
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

D-Helix: A Generic Decompiler Testing Framework 
Using Symbolic Differentiation

Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio Bianchi, 
and Dave (Jing) Tian, Purdue University

https://www.usenix.org/conference/usenixsecurity24/presentation/zou



D-Helix: A Generic Decompiler Testing Framework Using Symbolic Differentiation

Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio Bianchi, Dave (Jing) Tian

Purdue University

{zou116, khan253, wu1377, coolgao, antoniob, daveti}@purdue.edu

Abstract

Decompilers, one of the widely used security tools, transform
low-level binary programs back into their high-level source
representations, such as C/C++. While state-of-the-art de-
compilers try to generate more human-readable outputs, for
instance, by eliminating goto statements in their decompiled
code, the correctness of a decompilation process is largely
ignored due to the complexity of decompilers, e.g., involving
hundreds of heuristic rules. As a result, outputs from decom-
pilers are often not accurate, which affects the effectiveness
of downstream security tasks.

In this paper, we propose D-HELIX, a generic decom-
piler testing framework that can automatically vet the de-
compilation correctness on the function level. D-HELIX uses
RECOMPILER to compile the decompiled code at the func-
tional level. It then uses SYMDIFF to compare the symbolic
model of the original binary with the one of the decompiled
code, detecting potential errors introduced by the decompila-
tion process. D-HELIX further provides TUNER to help debug
the incorrect decompilation via toggling decompilation heuris-
tic rules automatically. We evaluated D-HELIX on Ghidra and
angr using 2,004 binaries and object files ending up with 93K
decompiled functions in total. D-HELIX detected 4,515 in-
correctly decompiled functions, reproduced 8 known bugs,
found 17 distinct previously unknown bugs within these two
decompilers, and fixed 7 bugs automatically.

1 Introduction

Widely applied in security, decompilation is a reverse engi-
neering procedure that transforms a low-level binary program
back to high-level source code representations such as C/C++.
For example, Ghidra is such a decompilation tool “developed
by NSA’s Research Directorate in support of the Cyberse-
curity mission” 1. The whole decompilation process can be
divided into four stages: disassembly, lifting to Intermediate
Representation (IR), higher-level semantics abstraction, and

1https://ghidra-sre.org/

decompiled code generation [11]. Disassembly is the initial
process that translates the machine code into assembly code.
Then the lifter further converts it into IR (e.g., P-Code [6] or
VEX [3]). Based on the IR, the decompiler recovers higher-
level semantics (e.g., control flow graphs, variable types, or
structures) and finally generates the decompiled code as out-
put. In this paper, we refer lifter as the tool that can convert
machine code into IR and define decompiler as the tool work-
ing on IR and finally generating the decompiled code.

Although decompilation techniques are expected to facil-
itate real-world reverse engineering, many engineers do not
trust the output of decompilers. In fact, approximately 69%
of reverse engineers (i.e., 11 out of 16) pay less attention to
the decompilation output since they think the decompilation
process is error-prone and the wrong result will mislead the
analysis [50].

The hurdle of impeding security engineers from trusting
decompilers, as we observe, is the essential trade-off between
code readability and semantic accuracy. During the last two
stages of the decompilation, a decompiler has to infer infor-
mation (e.g., structural or type information) that has been dis-
carded during compilation [60]. To tackle this, modern decom-
pilers involve hundreds of heuristic rules, such as type recon-
struction [38] and code structure recovery [12] to compensate
for the missing information, and iteratively apply these rules
to generate code that is progressively more and more readable.
However, as shown in existing work [30], these heuristic rules
might be unsound or even incorrect, introducing semantic inac-
curacies in the decompiled code. Though security researchers
have conducted numerous works [10, 12, 13, 16, 22, 54, 55, 60]
to improve decompilers, most of them focus on improving the
readability of the output, e.g., introducing heuristics to min-
imize goto statements. Consequently, as we will show later
in Table 1, most of the state-of-the-art decompilers neglect
the semantic accuracy of decompiled code when devising the
heuristic rules. Meanwhile, not surprisingly, current decompil-
ers [4,5,9,29,48,51] have no mechanism to test their heuristic
rules’ soundness and implementation correctness, except ba-
sic unit testing. To the best of our knowledge, there is only

USENIX Association 33rd USENIX Security Symposium    397

https://ghidra-sre.org/


one existing study systematically investigating the correctness
of decompilers [30]. However, its methodology has certain
limitations, for instance, it fails to detect incorrect structure
recovery. Furthermore, it can only identify bugs within the
decompiled code, without identifying the root cause of the
inaccuracy within decompilers.

In this paper, we propose D-HELIX, a generic decompiler

testing framework that can automatically vet the decompila-

tion correctness. Compared to the existing study, D-HELIX

directly works on the binary code and thus does not require
source code, thereby following a more realistic usage of de-
compilers and facilitating testing with a broader scope. Fur-
thermore, D-HELIX is capable of identifying problematic
heuristics within decompilers. Initially, D-HELIX performs
a dedicated recompilation procedure to compile the decom-
piled code at the function level. Afterward, by performing
symbolic execution, D-HELIX extracts symbolic models from
the original binary and the recompiled decompiled output.
These symbolic models are then compared to detect semantic
discrepancies between the decompiled code and the original
binary. Finally, D-HELIX applies a tuning algorithm to infer
which decompiler’s heuristic rule could be responsible for the
detected decompilation inaccuracy by efficiently exploring
the configuration space of the tested decompiler.

We have implemented D-HELIX and applied it to Ghidra [5]
and angr [51]. In particular, we used Ghidra and angr to de-
compile a dataset of 2,004 real-world binaries from Github
and obtained 93K decompiled functions in total. D-HELIX

detected 4,515 incorrectly decompiled functions, reproduced
8 known bugs, found 17 distinct previously unknown bugs in
these two widely used decompilers, and automatically located
the root causes of 7 bugs. D-HELIX provides a powerful tool
for both decompiler developers and security researchers to de-
tect inaccurate decompilation results and debug decompilation
processes.

In summary, our contributions are as follows:

• We design D-HELIX, a fully automatic decompiler test-
ing framework using only binaries as the input, with three
components:

1) RECOMPILER, a best-effort recompiler enabling com-
pilation of decompiled output at the function level.

2) SYMDIFF, an automatic symbolic model checking tool
supporting different symbolic execution engines and en-
abling the detection of inaccurate decompilation by cap-
turing semantic discrepancies between the original bi-
nary code and decompiled outputs.

3) TUNER, an automatic debugger to find potential culprit
heuristic rules that lead to inaccurate decompilation by ef-
ficiently and effectively exploring different combinations
of the heuristic rules available within a decompiler.

• We fully implement D-HELIX and apply it to Ghidra and
angr. Besides reproducing 8 known bugs within these

decompilers, D-HELIX found 17 distinct previously un-
known bugs, 11 in Ghidra and 6 in angr, revealing intrin-
sic interactions among different heuristic rules that led
to inaccurate decompilation.

We followed the disclosure practices and reported all
the found bugs to the affected parties. The source code
for D-HELIX is available at: https://github.com/purseclab/D-
helix.

2 Motivation

Decompiler SP SLoC Heu OSS

DREAM [55]
✓ 12.9K 9 ✓

DREAM++ [54]
Foxdec [49] ✓ 2,924K 146 ✓

Retdec [9] × 2,437K 46 ✓

Ghidra [5] × 4,258K 151 ✓

Reko [48] × 6,764K 26 ✓

angr [1] × 246.8K 41 ✓

Radeco [41] × 40.5K 18 ✓

Rellic [29] × 25.3K 27 ✓

llvm-cbe [24] × 10.9K 0 ✓

Phoenix [12] ✓ − − ×

rev.ng-c [22] × − − ×

Hex-Rays [4] × − − ×

JEB [7] × − − ×

BinNinja [8] × − − ×

Table 1: Systematization of decompilers and their characteris-
tics. SP = Semantic-Preserving, Heu = Heuristics, and OSS
= Open Source Software.

Though decompilers are extensively used for security
tasks [13, 15, 44, 50, 52–54], many people do not trust the out-
put of decompilers because of the potential inaccuracy intro-
duced during decompilation. To understand the inaccuracies
in decompilers, we demonstrate the following observations.

Observation 1: Decompilers tend to overlook the impor-

tance of ensuring the semantic preservation of their decom-

piled code. We surveyed 15 state-of-the-art generic decom-
pilers, including both open-source projects and commercial
products. As shown in Table 1, we illustrate the systemati-
zation of the decompilers from four perspectives, which are
semantic-preserving (SP), source lines of code (SLoC), the
number of heuristic rules (Heu), and source code availability
(OSS). For the semantic-preserving feature of decompilers,
we check whether the terminology (e.g., preserving semantic
accuracy) is mentioned as a feature in their papers or product
descriptions. For open-source decompilers, we get SLoC from
the entire codebase of the respective project and count the
number of heuristic rules by exploring the projects ourselves.

We observe that most decompilers leave the semantic accu-
racy out of consideration, while only three decompilers include
different semantic-preserving methods to build their decompil-
ers. For instance, Phoenix [12] introduces semantic-preserving
iterative refinements, attempting to ensure the control flow
structure is correctly recovered. DREAM/DREAM++ [54,55]

398    33rd USENIX Security Symposium USENIX Association

https://github.com/purseclab/D-helix
https://github.com/purseclab/D-helix


provides semantic-preserving transformations focusing on
data flow and control flow path recovery, such as goto removal,
redundant variable removal, semantic-aware variable naming,
etc. FoxDec [49] uses formal methods for semantic-preserving
decompilation. However, except formally-verified decompila-
tion, all these works focus on introducing semantic-preserving
heuristics to address their corresponding task domains, such
as goto statement elimination. Additionally, for FoxDec, the
binaries it supports are constrained by certain assumptions,
such as no global variables and no indirect branching. For
the remaining decompilers, we observe that their decompiled
outputs contain many semantic inaccuracies, e.g., type recov-
ery errors, structure recovery errors, and function pointer type
recovery errors. These inaccuracies arise due to the loss of
critical information during the compilation process, that is,
compilers translate variables and data structure fields to plain
registers and memory locations without any structural or type
information. Sometimes, decompilers use special symbols to
represent the terms they cannot recover. For instance, Ghidra
uses undefined[16] to represent the type of a 16-bit vari-
able that it cannot recover. However, not every inaccuracy is
labeled with special symbols. As we will show later in Sec-
tion 6, there exists a certain amount of inaccuracies that can
hardly be detected without testing.

To conclude, current decompilers define function semantics
in different ways and conduct limited examinations of the
decompiled code.

