54 50.28±2.41 81.37±2.28

Attack I-E 82.57±0.48 90.75±1.19 78.21±0.05 94.43±0.62 82.98±0.62 89.60±0.99 63.74±0.73 91.58±0.37

Attack I-Acos 82.38±0.61 90.41±1.06 78.47±0.14 94.19±0.52 83.01±0.57 89.80±0.83 63.22±0.84 91.82±0.54

Attack I-A f p 82.75±0.67 90.85±0.96 78.61±0.24 94.32±0.46 82.82±0.75 89.42±0.72 63.85±0.91 91.24±0.67

Attack II-E 82.84±0.74 91.42±0.91 78.69±0.29 94.61±0.55 82.89±0.82 89.97±0.79 64.11±0.79 91.92±0.73

Attack II-Acos 82.91±0.72 91.23±0.86 78.68±0.26 94.56±0.49 82.98±0.78 89.81±0.75 63.84±0.73 91.66±0.69

Attack II-A f p 82.98±0.79 91.71±0.97 78.81±0.37 94.45±0.62 83.07±0.87 90.18±0.85 64.38±0.86 92.02±0.78

Attack III-E 83.75±0.86 92.51±1.10 79.23±0.45 94.91±0.79 83.55±0.96 91.03±0.96 64.91±0.97 92.82±0.97

Attack III-Acos 82.62±0.33 92.35±1.06 79.09±0.55 94.78±0.72 83.23±0.92 90.85±0.92 64.63±0.95 92.59±0.92

Attack III-A f p 83.91±0.97 92.79±1.15 79.39±0.64 95.02±0.86 83.72±1.01 91.24±1.01 65.18±1.02 92.98±1.01

SAGE

Real Data 84.28±0.16 92.49±0.39 77.14±0.81 93.23±0.95 83.29±0.28 92.17±0.49 69.39±0.53 93.17±0.79

Random Graph 71.99±2.03 81.13±2.49 68.27±3.08 85.28±2.03 75.38±1.94 83.72±1.84 52.34±3.46 80.97±2.38

Attack I-E 82.28±0.33 91.76±0.64 75.14±0.93 92.28±0.89 82.14±0.48 91.62±0.68 67.39±0.71 92.27±0.88

Attack I-Acos 83.38±0.25 91.73±0.55 76.14±0.78 92.12±0.79 82.71±0.39 91.83±0.59 68.39±0.64 92.01±0.79

Attack I-A f p 82.79±0.41 91.29±0.49 76.71±0.68 92.06±0.86 82.12±0.33 91.59±0.45 68.91±0.53 91.29±0.78

Attack II-E 83.14±0.56 91.84±0.99 77.01±0.99 92.81±1.07 82.63±0.68 92.17±0.99 69.49±0.79 91.89±1.17

Attack II-Acos 83.43±0.62 91.57±0.89 77.35±1.05 92.32±0.98 82.74±0.73 92.45±1.05 70.22±0.96 92.11±1.22

Attack II-A f p 83.68±0.71 91.92±1.05 77.87±0.89 92.69±1.15 82.95±0.81 92.79±1.18 70.63±1.08 92.83±1.37

Attack III-E 83.37±0.56 91.49±0.82 77.26±0.92 92.18±0.88 82.59±0.66 92.32±0.86 70.12±0.78 91.93±1.02

Attack III-Acos 83.29±0.53 91.38±0.77 77.21±0.88 92.11±0.83 82.68±0.69 92.23±0.81 70.06±0.75 91.81±0.99

Attack III-A f p 84.19±0.37 91.51±0.83 77.29±0.94 92.21±0.90 82.62±0.67 92.34±0.88 70.15±0.80 91.96±1.05

learned different aspects of the victim model’s decision crite-
ria. By enforcing these inconsistencies and analyzing which

applications trigger them, the attacker can gain insights into
the victim model’s complex risk assessment process.
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