Observation 2: There lacks a generic methodology,

which can soundly examine the decompilers. While existing
works [25, 30–32, 34, 40] propose different methodologies to
conduct code equivalence examinations, only one of them [30]
focuses on the decompiled code. For the rest, as we will fur-
ther discuss in Section 8, their methodologies are not sound
enough to examine the decompiled code, e.g., these meth-
ods cannot detect incorrect recovery of function prototypes
in the decompiled code. Meanwhile, the existing decompiled
code equivalence examination [30] lacks generality and is not
sound. Specifically, it uses Equivalence Modulo Inputs (EMI)
testing [27] to mutate the original source code and compare it
with the corresponding decompiled code under the same set
of pre-defined inputs to find semantic inaccuracies. However,
this method is not generic, since it cannot report inaccura-
cies in binaries without source code. For instance, it relies on
Csmith [57] to generate the source code, which is devoid of
undefined behavior (e.g., no uninitialized variables). Conse-
quently, this approach cannot detect the semantic inaccuracy
of decompilers on binaries containing undefined behavior.
Furthermore, its methodology is not sound to thoroughly ex-
amine decompilers, as it does not support the decompiled code
with C struct and union, thereby failing to detect any incorrect
structure recovery bug in decompilers.

Observation 3: It is hard to debug root causes of semantic

inaccuracies in decompilers. Based on our survey, we note that
existing decompilers have a non-trivial codebase and employ

a large number of heuristics (e.g., converting the goto state-
ment to the while loop) to facilitate decompilation. As shown
in the LoC and Heu columns of Table 1, decompilers have
code base sizes from 12.9K (i.e., DREAM [55]) to 6.8M (i.e.,
Reko [48]) lines of code and can have as many as 151 heuristic
rules (i.e, Ghidra [5]) applied during the decompilation pro-
cess. One may think that debugging decompilers is similar to
debugging compilers because they both apply heuristics/opti-
mization passes to the code. However, in the case of compilers,
developers can rely on the fact that compilers should always
generate a correct binary when some optimization passes are
applied. In our case, however, this assurance does not hold true.
Specifically, because decompilation is a process of recovering
the IR to the high-level language, decompilers heavily rely on
heuristics to infer essential missing information. Therefore,
when some heuristic rules are not applied, decompilers do not
ensure semantic preservation in their generated code. In fact,
when no heuristic rule is applied, decompilers may totally
screw up the decompiled code.

Meanwhile, to correctly infer the missing information (e.g.,
the data type of a variable), decompilers usually look through
the context of the whole binary (e.g., the data-flow of that
variable) and iteratively apply heuristic rules to each instruc-
tion. For instance, Ghidra iteratively applies all heuristic rules
to a single instruction before moving to the next one, while
angr iteratively applies one heuristic rule at a time but to all
instructions. Hence, it is common for decompilers to apply
numerous heuristic rules on a single instruction hundreds of
times, which yields thousands of distinct intermediate statuses.
As a result, to debug a semantic inaccuracy, decompiler devel-
opers need to review these intermediate statuses to identify at
which point the inaccuracy begins.

Our Approach: We propose our testing framework, which
runs symbolic execution testing on the lifted IR level. Com-
pared with previous work, it is more generic. Specifically,
since every heuristic-based decompiler generates the decom-
piled code from the lifted IR, every piece of decompiled code
has its corresponding lifted IR code. Therefore, as our test-
ing framework runs symbolic execution testing on the lifted
IR level, it allows any real-world binary as the input to test
decompilers. Meanwhile, it is more complete compared with
previous work. Since we use the lifted IR as the ground truth
to compare with the decompiled code, our approach will not
report inaccuracies introduced in the disassembling or lifting
phase (i.e., lifter). Moreover, to help debug decompilers, we
implement a dedicated heuristic rule tuning system on top of
the symbolic execution testing approach that we use.

3 Design Challenges

Section 2 motivates the need for a novel decompiler testing
framework, which can not only provide a more generic and
sound semantic examination of the decompiled code but also
automatically debug the root causes of different semantic in-

USENIX Association 33rd USENIX Security Symposium    399



accuracies. In this section, we will summarize the challenges
we need to solve to achieve our goal.

Challenge 1: Recompilation. To check the semantics of
the decompiled code, existing work [12, 30] recompiles the
decompiled code as a whole into a binary. However, as syn-
tactical errors such as undefined global variables are common
among the decompiled code [30], decompilers do not guaran-
tee the recompilability of the code they produce. To address
these errors, existing work [12, 30] needs the original source
code for help. Specifically, they replace the component con-
taining syntactical errors with their corresponding original
source code during the recompilation. Nevertheless, many
real-world binaries do not come with corresponding source
code. Hence, recompiling the entire decompiled code of close-
source binaries is challenging.
Observation: While recompiling decompiled code as a whole
is usually challenging, an existing study indicates that recom-
piling at the function level is usually approachable [39], after
proper adjustments.
Solution: To make sure one decompiled function that cannot
be recompiled does not affect the evaluation of the other func-
tions in the binary, we recompile each function independently.
Specifically, we design RECOMPILER, an iterative automatic

recompiler (details in Section 4.1) to revise and recompile the
decompiled code at the function level.

Challenge 2: Semantic error detection. There is no univer-
sally accepted definition of function semantics in the existing
work [12, 30, 49, 54, 55]. For instance, certain definitions con-
sider two functions as equivalent in semantics if they both pass
a unit test [12], whereas an alternative criterion checks equiva-
lence in the sum of instrumented global variables [30]. Mean-
while, codes sharing the same function semantics can have
syntactical differences in terms of control flows, data flows,
and the used instructions. As a result, determining whether
two functions are semantically equivalent is non-trivial.
Observation: Symbolic execution provides a sound approach
to verify the semantic equivalences. However, it is known to
suffer from poor scalability due to path explosions.
Solution: We define the semantic equivalence of two functions
as a subset of observation equivalence focusing on their return
values. To achieve this, we formally represent the semantics
of each function as a symbolic model (refer to Section 4.2).
Meanwhile, to examine the semantic equivalence of two func-
tions, we propose symbolic differentiator (SYMDIFF), which
first abstracts the semantics of each function into a symbolic
model through symbolic execution and then employs an SMT
solver to verify their equivalence. By focusing on comparing
code at the function-level granularity and generating symbolic
models from both binary and decompiled code, our symbolic
model differentiator allows us to keep the scalability of the
symbolic execution, while detecting bugs in decompilers.

Challenge 3: Semantic errors debugging. Modern decom-
pilers typically have a complex codebase and employ a large
number of heuristic rules. Due to this complexity, as we will

Lifter

Lifted IR

Decompiler

Binary

Tuner

Recompiler Symdiff

High Level Code

Recompiled IR

Accurate
Decompiled 

Code

Figure 1: D-HELIX pipeline: D-HELIX extracts symbolic mod-
els for Lifted IR and Recompiled IR, and compares the sym-
bolic models using a constraint solver. For semantically in-
equivalent models, D-HELIX uses the TUNER to fix the de-
compiled code.

later show in Section 6.4, we notice that even for their de-
velopers it is hard to trace and fix bugs in decompilers. For
instance, as the time of writing, there are still over 850 issues
open in Ghidra Github.
Observation: Decompilers apply a set of heuristic rules while
generating and simplifying the decompiled code. Typically,
each heuristic rule has a dedicated goal (e.g., use debug in-
formation to help recover the function prototype) and the
application of a specific heuristic rule (or a small subset of
heuristic rules) is what causes a specific decompilation error,
e.g., misordered function arguments due to incorrect debug
information analysis.
Solution: To automatically find the root cause of the identified
decompilation errors, we propose TUNER, which iteratively
toggles decompilers’ heuristic rules and compares the newly
generated decompiled code with the original binary via the
help of SYMDIFF. Since TUNER identifies the problematic
heuristic rule(s) fully automatically, it can help decompilers’
developers save manual efforts in locating the root cause of a
given decompilation error.

4 Design

D-HELIX is a generic decompiler testing framework that can
automatically vet the decompilation correctness. Figure 1
shows the pipeline for D-HELIX. D-HELIX takes a binary and
a decompiler as its inputs. As a first step, D-HELIX translates
the input binary to Lifted IR using the lifter of the analyzed
decompiler. Then, D-HELIX performs the following opera-
tions for each function present in the analyzed binary. First,
the Lifted IR is passed to the tested decompiler to generate
the decompiled code. Then, RECOMPILER (Section 4.1) com-
piles the decompiled code to generate Recompiled IR with
the help of the compiler. Next, D-HELIX checks the semantic
equivalence of the Lifted IR and the Recompiled IR using the
SYMDIFF (Section 4.2). If both IRs are equivalent, D-HELIX

reports the decompiled code as accurate. Otherwise, D-HELIX

uses TUNER to automatically identify the heuristic rule(s)
within a decompiler that is(are) responsible for the detected

400    33rd USENIX Security Symposium USENIX Association



semantic inaccuracy (Section 4.3).

4.1 RECOMPILER

As mentioned, our approach is based on comparing the IR
we obtain by lifting the original binary against the IR we
compile from the recompiled decompiled code. To achieve
this goal, we need to recompile the decompiled code output
by the decompiler. Unfortunately, decompilers often output
code that is not even syntactically valid and, for this reason, it
cannot be directly recompiled.

A naive approach would just discard any non-recompilable
function and consider it as a wrongly decompiled function.
However, by doing so, a large amount of functions would
be filtered out since decompilers do not guarantee recompi-
lability, and the number of functions we can analyze using
our symbolic differentiation approach would be significantly
lower, hindering our ability to detect hard-to-find, semantic
decompilers’ errors.

To recompile as many functions as possible, we use
RECOMPILER, a program mutation engine that uses the er-
rors generated by the compiler as feedback to fix syntactic
errors from the decompiled code. In particular, RECOMPILER

uses an Iterative Recompilation process. Firstly, RECOMPILER

places the decompiled source code of each function in a sep-
arate translation unit (i.e., file). Then, for each translation
unit, RECOMPILER modifies the decompiled code iteratively.
Specifically, during each iteration, RECOMPILER attempts to
compile the code and counters the eventual error logs emitted
by the compiler in the following way.
Undefined variables. RECOMPILER first tries to recover their
initial values and types from the lifted IR code. Specifically,
some decompilers (e.g., Ghidra) store the types and initial
values of global variables in the IR code but do not define them
in the decompiled code. In this case, RECOMPILER directly
defines these variables using the information provided by
the lifter. Otherwise, RECOMPILER follows the convention
used by the VS compiler (i.e., C4430 [37]) to define these
variables with a default type and value, e.g., int x;. Note that
this approach can potentially introduce semantic inaccuracies
into the code, as we will discuss further in Section 6.1.
Syntactic errors. RECOMPILER uses the syntactic error details
to update the wrong type to the type expected by the com-
piler. For instance, RECOMPILER would help remove a pointer,
when the compiler reports errors, such as indirection requires

pointer operand.
RECOMPILER keeps fixing these errors until either the cur-

rent translation unit is free of errors (i.e., can be recompiled) or
a maximum iteration count (by default, 10) is reached. When
the maximum iteration count is reached, RECOMPILER termi-
nates and reports the failure to D-HELIX, which will ignore
such a function in the later stages of the pipeline. Conversely,
for each recompiled translation unit, RECOMPILER generates
the corresponding IR for the next stage of D-HELIX pipeline.

4.2 SYMDIFF

To examine function-level semantics of the decompiled code,
we design SYMDIFF, a dynamic symbolic execution engine
that automatically verifies the semantic equivalence of two
input functions. As RECOMPILER generates Recompiled IR at
the function level, SYMDIFF first uses the function identifiers
to map each function from the Recompiled IR to the corre-
sponding function in the Lifted IR and then test their semantic
equivalence using symbolic execution.

As shown in Figure 2, SYMDIFF constitutes two compo-
nents: Generator and Comparator. Generator constructs a sym-
bolic model of the input IR, whereas Comparator matches two
models to determine if they are semantically equivalent. As
the design of Generator aims to accommodate various IRs and
symbolic engines, this design hides their potential differences.

Recompiled

 IR code

Lifted 

IR code

Generator

Recompiled

 Code 

Symbolic 

Models

Comparator TunerOutput

Lifted 

 Code 

Symbolic 

Models

Figure 2: SYMDIFF: Comparator
compares symbolic models, gen-
erated by Generator.

1:int f(uchar a){

2: int ret = 1;   

3: if (a == 1) 

4:   ret = 0; 

5: return ret;}     

1: BB_0_2 

2: = (1 32bits)

3: BB_0_1 

4: = (0 32bits) 

5: BB_0 

6: = (ITE a==1

7:  BB_0_1 BB_0_2)

Figure 3: C code and
its symbolic model.

4.2.1 Generator

For each input function, Generator generates a symbolic model
to represent its function semantics. To do this, we build a sym-
bolic model as a mathematical representation of the modeled
function, such that the inputs of the formula are the input argu-
ments of the modeled function and the output of the formula
is the return value of the modeled function. For example, Fig-
ure 3 shows the symbolic model generated by Generator for a
simple C function. The function takes one input argument and
returns 0 if the value of the input variable is zero, otherwise,
it returns one. Similarly, the corresponding symbolic model
takes in one input argument and achieves the same behavior
as the C code by using an If-Then-Else (ITE) expression that
evaluates to zero if the value of the input variable is zero.

To generate these symbolic expressions, Generator per-
forms symbolic execution on different IRs using different
engines, exploring all possible paths leading to the function
return instruction(s). More in detail, Generator first considers
all functions’ arguments as symbolic and then performs sym-
bolic execution on the function through the modified symbolic
execution engines. After that, Generator merges symbolic ex-
pressions related to different explored paths using appropriate
ITE expression, in which the branch conditions (e.g., if condi-

USENIX Association 33rd USENIX Security Symposium    401



tion) correspond to the path constraints of the merged paths.
Finally, as exemplified in Figure 4, Generator creates a sym-
bolic expression representing how the function’s return value
is computed based on its arguments.

1: BB_0_2_1  = (1 32bits)

2: BB_0_2_3  = (0 32bits) 

3: BB_0_2 = (ITE a==0x0f 

4:     BB_0_2_1 BB_0_2_3)

5: BB_0_1 = (1 32bits)

6: BB_0 = (ITE a==0x07

BB_0_1 BB_0_2)

1: f(uchar a){    

2: if (a == 0x07）
3: return 1; 

4: if (a == 0x0f) 

5: return 1; 

6: return 0;}     

a==0x0f
BB_2:

BB_0: 

BB_1:

N Y

YN

a == 0x07

ret 1

ret 1ret 0
BB_1:BB_3:

Pseudo Code

Constraint Graph

Symbolic Model

Figure 4: Sample function
and its symbolic model.

FunA

FunB

Symbolic
Model of
FunA

Symbolic
Model of
FunB

1: f(uchar a2){

2: if ((a2 & 0xf7)

3:      != 0x07)

4:   return 0;

5: return 1;}

1:  assert( a1 == a2 )

2:

3:  funA_0_2_1  = (1 32bits)

4:  funA_0_2_3  = (0 32bits) 

5:  funA_0_2 = (ITE a1==0x0f 

6: funA_0_2_1 funA_0_2_3)

7:  funA_0_1 = (1 32bits)

8:  funA_0 = (ITE a1==0x07

9: funA_0_1 funA_0_2)

10:

11: funB_0_1 =  (1 32bits)

12: funB_0_2 = (0 32bits) 

13: funB_0 = 

14:   (ITE (a2&0xf7)!=0x07

15: funB_0_1 funB_0_2)

16:

17: assert(funB_0 != funA_0 )

18: check−sat

1: f(uchar a1){

2: if (a1 == 0x07

3:   || a1 == 0x0f)

4:   return 1;

5: return 0;}

Figure 5: The bottom SMT query
is generated by SYMDIFF to com-
pare the two functions at the top.

Noted that to handle scalability problem [26], we designed
specific strategies regarding how we handle external function
calls, loops, and memory accesses, as we will explain next.
Loop Bounding: To limit the number of paths we need to ex-
plore, if a configurable timeout is reached during the symbolic
execution of a function (as detailed in Section 5), we limit the
number of times we execute each branch instruction. Specif-
ically, if a branch instruction is about to be executed more
than 2 times, we stop the symbolic exploration by executing
a dummy return instruction. This ensures that we execute
the loop body of each loop at least once. While this approach
can introduce imprecision in our analysis, it is in line with
HeapHopper [21] and FIE [18], which show that a single iter-
ation of a loop can yield comparable code coverage to that of
a hundred loop iterations.
Memory Model: To achieve a good trade-off between preci-
sion and scalability among existing ways to model symbolic
memory accesses [42,46], we follow the approach as outlined
below. To universally accommodate the memory layouts and
objects, we initialize all the memory to a default value of zero.
In the case of a read operation, if a symbolic memory address
is used in the read operation, SYMDIFF enumerates all of its
possible values, up to a configurable upper bound. On the
other hand, when handling a symbolic memory address used
in a write operation, SYMDIFF queries an SMT solver to ob-
tain its maximum possible value. To achieve a good trade-off
between false positives and high memory usage overhead, for
pointer-type input arguments, we make them point to an allo-
cated symbolic space of 256 bytes. For other input arguments,

we model their values as 8 symbolic bytes.
External Calls: Since RECOMPILER recompiles each function
separately, SYMDIFF executes symbolically on a per-function
basis. Hence, when an external function is called, Generator
has no source code to directly execute it. A naive solution
would be stubbing every function call with a nop instruction or
with a dummy function returning a constant value. However, in
this way, the symbolic execution would lose any information of
the relationship between the arguments of a function call and
its return value. Hence, SYMDIFF would be unable to detect
the decompiler’s errors caused by incorrect decompilation of
an external function call.

While completely and precisely modeling each possible
external function call is unfeasible, as a trade-off, we designed
an approximation model in which every encountered external
function call is modeled as returning a value that is the sum
of the least significant byte of its arguments. Consequently,
the resulting symbolic expression, although it does not model
precisely the behavior of the external call, still keeps track of
the relationship between the arguments of the external call
and its return value. Specifically, Generator follows the calling
convention recovered by the decompiler to extract the values
of the arguments of the called function. Additionally, if an
argument is of a pointer type, Generator extracts the content
located at the address being pointed to by the pointer, rather
than the pointer address itself. Finally, Generator generates
the sum of the least significant bytes of the extracted values
and signed extends this sum to generate the return value.

4.2.2 Comparator

We use Comparator to test the semantic equivalence of two
symbolic models, corresponding to the function from the lifted
IR and its recompiled version. To do this, Comparator uses
two symbolic models to construct a mathematical formula
and queries the SMT solvers whether there exists a path that
has different return values, i.e., for the given symbolic mod-
els whether there is an input that causes the behavior of the
symbolic models to diverge.

Specifically, Comparator first maps the arguments of the
two functions from the symbolic models, if such arguments
are present. If the mapping fails, Comparator reports semantic
inequivalent directly. Otherwise, Comparator sets the corre-
sponding function arguments with the same value, dumps the
symbolic models of the two functions, makes an assertion
that the return values of the two functions are different, and
asks an SMT solver whether the assertion is satisfiable. If
the SMT solver finds a path difference in these two symbolic
models is satisfiable, Comparator reports two functions are
not equivalent. Otherwise, Comparator reports two functions
are semantic equivalent. Figure 5 provides an example of this
procedure. As shown in line 1 of the SMT query, Comparator
first maps two arguments and sets them as equal. After that, it
dumps the symbolic models of two functions from line 3 to

402    33rd USENIX Security Symposium USENIX Association



line 15. Finally, it asserts return values are not the same and
asks the SMT solver to check the satisfiability.

4.3 TUNER

As mentioned in Section 2, decompilers use heuristic rules
to recover missing information regarding the original source
code. During decompilation, we observed that these rules
often lead to semantic inaccuracies. TUNER aims to automati-
cally find a valid combination of rules that achieves seman-
tic equivalence, by iteratively toggling different rules until
SYMDIFF reports semantic equivalency.

In general, finding the right combination of rules can be
time-consuming because of the large search space. In fact,
if a decompiler provides 𝑛 rules, there are 2𝑛 possible com-
binations. We call the complete combinations of rules the
Configuration Space (Γ) of a decompiler. Exhaustively find-
ing the right configuration in the entire configuration space of
a decompiler has (2𝑛) complexity. To explore a large con-
figuration space efficiently, we introduce two optimizations:
Binomial Search Optimization: We observe that semantic
equivalence often can be achieved by toggling a small number
of rules, because some rules are harder to implement correctly
than others. Therefore, TUNER divides the configuration space
of 𝑛 rules into smaller subsets and chooses an unordered subset
of 𝑥 rules to toggle from the complete set of rules, i.e.,

(
𝑛

𝑥

)
. For

instance, TUNER creates a subset 𝜎1 by toggling only one rule
at a time, i.e.,

(
𝑛

1

)
. While exploring the configuration space,

TUNER starts from covering subset 𝜎0 until it reaches 𝜎𝑛, thus
evaluating the complete configuration as:

⋃𝑛

𝑖=0
|𝜎𝑖|=Γ, where

𝑛 is the number of rules in a decompiler.
Priority-Based Learning Optimization: During tuning, we
observe that some combinations of rules repeatedly rectify
semantic inaccuracies. After further research, we find that this
phenomenon arises either due to bugs within the implemen-
tation of rules or incompatibility among rules. As a result,
combinations of rules that have proven effective in the past
are more likely to rectify semantic inaccuracies for upcoming
input functions. For this reason, TUNER uses a Pre-Learned

Dictionary to record existing effective combinations of rules,
i.e., good configurations. The pre-learned dictionary is a map
with configurations as keys and a priority number as a value.
The priority of the combination of rules is the number of pro-
grams fixed by the combination of rules. While exploring the
configuration space, TUNER first tries the configuration from
the pre-learned dictionary, with a higher priority.

To apply the Priority-Based Learning Optimization (PBLO)

and the Binomial Search Optimization (BSO), TUNER uses
a work queue to search the configuration space. Specifically,
TUNER first inserts the configurations from the pre-learned
rule dictionary in this work queue in the priority descending
order. Next, it adds configuration to the work queue using the
BSO. After that, TUNER iteratively consumes this work queue.
For each iteration, TUNER dequeues the configuration and

uses RECOMPILER and SYMDIFF to verify whether, by using
the tested configuration, the decompiled code is semantically
equivalent to Lifted IR. If the current configuration is able
to achieve semantic equivalence between the recompiled and
lifted IRs, TUNER increases the priority of the configuration
if the current configuration already exists in the pre-learned
rule dictionary. Otherwise, the configuration is added to the
pre-learned rule map with a priority of one.

5 Implementation

We implement D-HELIX as a modular Python framework. Our
implementation is designed to be flexible and allows for the
easy integration of existing decompilers through the imple-
mentation of abstract interfaces. To better evaluate and under-
stand the bugs found by D-HELIX, we choose to work with
two popular and open-source decompilers: angr and Ghidra,
by instantiating the abstract interface of these two decompilers.
We utilize both decompilers in the headless mode, along with
their respective lifters , to lift binary code to IR.
RECOMPILER is implemented as a Python front-end to Clang.
RECOMPILER captures errors thrown by Clang and fixes
them in the source code. Moreover, for pseudo instructions
from different decompilers (e.g., CONCAT from Ghdira)
RECOMPILER treats them as special function calls and inte-
grates their implementation with the decompiled code at the
function level. Specifically, instead of stubbing these instruc-
tions, RECOMPILER first implements them as function calls
based on the definitions from the decompiler and then links
them as a shared library with the decompiled code.
SYMDIFF is implemented as a Python package to provide
an abstract interface to support the plugins of different sym-
bolic engines. Currently, we symbolically execute LLVM IR
using prompt [59] and symbolically execute both P-code
and Vex IR using angr. Specifically, we run prompt with ar-
guments –posix-runtime and –search=bfs and angr with ar-
guments auto_load_libs=False, load_debug_info=True, and
CFGFast. To run P-code on angr, the argument en-

gine=angr.engines.UberEnginePcode is needed during the
initialization.

To compare different IRs, we modify symbolic execution
engines (i.e., angr and prompt) to generate function-level sym-
bolic models and compare the generated symbolic models by
querying SMT solver. Specifically, to generate the symbolic
models for all explored paths, we profile the executions of
two instructions (i.e., return and conditional branch). Dur-
ing the execution of return instructions (e.g., RETURN in
P-code, Ijk_Ret in Vex IR, and ret in LLVM IR), we dump
the constraints of return values following the smtlib format.
During the executions of conditional branch instructions (e.g.,
CBRANCH in P-code, Ijk_Boring in Vex IR, and br in LLVM
IR), we dump their condition constraints and jump targets
using the If-Then-Else (ITE) expression format. Meanwhile,
for each engine, we implement the handling for external func-

USENIX Association 33rd USENIX Security Symposium    403



tion calls, loops, and memory accesses following the design
specified in Section 4.2.1. We also implement a configurable
timeout for all symbolic execution operations. Specifically,
we set the timeout as two minutes by default, considering
our server’s running speed. Lastly, to compare the symbolic
models, SYMDIFF utilizes Z3 [19] as the constraint solver.
TUNER is implemented as a Python package. To accommo-
date different decompilers, TUNER implements an abstraction
layer, a Python class that is used for tuning all the rules within
decompilers, to enable the search within the configuration
space of any decompiler. The size of the configuration space
is dependent on the decompiler as shown in Table 1. For our
evaluated decompilers, Ghidra has 151 rules, out of which
124 are private rules, i.e., they are not accessible without mod-
ifying the source code. We modified 25 SLoC of Ghidra to
expose a public interface for accessing every rule. Similarly,
angr provides 41 rules, 11 of which are private. We modi-
fied 34 SLoC in angr to expose a public interface for these
rules. Regarding the termination strategy, we halt TUNER,
when it reaches a 2-week running time limitation, considering
our server’s running speed. This limit is established on the
observations that toggling more than two rules (i.e.,

(
𝑛

3

)
) in

Ghidra during the Binomial Search Optimization stage may
introduce additional semantic errors. Meanwhile, we observe
that TUNER typically completes toggling two rules within two
weeks.

6 Evaluation

We apply D-HELIX to real-world decompilers to investigate
the following research questions:

1. How effectively can D-HELIX find semantic inaccura-
cies between the binary and the decompiled code (Sec-
tion 6.2)?

2. How effectively can TUNER debug the root causes of the
detected semantic inaccuracies between the binary and
the decompiled code? (Section 6.3)?

To address these questions, we use Ghidra [5] (version 10.0)
and angr [1] (version v9.2.30) as the tested decompilers and
evaluate D-HELIX on a 112-core Intel(R) Xeon(R) Gold with
1 TB of physical memory.

Our evaluation program set consists of 2,004 real-world
binaries and object files from various open-source projects
including binaries used in previous literature [12, 55] (i.e.,
coreutils and util-linux). Additionally, it contains actual bina-
ries and object files from six Linux-based C language projects,
selected from the most popular C language projects on GitHub
in November 2021. 2 The selected applications include FFm-
peg , skynet, masscan, libuv, curl, and openssl. We compile

2We exclude non-Linux binaries from other trending projects, due to the
limited support by the used upstream tools.

all projects with GCC (version 11.1.0) and Clang (version
16.0.0) using the default optimization settings specified by
the projects. Table 4 in the Appendix shows an overview of
our evaluation program set. It includes details on how the
binaries were compiled, as well as the complexity of the input
binaries at the function level. Using our program set, whose
source codes contain 86.93k functions, Ghidra was able to
decompile 55.4k functions, whereas angr could decompile
37.6k functions.

6.1 Findings

D-HELIX found a total of 25 (17 previously unknown) bugs
in the two decompilers (Ghidra and angr). We categorize the
bugs based on the semantics incorrectly recovered by the de-
compilers in 11 categories, listed in Table 2. As shown in the
table, both decompilers have difficulties in the recovery of
the function prototype, variable type, structure’s member, and
certain instructions. Moreover, Ghidra struggles with identi-
fying boundaries of no-return functions and recovering some
literal values. On the other hand, angr struggles with correctly
recovering the CFG of the decompiled program. Note that,
as mentioned in Section 4.1, SYMDIFF may detect semantic
inaccuracies introduced by the RECOMPILER’s approach of
assigning default types and values to undefined variables. In
Table 2, we categorize these inaccuracies, which arise from
the absence of initialization, as missing instructions, i.e., rows
#5 and #9.

We have reported all bugs discovered by D-HELIX to the
relevant parties. As of this writing, 10 out of 17 previously
unknown bugs have been acknowledged and resolved by the
developers, while the remaining 7 bugs are still under review.

As shown in Table 2, D-HELIX found a total of 25 bugs in

the two decompilers (Ghidra and angr), and 7 of these bugs

have been fixed by the developers.

6.2 Semantic inaccuracies findings

To completely evaluate the effectiveness of semantic inac-
curacies findings, we separate the evaluation into two parts,
RECOMPILER and SYMDIFF.

6.2.1 RECOMPILER

To evaluate the effectiveness of RECOMPILER, we compile
the decompiled functions in our evaluation program set using
RECOMPILER and Clang. As shown in Figure 6, for Ghidra,
Clang only compiles 24.9% (13,780) functions, whereas
RECOMPILER recompiles 72.4% (40,129) functions. Similarly,
for angr, Clang compiles 29.1% (10,953) functions, whereas
RECOMPILER compiles 45.0% (16,910) functions. As shown
above, RECOMPILER compiles 130.6% more functions than
Clang, alleviating the challenges of the recompilation.

404    33rd USENIX Security Symposium USENIX Association



# Category of Bugs Decompiler No. of distinct bugs No. of funcs Affected Bug example:(GT vs. DC)

program set

1 Function prototype recovery Ghidra 7 63 𝑃1–𝑃5,𝑃7,𝑃8 f(int a) vs. f(void)

2 Literal value recovery Ghidra 3 6 𝑃1,𝑃7,𝑃8 x < 128 vs. x < -128

3 Type recovery Ghidra 3 222 𝑃1–𝑃4,𝑃8 -0x18 vs. &DAT_ffffe8

4 Structure recovery Ghidra 1 130 𝑃1–𝑃4,𝑃8

Struct{...}a; a+0x6

vs. Struct{...}a; a+0x12

5 Missing instructions Ghidra 1 18 𝑃1,𝑃3,𝑃4,𝑃8 int a = 23; vs. //a is not declared

6 Function boundary recovery Ghidra 1 4 𝑃3 {f(); ...} vs. {f(); return;}

7 Function prototype recovery angr 4 132 𝑃1–𝑃8 return a < 26; vs. return a;

8 CFG recovery angr 2 204 𝑃1–𝑃8 while(){if...} vs. while(){...}

9 Missing instructions angr 2 8 𝑃1–𝑃3,𝑃4,𝑃8 int a = 23; vs. //a is not declared

10 Type recovery angr 1 47 𝑃1–𝑃8 char v1; vs. unsigned long long v1;

11 Structure recovery angr 1 121 𝑃1–𝑃8

Struct{...}a; a+0x6

vs. Struct{...}a; a+0x12

Total 25 955 𝑃1–𝑃8

Table 2: Summary of bugs discovered by SYMDIFF. Bugs are categorized into different rows according to their category. The
fourth column refers to the number of bugs for each error category. The fifth column represents the number of incorrectly
decompiled functions for each error category detected by SYMDIFF. The sixth column shows in which project D-HELIX found
these bugs and the number corresponds to the projects listed in Table 4 in the Appendix. The last column shows how decompilers
incorrectly decompile the GT (Ground Truth) as the DC (Decompiled Code).

We also analyzed the functions that RECOMPILER failed
to compile. As shown in Figure 7, for both decompilers, two
most common error types are type recovery and structure
recovery. Besides these two error categories, RECOMPILER

may fail to recover the function pointer, function prototype,
etc. The distribution of errors for both decompilers is roughly
the same.

72.4%

45.0%

24.9%

29.1%

Ghidra

angr
Clang

RECOMPILER

Figure 6: The percentage
of functions that can
be compiled after using
RECOMPILER.

69%

18%

12%

62%

27%

11%

Type recovery

Structure recovery

Others
angr Ghidra

Figure 7: The distribution of dif-
ferent types of errors that cannot
be fixed by RECOMPILER.

6.2.2 SYMDIFF

We evaluate the effectiveness of SYMDIFF by utilizing the de-
compiled functions recompiled by RECOMPILER. Specifically,
our evaluation focuses on two metrics: the scalability and the
accuracy of SYMDIFF analyses.
Scalability. Our evaluation shows that out of the functions
that can be recompiled by RECOMPILER, SYMDIFF can suc-
cessfully analyze 91.3% (36,628) functions for Ghidra and
93.9% (15,877) functions for angr. To understand the limi-
tations of SYMDIFF, we manually analyze the cases where
SYMDIFF fails. Figure 8 summarizes the errors thrown by
SYMDIFF. The errors can be categorized into three categories,
(1) error from the underlying tools, such as angr, prompt, etc.,
(2) timeout in the constraint solver due to the complexity of
the collected constraints, and (3) unsupported instruction by

54.7%

35.2%

10.2%

61.1%

29.0%

9.9%

Errors
from

underlying
tools

SYMDIFF
unsupported
instruction

Timeout

Ghidra angr

Figure 8: The percentage
of decompiled functions that
are not fully analyzed by
SYMDIFF due to the listed er-
rors.

94.94%

98.86%

95%

94%

99.25%

99%

99.50%

98.50%

F1

Recall

Precision

Accuracy

Ghidra angr

Figure 9: The accuracy, pre-
cision, recall, and F1 score of
SYMDIFF on the tested decom-
pilers.

SYMDIFF, such as floating point instruction. For the programs
decompiled by Ghidra, 55% of the errors were caused by the
tools used by our analysis such as angr, prompt, etc. Similarly,
for angr, 61% of the errors are related to underlying tools. 29%
of the errors are caused by unsupported instructions and 10%
of failures are caused by constraint solver timeout.
Accuracy. To evaluate the accuracy of SYMDIFF, we calculate
the false positives and false negatives generated by D-HELIX

via manually comparing two symbolic models 3. Since this
evaluation requires extensive manual work, for each decom-
piler, we randomly sample a subset of 200 functions, 100 for
examining false positives and 100 for examining false neg-
atives. Figure 9 shows our evaluation result of SYMDIFF on
Ghidra and angr, in the field of accuracy, precision, recall, and
F1 score.

To understand the limitations of SYMDIFF, we investigate
the root cause of false positives and false negatives. Based

3Ideally, we should manually examine the differences between IRs, which,
however, requires significant human efforts. Hence, we compare the dif-
ferences at the source code level. And if we observe an inaccuracy in the
decompiled code that is not shown in its symbolic model, we claim a false
negative.

USENIX Association 33rd USENIX Security Symposium    405



# Category
No.
bugs

Related Rules
No.
funcs

Root
Cause

1
Incorrect function
prototype recovery

3 DWARF 26 ✓

2
Incorrect literal
value recovery

1
RuleSubvarSext &
RuleIntLessEqual

1 ✓

3
Incorrect type
recovery

2
Apply Data
Archives

33 ✓

X86 Constant
Reference Analyze

1 UR

4
Incorrect function
prototype recovery

1
Decompiler
Parameter ID

11 ✓

Total 7 72

Table 3: Summary of bugs in Ghidra that can be fixed by the
TUNER. The last column shows whether the problematic rule
found by TUNER is the root cause of this bug. UR illustrates
that the bug is still under review.

on our findings, the false positives are all caused by the ac-
curacy trade-offs employed by SYMDIFF to scale symbolic
execution, as mentioned in Section 4.2.1. For instance, as
shown in Figure 11 in the Appendix, the concretization strat-
egy (e.g., using malloc to allocate memory for every sym-
bolized pointer) causes the address of the symbolic pointers
between the lifted and high-level source symbolic models
varies and generates false positives. The false negatives were
all caused by SYMDIFF’s dependence on the function proto-
type recovered by the decompiler. Since the decompiler may
fail to recover the correct function’s prototype, as shown in
Figure 12 in the Appendix, the generated symbolic models
may have incorrect external call comparisons.

Hence, D-HELIX works on the majority of the re-compiled

functions (around 92% average of Ghidra and angr) and

achieves high F1 scores (around 97% average of Ghidra and

angr) in accuracy evaluation, overcoming the challenges of

the formalization and semantic inaccuracy detection.

6.3 Semantic inaccuracy debugging

To completely evaluate semantic inaccuracies debugging of
D-HELIX, we separate the evaluation into two aspects, effec-
tiveness (i.e, if TUNER can generate accurate decompiled code
for the functions that are reported as inaccurately decompiled
by SYMDIFF) and efficiency (i.e, the time required for tuning).
Effectiveness. We use the TUNER to analyze a set of inac-
curately decompiled functions reported by SYMDIFF. Since
TUNER depends on the heuristic rules provided by the decom-
piler, we evaluate TUNER for each decompiler separately.
Ghidra. For our program set, SYMDIFF identified 443 semantic
inequivalent functions decompiled by Ghidra.

As shown in Table 3, out of these 443 functions, TUNER

automatically fixed 16.3% (72) functions. Meanwhile, we iden-
tify 7 distinct bugs from these 72 functions. By observing how
Ghidra developers fixed the reported bugs, we verified that
TUNER correctly identified the root cause (i.e., bugs within
the problematic rule) of 6 bugs, accounting for 98.4% (71)

of the functions fixed by TUNER. For instance, in the first
example of Incorrect type recovery (#3), Ghidra maintains
a dictionary mapping the function names of well-known li-
braries (e.g., libcrypto) to their function prototype for faster
decompilation. However, the function prototype information
could be outdated, resulting in inaccuracies. TUNER fixes this
bug by forcing Ghidra to avoid applying this rule (Apply Data

Archives). For the rest cases that can be fixed by TUNER, we
will further explore them in Section 6.4. For the second ex-
ample of Incorrect type recovery (#3)) in Table 3, it is still
under review by Ghidra developers as of this writing.

For the remaining 83.7% (371) functions out of 443 se-
mantic inaccuracies, that TUNER could not fix, we manually
investigated them. Based on our findings, TUNER fails to fix
the inaccuracy if it is triggered by implementation bugs not
in the rule but elsewhere, or if toggling all rules implemented
by the decompilers is unable to fix the issue. For instance,
one of the literal value recovery bugs was triggered by a bug
in the code generation system of Ghidra, and hence TUNER

was unable to fix it. Similarly, for one of the type recovery
issues in Ghidra, TUNER was unable to generate the correct
decompiled code, even after trying all permutations of rules
related to type recovery. However, for these implementation
bugs in Ghidra, TUNER can still help by, for example, ruling
out some rule conjunctures, This will be further discussed in
the last case of Section 6.4.
angr. For our program set, SYMDIFF identified 4,071 semantic
inequivalent functions decompiled by angr. However, TUNER

was unable to fix any semantic inequivalence for angr by tuning
existing rules. We randomly sample 500 functions and conduct
further analysis on them. We found that 30.2% functions have
no instruction but a function prototype only (e.g., int f(){}),
and the inaccuracies in the remaining 69.8% were caused by
implementation bugs in angr. For instance, we found that,
in angr, the decompilation handler of the SETcc instructions
was not implemented. However, TUNER can still help, and we
will demonstrate how TUNER helps in the second last case of
Section 6.4.

D-HELIX automatically fixes 16.3% detected inaccuracies

and successfully identifies the problematic rule for 98% of

these inaccuracies. Moreover, for the inaccuracies that can-

not be automatically resolved, TUNER can still greatly aid

developers in tracing their root causes.

Efficiency. To evaluate the debugging efficiency of seman-
tic inaccuracies, we show how the Priority-Based Learning

Optimization (PBLO) boosts the efficiency of TUNER by pre-
senting the time reduction achieved through its integration.
Since tuning a function consumes considerable computing re-
sources and may easily exceed the 2-week time limit, we select
5 different functions within 5 binaries, which contain the most
inaccurate functions reported by SYMDIFF, to demonstrate
this comparison. We use TUNER to fix the inaccuracy of these
functions and show the time to fix them with and without the
PBLO. As shown in Figure 10, the dashed bar represents the

406    33rd USENIX Security Symposium USENIX Association



13

59
97

418
188

3492 3685
5580

18436 22440

1

10

100

1000

10000

100000

libssh__ssh Mov Masscan skynet libcrypoto_3

With Optimization Without Optimization

Speed up 

44X

Speed up 

58X
Speed up 

62X

Speed up 

278X

Speed up 

120X

Figure 10: Time consumption in minutes with and without
Priority-Based Learning Optimization (PBLO), with annota-
tions indicating the speedup achieved after applying PBLO.
The y-axis is logarithmically scaled.

1://Original code 1://Decompiled code
2:char temp3; 2:int iVar1;
3:temp3 = getchar(); 3:iVar1 = getchar();
4:if (temp3 < 128){ 4:if ((char)iVar1<−0x80){

Listing 1: Sample code showing 128 incorrectly being
decompiled as -128 (-0x80).

time used by TUNER to fix it using the PBLO, whereas the
dotted bar represents the time used without the PBLO. Specif-
ically, in resolving the function in the binary libcrypoto_3,
PBLO accelerates TUNER by 120 times, resulting in a saving
of approximately 15 days.

With the help of PBLO, D-HELIX achieves notable time sav-

ings in resolving inaccuracies compared to scenarios without

the optimization’s assistance.

6.4 Case studies

In this section, we describe a few interesting case studies high-
lighting different decompiler bugs discovered by D-HELIX.

6.4.1 Incorrect Literal Value Recovery

Sample Code: Listing 1 provides an example of this semantic
inaccuracy that occurred according to D-HELIX. The original
code(on the left) checks whether the output received from
the getchar function is less than 128 (line 4). However, the
decompiled code checks if the output from getchar is less
than -128. As shown in Table 3 case 2, TUNER reveals that
this inaccuracy is caused by the application of two specific
rules in Ghidra, RuleIntLessEqual and RuleSubvarSext, and
was able to fix this issue by disabling any of them.
Related rule explanation: Internally, Ghidra uses RuleInt-

LessEqual to convert all signed less-than-or-equal-to com-
parisons with one constant literal operand, e.g. 𝑐 <= 𝑉 , to a
signed less-than comparisons by decrementing the constant
literal by one, e.g., 𝑐 −1 < 𝑉 . As the value of the constant
involved in this step is changed (e.g., 𝑐 to 𝑐−1) Ghidra uses
another rule, RuleSubvarSext, to reduce the width of this con-

1:// Original code 1:// Decompiled code
2:static int 2:int decode_text_chunk
3: decode_text_chunk 3: (void){
4: (PNGDecContext ∗s,
5: GetByteContext ∗gb,
6: int compressed){

Listing 2: Sample code shows the decompiled code does not
generate any input arguments.

stant’s representation, if possible (e.g., reduce the width of
constant 𝑐−1 from 32-bit to 8-bit if the value of 𝑐−1 can fit
in an 8-bit sign integer).
Root cause explanation: Upon investigation, we found that the

semantic inaccuracy was caused by the following events: 1
The lifter generates the instruction 128 (0x80) <= iVar1.
2 Ghidra applies the rule RuleIntLessEqual, which con-

verts 128(0x80) <= iVar1 to 127(0x7f) < iVar1. 3
This transformation triggers RuleSubvarSext, which changes
the width of the constant literal from 32-bit to 8-bit losing
signedness information. 4 Ghidra’s readability optimization
pass (ActionPreferComplement) optimizes the cfg of this if
branch and reverses the condition from 127(0x7f) < iVar1

to iVar1 < 128(0x80). However, in doing so, the width of
the constant literal is not extended from 8 bits back to 32 bits,
resulting in a signed char compared to a value -0x80.

6.4.2 Incorrect Function Prototype Recovery

During our evaluation, we found 194 incorrect function proto-
type recovery bugs, with 62 of them found in Ghidra and 132
in angr, as listed in Table 2.

Depending on the project, TUNER can fix 47 semantic in-
equivalence related to three different rules: Debugging With
Attributed Record Formats (DWARF), Decompiler Parameter
ID, and Custom rule. Since the root causes of these inaccurate
decompilations are different, we explain them separately as
follows.
Debugging With Attributed Record Formats(DWARF):

Sample Code: In Listing 2, the decompiled source code of
the function decode_text_chunk has the wrong input argu-
ments.
Related rule explanation: Internally, Ghidra uses debug infor-
mation, stored in the binary in the DWARF format, from binary
to help recover the function prototype of the decompiled func-
tion. However, during the building of the binary, compilers can
introduce bugs into the debug information, as shown by pre-
vious research [20, 28]. Hence, by disabling the rule DWARF,
Ghidra will not use the debug information from the binary
during decompilation. Disabling this rule allowed TUNER to
successfully fix three types of function prototype inaccuracies,
as shown in Table 3 case 1, fixing a total of 26 inaccuracies
in Ghidra.

USENIX Association 33rd USENIX Security Symposium    407



Root cause explanation: For these semantic inaccuracies that
can be fixed by disabling the rule DWARF, our investigation
discovered three distinct root causes, outlined as follows:

1) During the compilation of some binaries, compilers erro-
neously record the debugging information for one function as
two distinct debug entities, each providing conflicting details
about the function’s arguments, e.g., different argument or-
ders. Consequently, when decompiling such a binary, Ghidra’s
parser in rule DWARF struggles to resolve this conflict, lead-
ing to the generation of a decompiled function with incorrectly
ordered function arguments.

2) For functions with the same name with different argu-
ments (i.e., function overloading), compilers store multiple
entities in DWARF sections. However, Ghidra may fail to
match the correct entity for such a function. Consequently,
Ghidra suspends the analysis of this function, which results
in its decompiled function lacking arguments, i.e., void.

3) The third case arises when one of a function’s input argu-
ments is a structure, and this structure is passed from the callee
to the caller using multiple registers. In such cases, there could
be a mismatch between the number of registers used to pass a
function’s arguments and the number of function’s arguments
encoded in the DWARF debugging information. Consequently,
when Ghidra decompiles this function, the structure will not
be decompiled as an input argument but as a list of local vari-
ables.
Decompiler Parameter ID:

Sample Code: The decompiled source code has the incorrect
function return type, e.g.,long wvenc_wv_write is incor-
rectly decompiled as int wvenc_wv_write.
Related rule explanation: In Ghidra, this rule will trigger an
analysis that explores the call tree, a tree reduction of the
call graph constructed by every function call, to determine
the function prototype of the called function in a program.
However, Ghidra disables this rule by default. Hence, TUNER

automatically enables this analysis and effectively fixes the
function prototypes of 11 semantic inaccuracies.
Root cause explanation: Upon investigation, we found Ghidra
disables this rule by default since the analysis initiated by
it requires a significant amount of time. For instance, dur-
ing the decompilation of our program set, enabling the rule
Decompiler Parameter ID results in an average increase of ap-
proximately threefold compared to when the rule is disabled.
Custom Rule:

Sample Code: The decompiled source code has the incorrect
function return type.
Related rule explanation: In angr, as shown in Section 6.3,
TUNER didn’t achieve automatic fixes for any inaccuracies by
toggling existing rules. Consequently, we developed Custom

rule to ensure that the function return type matches the return
value type. Specifically, we first identify the last return variable
in a function and determine whether it is cast to a different
type. If so, we set the function return type to the type specified

1:// Original code 1:// Decompiled code
2:const char ∗ 2:long argmatch_to_argument(
3:argmatch_to_argument ( 3: ...
4: ... 4: while (true){
5: for (; arglist[i];) 5: if (∗(arglist[i]) != 0){
6: if (!memcmp (...)) 6: v4 = memcmp(...);
7: return arglist[i]; 7: return arglist[i];
8: return NULL; 8: return 0;

9: }
10:}

Listing 3: Sample code showing how the CFG recovery of a
if statement inside for loops is incorrect.

in the cast. If not, we set the function return type to the type of
the return variable as declared. As a result, TUNER was able
to automatically fix 10 inaccuracies by applying Custom rule.

Root cause explanation: Further investigation of the 500 inac-
curacies revealed that 121 of the inaccuracies were triggered
due to incorrect function return type in the decompiled code.
In the remaining 111 cases, where TUNER could not offer a
resolution, the underlying problem was traced back to angr’s
inability to accurately recover the type of the return variable.

6.4.3 Incorrect CFG Recovery

Sample Code: As shown in Listing 3, the function
argmatch_to_argument is decompiled with incorrect
control flow semantics. Specifically, the check for the return
value of the memcmp function call at line 6 in the original
code (on the left) is not recovered in the decompiled code,
resulting in dead code at line 8.

Related rule explanation: Upon reporting this issue, angr de-
velopers proposed disabling the rule EagerReturnsSimplifier

to fix the inaccuracy. In angr, to improve the readability of the
code, the rule EagerReturnsSimplifier adds additional return
statements to the decompiled code, if the number of the "in
edges" for the return node (i.e., in-degree of the return site) is
less than a specified threshold.

Root cause explanation: Upon further investigation, we dis-
covered that the inaccurate decompilation is caused by a bug
in SequenceWalker, one of the core libraries used to traverse
graphs by angr. Specifically, for each decompiled function,
angr constructs a corresponding abstract syntax tree (AST).
When angr modifies the CFG (e.g., applies EagerReturnsSim-

plifier), angr calls SequenceWalker to traverse the graph and
modify nodes, e.g., insert additional return statements on the
AST. However, a bug within the SequenceWalker causes the
incorrect insertion of the node (e.g., return statement) into the
AST. Consequently, the parent node (e.g., for loop node) fails
to correctly link with the inserted node (e.g., return statement
node) on the AST, which causes the return statement at line 8
in Listing 3 being decompiled as dead code.

408    33rd USENIX Security Symposium USENIX Association



1:// Original code 1:// Decompiled code
2:bool is_fatal(uint_8 code) 2:bool is_fatal(uint_8 code)
3: ... 3: ...
4: if((1LL << (code & 0x3f) 4: if((1 << (code & 0x3f)
5: & 0x1000000000000U)!= 0) 5: & 0x1000000000000U)!= 0)
6: ... 6: ...
7: if(code < 0xff) 7: if(code < −1)

Listing 4: Sample code shows the decompiled code does not
generate correct constants.

6.4.4 Incorrect Constant Recovery

Sample Code: Listing 4 shows two incorrect constant recov-
eries in the decompiled code. Specifically, in line 4, the 64-bit
constant (i.e., 1LL) in the original code (on the left) is incor-
rectly decompiled as an int constant, i.e., 1. Consequently,
when code is 48, the condition in the original code is true
whereas the condition in the decompiled code is false, since
the shift operation at line 4 of the decompiled code will be an
undefined behavior. Moreover, in line 7, 0xff in the original
code is incorrectly decompiled as -1. Since the constant -1 is
treated as int type in C99 standard, as a result, the condition
in line 7 of the decompiled code will always be false.

Root cause explanation: In Ghidra, constants are treated simi-
larly to global variables, which means rules will be applied to
infer their types (both their signedness and their sizes). How-
ever, since TUNER reports that no rule is related to these bugs,
we infer the type information of these constants has been cor-
rectly recovered after the third stage of decompilation, i.e.,
higher-level semantic abstraction. Hence, we locate the varn-
odes that store the above two constants and find that their
types have been correctly recovered by Ghidra. Since these
two constants are correctly handled before the code generation,
we, therefore, straightforwardly examine the code generation
system of Ghidra and find the constant printing is not appro-
priately handled. Specifically, Ghidra cannot correctly print
some 1-byte constants with edge values (e.g., 0x7f and 0xff)
and constants with integer suffixes. We reported this issue
within the code generation system to the Ghidra team. As of
this writing, these issues have been resolved and included in
Ghidra’s 10.2 version release by the Ghidra team.

Takeaway: As we can see in the first two cases, D-HELIX

can automatically identify the root causes of decompiler bugs
and generate accurate decompiled code. Moreover, as shown in
the last two cases, even when it’s difficult to identify the exact
root causes, TUNER proves valuable for decompiler developers
during the debugging process, e.g., helps developers rule out
some rule conjunctures. Hence, D-HELIX greatly simplifies
the work for decompiler developers, saving them a significant
amount of time.

7 Discussion and Limitation

Large binaries. As mentioned in Section 6, due to perfor-
mance constraints, we decided to remove binaries larger than
30 MiB from our program set. In fact, experimentally, we
have found that binaries larger than this size require multi-
ple days to be fully analyzed. To this end, we plan to add
optimizations such as constraint strength reduction, constraint
independence, and constraint caching [14], to alleviate the
runtime of SYMDIFF and D-HELIX in general.
Decompiler syntactic quirks. Currently, RECOMPILER can
only tackle compilation issues in standard C code as mentioned
in Section 6.2. However, some decompilers have their own syn-
tactical quirks to emit code when their decompilation analyses
cannot converge. For instance, when Ghidra cannot correctly
resolve indirect addresses, it uses the notion of partially re-
solved address, as shown in this expression: “𝑣𝑎𝑟1._𝑥_𝑦_ =
𝑣𝑎𝑟2”. This expression means that only 𝑦 bytes starting with
offset 𝑥 in 𝑣𝑎𝑟1 should become equal to 𝑣𝑎𝑟2. Currently, we
only fix this syntax when 𝑣𝑎𝑟1 is an array. We plan to add sup-
port for such decompiler-specific syntactic quirks to increase
the recompilation rate in future work.
Floating point operations. Currently, SYMDIFF lacks the sup-
port for parsing constraints related to floating point operations.
However, during our evaluation, we observed that both Ghidra
and angr struggle with recognizing floating point operations.
Hence, this seems a promising avenue to find semantic bugs in
decompilers. We will tackle this problem in our future work.
Memory model in SYMDIFF. D-HELIX currently does not
model global variables and considers them as constant values
(zero, in case they are not initialized). Additionally, although
D-HELIX tries to make the memory model consistent between
different symbolic execution engines, there are still some in-
consistencies uncovered. For example, in angr, the value of
**param_1 would be set to zero while in prompt it would be
set to a symbolic symbol such as i8. In future work, we will
explore more accurate and consistent memory models.
Supporting a new decompiler. To evaluate a new decom-
piler with an IR that is not supported by the existing symbolic
engine, such as FoxDec [49], D-HELIX requires extra engi-
neering efforts to modify the symbolic execution engine to
support a new IR. Specifically, this adaptation involves two
steps. Firstly, the existing symbolic execution engine (e.g.,
angr) must accurately partition the new IR code (e.g., P-code
code segment) into basic blocks, following the basic block con-
vention of the supported IR (e.g., Vex IRSB). After that, the
existing symbolic execution engine needs to properly handle
each new IR instruction within each basic block by translating
the new IRs to the supported IRs, thus enabling the use of
existing handlers for the supported IRs on the new instruc-
tions, e.g., angr translates cbranch as Ijk_Boring to handle
the conditional branch instruction. Overall, we estimate that
supporting a new IR on an existing symbolic execution engine
(e.g., angr) would require at least 40 days since it took angr

USENIX Association 33rd USENIX Security Symposium    409



developers 41 days to support P-code [2].

8 Related Work

Existing work recompiles the incomplete C code using differ-
ent techniques, such as unification-based heuristics [35, 36]
and Large Language Models (LLMs) [23]. PsycheC [35, 36]
uses unification-based heuristics to generate a well-typed pro-
gram from an incomplete code. To achieve this, it deduces
the missing types of terms by considering their context within
the program’s abstract syntax tree. However, this approach re-
lies on the data-flow information within the incomplete code.
Consequently, for variables in the decompiled code that re-
main undefined due to insufficient information, this method
cannot provide a solution. Additionally, recent research [23]
has begun to employ LLMs for the recompilation process.
However, as its guiding criteria, i.e., reward function, relies
solely on compiler error feedback and code similarity, this
approach does not provide a guarantee of semantic preserva-
tion in its generated code. Hence, in D-HELIX, we design our
own RECOMPILER to improve the recompilation rate, while
maintaining semantic preservation as much as possible.

Using symbolic execution for equivalence checking has
been explored in other domains [25, 31, 32, 40]. Alive [32]
and Alive2 [31] use SMT to conduct code equivalence checks
for LLVM IR, focusing on the bugs in LLVM optimizations
when handling undefined behaviors. For each function, they en-
code the input arguments with three types: undef, poison, or
well-defined, and determine whether the return value types
from the optimized code and the source code are consistent.
Since other function aspects (e.g., function prototypes, vari-
able types, and constants) are not considered, their approach
cannot detect common decompiler errors, such as the incorrect
recovery of function prototypes detected by D-HELIX. Mean-
Diff [25], a testing tool for binary lifters, uses the symbolic
formula to check the semantic equivalence between different
IR representations obtained from a single binary instruction.
As such, this technique is specifically designed to handle indi-
vidual binary instruction rather than an entire function. Over-
all, D-HELIX brings symbolic differentiation into decompilers
for the first time, and uses it to vet the whole decompilation
process for semantic bugs.

A few research tunes optimizations in compilers for differ-
ent purposes, such as binary diffing [45, 47] and problematic
optimization identification [56]. For instance, Cornucopia [47]
generates binaries by iteratively learning from the mutation of
compiler optimizations. BinTuner [45] searches near-optimal
optimization sequences to generate binaries that maximize the
code differences. ODFL [56] differentiates finer-grained opti-
mization to pinpoint problematic optimizations in compilers.
However, since the purposes of optimizations in compilers
and decompilers differ fundamentally, these approaches do
not work properly for decompilers. Hence, in D-HELIX, we
build our own TUNER to accurately and efficiently identify

the problematic heuristic.
Equivalence checking [17, 33, 43, 58] at the source code

level has been explored for different domains. DiffKemp [33]
first applies semantics-preserving code transformations be-
tween different code patterns for refactoring, then maps vari-
ables between the source code and the refactored code, and
finally checks the semantic differences between different ver-
sions of large-scale C projects by examining the memory
states. Churchill et al. [17] first use the program alignment
automaton to predict the behaviors of programs, then follow
the prediction to align the compared source code, and finally
verify the equivalence between different optimized binaries
through the memory states. However, these two tools rely on
source code availability. Hence, they could not be directly
applied to IR code. UC-KLEE [43] automatically synthesizes
inputs and runs symbolic execution on the LLVM IR to ver-
ify code equivalence between different implementations of
the standardized interface with lazy initialization. Similarly,
SEC [58] runs symbolic execution on Register Transfer Level
(RTL) IRs and compares the terminal states between binaries
with different optimizations. Nevertheless, both UC-KLEE
and SEC operate on the same IRs, while D-HELIX faces the
challenge of comparing different IRs.

9 Conclusion

In this paper, we design D-HELIX, a generic decompiler test-
ing framework that can automatically vet the decompilation
correctness. We have fully implemented D-HELIX and applied
it to Ghidra and angr. D-HELIX managed to find 17 previously
unknown decompilation bugs in Ghidra and angr and helped
fix 7 of them automatically.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by NSF under grant
NSF CNS-2145744, the Office of Naval Research (ONR)
under grant N00014-23-1-2157, and the Defense Advanced
Research Projects Agency (DARPA) under contract number
N6600120C4031. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United
States Government or any agency thereof.

References

[1] angr. angr decompiler. https://docs.angr.io/

appendix/changelog}angr-8.19.2.4.

[2] angr. P-code. https://github.com/angr/angr/

pull/2328.

410    33rd USENIX Security Symposium USENIX Association

 https://docs.angr.io/appendix/changelog#angr-8.19.2.4
 https://docs.angr.io/appendix/changelog#angr-8.19.2.4
https://github.com/angr/angr/pull/2328
https://github.com/angr/angr/pull/2328


[3] angr. Vex. https://github.com/angr/vex/blob/

master/pub/libvex_ir.h.

[4] Hex-Rays SA. Hex rays decompiler. https://hex-

rays.com/decompiler/.

[5] National Security Agency. Ghidra. https://ghidra-
sre.org/.

[6] National Security Agency. Pcode. https:

//ghidra.re/ghidra_docs/api/ghidra/program/

model/pcode/PcodeOp.html.

[7] PNF Software. Jeb decompiler. https://www.

pnfsoftware.com/.

[8] VECTOR 35. Binary ninja. https://binary.ninja/.

[9] Avast Software. RetDec: A retargetable machine-code
decompiler. https://retdec.com/.

[10] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs,
Jude O’Kain, Derron Miao, Tiffany Bao, Adam Doupé,
Yan Shoshitaishvili, and Ruoyu Wang. Ahoy sailr! there
is no need to dream of c: A compiler-aware structuring
algorithm for binary decompilation. In 33st USENIX

Security Symposium (USENIX Security 24), 2024.

[11] Marcus Botacin, Lucas Galante, Paulo de Geus, and
André Grégio. Revenge is a dish served cold: Debug-
oriented malware decompilation and reassembly. In Pro-

ceedings of the 3rd Reversing and Offensive-Oriented

Trends Symposium, ROOTS’19, New York, NY, USA,
2020. Association for Computing Machinery.

[12] David Brumley, JongHyup Lee, Edward J Schwartz,
and Maverick Woo. Native x86 decompilation using
{Semantics-Preserving} structural analysis and iterative
{Control-Flow} structuring. In 22nd USENIX Secu-

rity Symposium (USENIX Security 13), pages 353–368,
2013.

[13] Kevin Burk, Fabio Pagani, Christopher Kruegel, and
Giovanni Vigna. Decomperson: How humans decompile
and what we can learn from it. In 31st USENIX Security

Symposium (USENIX Security 22), pages 2765–2782,
Boston, MA, August 2022. USENIX Association.

[14] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In Richard
Draves and Robbert van Renesse, editors, 8th USENIX

Symposium on Operating Systems Design and Implemen-

tation, OSDI 2008, December 8-10, 2008, San Diego,

California, USA, Proceedings, pages 209–224. USENIX
Association, 2008.

[15] Lei Cen, Christoher S. Gates, Luo Si, and Ninghui Li. A
probabilistic discriminative model for android malware
detection with decompiled source code. IEEE Transac-

tions on Dependable and Secure Computing, 12(4):400–
412, 2015.

[16] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz,
Claire Le Goues, Graham Neubig, and Bogdan Vasilescu.
Augmenting decompiler output with learned variable
names and types. In 31st USENIX Security Symposium

(USENIX Security 22), pages 4327–4343, Boston, MA,
August 2022. USENIX Association.

[17] Berkeley Churchill, Oded Padon, Rahul Sharma, and
Alex Aiken. Semantic program alignment for equiva-
lence checking. In Proceedings of the 40th ACM SIG-

PLAN Conference on Programming Language Design

and Implementation, PLDI 2019, page 1027–1040, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[18] Drew Davidson, Benjamin Moench, Somesh Jha, and
Thomas Ristenpart. Fie on firmware: Finding vulnera-
bilities in embedded systems using symbolic execution.
In Proceedings of the 22nd USENIX Conference on Se-

curity, SEC’13, page 463–478, USA, 2013. USENIX
Association.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Proceedings of the Theory and

Practice of Software, 14th International Conference on

Tools and Algorithms for the Construction and Analy-

sis of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[20] Giuseppe Antonio Di Luna, Davide Italiano, Luca Mas-
sarelli, Sebastian Österlund, Cristiano Giuffrida, and
Leonardo Querzoni. Who’s debugging the debuggers?
exposing debug information bugs in optimized bina-
ries. In Proceedings of the 26th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’21, page
1034–1045, New York, NY, USA, 2021. Association for
Computing Machinery.

[21] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. HeapHopper: Bringing Bounded Model Checking
to Heap Implementation Security. In 27th USENIX Se-

curity Symposium (USENIX Security 18), pages 99–116,
Baltimore, MD, August 2018. USENIX Association.

[22] Andrea Gussoni, Alessandro Di Federico, Pietro Fez-
zardi, and Giovanni Agosta. A comb for decompiled
C code. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei
Gu, and Giuseppe Ateniese, editors, ASIA CCS ’20: The

USENIX Association 33rd USENIX Security Symposium    411

https://github.com/angr/vex/blob/master/pub/libvex_ir.h
https://github.com/angr/vex/blob/master/pub/libvex_ir.h
https://hex-rays.com/decompiler/
https://hex-rays.com/decompiler/
https://ghidra-sre.org/
https://ghidra-sre.org/
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/PcodeOp.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/PcodeOp.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/pcode/PcodeOp.html
https://www.pnfsoftware.com/
https://www.pnfsoftware.com/
https://binary.ninja/
https://retdec.com/


15th ACM Asia Conference on Computer and Commu-

nications Security, Taipei, Taiwan, October 5-9, 2020,
pages 637–651. ACM, 2020.

[23] Abhinav Jain, Chima Adiole, Swarat Chaudhuri, Thomas
Reps, and Chris Jermaine. Tuning models of code
with compiler-generated reinforcement learning feed-
back, 2023.

[24] JuliaComputingOSS. Llvm-cbe. https://github.

com/JuliaComputingOSS/llvm-cbe.

[25] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl
Jung, DongYeop Oh, Jonghyup Lee, and Sang Kil Cha.
Testing intermediate representations for binary analysis.
2017 32nd IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), pages 353–364,
2017.

[26] Saparya Krishnamoorthy, Michael S. Hsiao, and Lo-
ganathan Lingappan. Tackling the path explosion prob-
lem in symbolic execution-driven test generation for
programs. In 2010 19th IEEE Asian Test Symposium,
pages 59–64, 2010.

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
validation via equivalence modulo inputs. ACM Sigplan

Notices, 49(6):216–226, 2014.

[28] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano.
Debug information validation for optimized code. In
Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation,
PLDI 2020, page 1052–1065, New York, NY, USA, 2020.
Association for Computing Machinery.

[29] lifting bits. Rellic.

[30] Zhibo Liu and Shuai Wang. How far we have come:
testing decompilation correctness of c decompilers. In
Proceedings of the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 475–
487, 2020.

[31] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur,
Zhengyang Liu, and John Regehr. Alive2: Bounded
translation validation for llvm. In Proceedings of the

42nd ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation, PLDI
2021, page 65–79, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[32] Nuno P. Lopes, David Menendez, Santosh Nagarakatte,
and John Regehr. Provably correct peephole optimiza-
tions with alive. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design

and Implementation, PLDI ’15, page 22–32, New York,
NY, USA, 2015. Association for Computing Machinery.

[33] Viktor Malík and Tomáš Vojnar. Automatically checking
semantic equivalence between versions of large-scale c
projects. In 2021 14th IEEE Conference on Software

Testing, Verification and Validation (ICST), pages 329–
339, 2021.

[34] William M McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[35] Leandro T. C. Melo, Rodrigo G. Ribeiro, Marcus R.
de Araújo, and Fernando Magno Quintão Pereira. In-
ference of static semantics for incomplete c programs.
Proc. ACM Program. Lang., 2(POPL), dec 2017.

[36] Leandro T. C. Melo, Rodrigo G. Ribeiro, Breno C. F.
Guimarães, and Fernando Magno Quintão Pereira. Type
inference for c: Applications to the static analysis of
incomplete programs. ACM Trans. Program. Lang. Syst.,
42(3), nov 2020.

[37] microsoft. compiler-warning-c4430. https://learn.
microsoft.com/en-us/cpp/error-messages/

compiler-warnings/compiler-warning-c4430.

[38] Alan Mycroft. Type-based decompilation (or program
reconstruction via type reconstruction). In European

Symposium on Programming, pages 208–223. Springer,
1999.

[39] George C Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. Cil: Intermediate language and
tools for analysis and transformation of c programs. CC,
2:213–228, 2002.

[40] Roberto Paleari, Lorenzo Martignoni, Giampaolo
Fresi Roglia, and Danilo Bruschi. N-version disas-
sembly: Differential testing of x86 disassemblers. In
Proceedings of the 19th International Symposium

on Software Testing and Analysis, ISSTA ’10, page
265–274, New York, NY, USA, 2010. Association for
Computing Machinery.

[41] radeco. radareorg. https://github.com/

radareorg/radeco.

[42] David A Ramos and Dawson Engler. Under-constrained
symbolic execution: Correctness checking for real code.
In 24th {USENIX} Security Symposium ({USENIX} Se-

curity 15), pages 49–64, 2015.

[43] David A. Ramos and Dawson R. Engler. Practical, low-
effort equivalence verification of real code. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Computer

Aided Verification, pages 669–685, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

412    33rd USENIX Security Symposium USENIX Association

https://github.com/JuliaComputingOSS/llvm-cbe
https://github.com/JuliaComputingOSS/llvm-cbe
https://learn.microsoft.com/en-us/cpp/error-messages/compiler-warnings/compiler-warning-c4430
https://learn.microsoft.com/en-us/cpp/error-messages/compiler-warnings/compiler-warning-c4430
https://learn.microsoft.com/en-us/cpp/error-messages/compiler-warnings/compiler-warning-c4430
https://github.com/radareorg/radeco
https://github.com/radareorg/radeco


[44] Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam
Doupé, Ruoyu Wang, and Stephanie Forrest. Automati-
cally mitigating vulnerabilities in x86 binary programs
via partially recompilable decompilation. arXiv preprint

arXiv:2202.12336, 2022.

[45] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li.
Unleashing the hidden power of compiler optimization
on binary code difference: An empirical study. In Pro-

ceedings of the 42nd ACM SIGPLAN International Con-

ference on Programming Language Design and Imple-

mentation, PLDI 2021, page 142–157, New York, NY,
USA, 2021. Association for Computing Machinery.

[46] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dy-
namic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 31st IEEE Sym-

posium on Security and Privacy, S&P 2010, 16-19 May

2010, Berleley/Oakland, California, USA, pages 317–
331. IEEE Computer Society, 2010.

[47] Vidush Singhal, Akul Abhilash Pillai, Charitha Saumya,
Milind Kulkarni, and Aravind Machiry. Cornucopia: A
framework for feedback guided generation of binaries.
In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering, pages
1–13, 2022.

[48] Uxmal. Reko. https://github.com/uxmal/reko.

[49] Freek Verbeek, Pierre Olivier, and Binoy Ravindran.
Sound C code decompilation for a subset of x86-64 bi-
naries. In Frank S. de Boer and Antonio Cerone, editors,
Software Engineering and Formal Methods - 18th In-

ternational Conference, SEFM 2020, Amsterdam, The

Netherlands, September 14-18, 2020, Proceedings, vol-
ume 12310 of Lecture Notes in Computer Science, pages
247–264. Springer, 2020.

[50] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jef-
frey S. Foster, and Michelle L. Mazurek. An observa-
tional investigation of reverse Engineers’ processes. In
29th USENIX Security Symposium (USENIX Security

20), pages 1875–1892. USENIX Association, August
2020.

[51] Fish Wang and Yan Shoshitaishvili. Angr - the next gen-
eration of binary analysis. In 2017 IEEE Cybersecurity

Development (SecDev), pages 8–9, 2017.

[52] Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias
Payer, Nils Ole Tippenhauer, Dongyan Xu, Dave Jing
Tian, and Antonio Bianchi. {LIGHTBLUE}: Automatic
{Profile-Aware} debloating of bluetooth stacks. In 30th

USENIX Security Symposium (USENIX Security 21),
pages 339–356, 2021.

[53] Ruoyu Wu, Taegyu Kim, Dave (Jing) Tian, Antonio
Bianchi, and Dongyan Xu. DnD: A Cross-Architecture
deep neural network decompiler. In 31st USENIX Se-

curity Symposium (USENIX Security 22), pages 2135–
2152, Boston, MA, August 2022. USENIX Association.

[54] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. Helping johnny to analyze
malware: A usability-optimized decompiler and malware
analysis user study. In IEEE Symposium on Security and

Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 158–177. IEEE Computer Society, 2016.

[55] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-
Padilla, and Matthew Smith. No more gotos: Decompi-
lation using pattern-independent control-flow structur-
ing and semantic-preserving transformations. In 22nd

Annual Network and Distributed System Security Sympo-

sium, NDSS 2015, San Diego, California, USA, February

8-11, 2015. The Internet Society, 2015.

[56] Jing Yang, Yibiao Yang, Maolin Sun, Ming Wen, Yum-
ing Zhou, and Hai Jin. Isolating compiler optimization
faults via differentiating finer-grained options. In 2022

IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 481–491,
2022.

[57] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In Pro-

ceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation,
PLDI ’11, page 283–294, New York, NY, USA, 2011.
Association for Computing Machinery.

[58] Zhenkun Yang, Kecheng Hao, Kai Cong, Sandip Ray,
and Fei Xie. Equivalence checking for compiler trans-
formations in behavioral synthesis. In 2013 IEEE 31st

International Conference on Computer Design (ICCD),
pages 491–494, 2013.

[59] Tuba Yavuz and Ken (Yihang) Bai. Analyzing system
software components using api model guided symbolic
execution. Journal of Automated Software Engineering,
2020.

[60] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-
chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu
Zhang. Osprey: Recovery of variable and data structure
via probabilistic analysis for stripped binary. In 2021

IEEE Symposium on Security and Privacy (SP), pages
813–832, 2021.

USENIX Association 33rd USENIX Security Symposium    413

https://github.com/uxmal/reko


#
Project
name

Archt. Version
Comp.
Optim.

No. of
bins&objs

No. of
funcs
(K)

Avg.
binary
size (KB)

Avg. locs
in funcs

Avg. No.
of return
stmts
in funcs

Pct. of
funcs
access
structure
variable

Pct. of
funcs
contains
multi-return
stmts

Pct. of
funcs
contains
one pointer

𝑃1 coreutils
x86_64
AArch64

v9.0 O2 212 14.62 230.18 45.5 1.74 1.68% 32.68% 56.23%

𝑃2 util-linux x86_64 v2.37.2 O2 68 4.48 118.56 28.44 1.84 14.55% 50.40% 63.02%
𝑃3 ffmpeg x86_64 n4.4.1 O3 1715 42.39 155.55 24.3 2.59 39.63% 49.85% 80.85%
𝑃4 skynet x86_64 1.5.0 O2 1 3.58 10,939.0 19.6 2.41 55.76% 57.79% 73.52%
𝑃5 masscan x86_64 v1.3.2 O2 1 0.86 2,476.6 40.6 2.13 45.61% 56.67% 76.67%
𝑃6 libuv x86_64 v1.42.0 O0 3 2.78 687.79 20.8 5.73 7.55% 50.74% 44.72%
𝑃7 curl x86_64 7.80.0 O0 2 3.41 513.09 41.0 1.29 0.65% 24.60% 48.22%
𝑃8 openssl x86_64 3.0.0 O3 2 14.67 2066.9 28.6 2.01 9.85% 46.19% 84.79%
Total 2,004 86.93 167.07 29.32 2.37 19.73% 44.38% 69.83%

Table 4: Overview of our program set. The first eight columns show the info of the program set at the binary level, e.g., the
number of binaries in each project 4 and how are they compiled. The rest columns show the complexity of the program set at the
function level (e.g., the percentage of functions) that contains multiple return statements, pointer variables, or structure variables.

FunA

Symbolic

Model of

FunA

1: f(char *a1){

2:  return a1;

3: }

FunB

Symbolic

Model of

FunB

1: f(uchar *b1){

2:  return b1;

3: }

1: funA_0 = #xffff804d4b30f0b3

2:  

3: funB_0 = #xf800000000010100

4:

5: assert(funB_0 == funA_0)

6: check−sat

Figure 11: Sample code of a false positive of SYMDIFF.

1: f(char a1){

2:  r = ex_f(a1);

3:  return r;

4: }

Decompiled
Code

Ground
Truth

Symbolic
Model of
Lifted IR

Symbolic
Model of
Recompiled 
IR

Symdiff :
 number of arguments in “ex_f” is 0

1: f(char a1){

2:  r = ex_f();

3:  return r; 

4: }

f_src = a1
True
Negative
Symbolic
Model For
Lifted IRFalse Negative!

Symdiff :
Decompiled code is

semantically correct

1: f_recpiled = 0

2:  

3: f_lifted = 0 

4:

5: assert(funB_0 

6: == funA_0)

7: check−sat

Figure 12: Sample Code of a false negative of SYMDIFF.

A Description of Program Set

Table 4 shows an overview of our program set. Specifically,
Archt. refers to the architecture of the binary, Comp. Optim.

refers to the compiler optimization levels of the binary,No. of

bins&objs refers to the number of binaries and object files
in this project, Avg. size refers to the average size of binary
and object files, and Pct. of funcs access structure

variable refers to the percentage of functions in this project
that contain structure variables. Note that, since some bina-
ries generated by the "ffmpeg" project are more than 30 MiB,
directly applying D-HELIX on these large-size binaries sig-
nificantly increases the running time, e.g., on average, it took
SYMDIFF 14 days to finish the symbolic execution on one of
the "ffmpeg" binary with size 100 MiB. Hence, we include
the object files from "ffmpeg" project to test.

414    33rd USENIX Security Symposium USENIX Association


	Introduction
	Motivation
	Design Challenges
	Design
	Recompiler
	Symdiff
	Generator
	Comparator

	Tuner

	Implementation
	Evaluation
	Findings
	Semantic inaccuracies findings
	Recompiler
	Symdiff

	Semantic inaccuracy debugging
	Case studies
	Incorrect Literal Value Recovery
	Incorrect Function Prototype Recovery
	Incorrect CFG Recovery
	Incorrect Constant Recovery


	Discussion and Limitation
	Related Work
	Conclusion
	Description of Program Set

