SAIN: Improving ICS Attack Detection
Sensitivity via State-Aware Invariants

Syed Ghazanfar Abbas, Muslum Ozgur Ozmen,
Abdulellah Alsaheel, Arslan Khan, Z. Berkay Celik, Dongyan Xu

USENIX Security 2024

Plﬁ]E \ , @

UNIVERSITY PurSeclLab

Programmable Logic Controllers (PLCs)
* Real-time rugged computer

* Embedded with a PLC program

* Control and monitor a physical process

* Commonly used in critical infrastructures

PUI,{DUE }@ @PurSec Lab 2

Programmable Logic Controllers (PLCs)

* The PLC program involves three types of variables

() 5P &

Sensing Variables Configuration Variables Actuation Variables

(Real-time sensing data) (Process settings) (Control signals for actuators)

PURDUE 335 (@) rusectas

Our ICS Attack Model

__

Sensing £

s w —

! g(), Configuration |

: = .

| " Actuation » |_|

E Physical Process

. PLC
Y

=, .
PURDUE CE@ @PurSecLab

ICS Attacks

* Real-world attacks Sensing _
remotely manipulate @ | — | configuration CEAEr Y |
sensmg/conﬂgurahon/ E o Actuation — | »Iorid te : E

. ! HMI |
actuation PLC ! Poisoning !
i PLC 2021 i

variables. — + R e

Sensing

E N
! g(Configuration ’

= \ . e TN
HMI Actuation . jkrainian Power

Grid Blackout

__

PUI,{DUE }§® @PurSec Lab 5

SOTA Defense: Invariant Checking

o

@ — 8 — [E

\ 4

Real-time ——
Data

— M

PLC Data Rules Va_lriabl(-?-
Variables Traces Rules Manipulation
* Example:

Offline: Robot-movement-on < Target. Position [0 — 1500]

Online:

2

AN

LI

HMI

Target.Position = 1600

oolz[E[F]| Target. Position !=[0-1500]
0 |=|=)= Invariant violated!
PLC

=, .
PURDUE CE@ @PurSecLab

Problem w/ SOTA: State-Agnostic Invariants

* Loose bounds invariants leading to
detection evasion

* |CS process is naturally reflected by
states and transitions between them

PURDUE 335 (@) rusectas

$1 : Perform robot

T

rotational move

ovements
towards input station.

S$2 : Pickup work piece.

S3 : Perform root
horizontal and

rotational movements
towards NFC.

S8 : Drop work piece at
HBW.

orizontal, vertical, and

/F\\ /“\‘ kh\
(2] <—1‘(ﬂ < un

4 N\
(\ S
1
/< N
(S,)
o)
J
i =N
(S3)

T1: All movements
completed

T2 : Work piece
collected

»

o O

completed

Problem w/ SOTA: State-Agnostic Invariants

* The value bounds for an invariant vary depending on the

current ICS state

State-agnostic

[
(4}l
o
o

900

600

Position Sensor Bounds
w
o

0
0 S1 S S3 Su

ICS States

RLEIBP,UEV % @PurSec Lab

=
a1
o
o

900

600

Position Sensor Bounds
w
o

(o}

State-aware

0 S$;

ICS States

Our Solution: SAIN

* We propose SAIN for deriving State-Aware INvariants to
improve ICS attack detection sensitivity against stealthy evasion

(2]
E ICS State State-aware Invariant Runtime
Code-Level :
Identification . Quantification Monitor
PLC Invariants
Program

DeV|ce
Traces

PUBDUE % @PurSec Lab 9

Step 1: ICS State Identification

* PLC program executes as an FSM with distinct states in
accordance with its control flow

* SAIN analyzes PLC program to identify the states and FSM

’ _______________________
[¥
| 1= -0 |
I o— — % —_— P I
| PLC Intermediate Finite State Machine |
1 Program Representation (FSM) |
v

————————————————————————

PUBDUE % @PurSec Lab

10

Step 2: State-aware Code-Level Invariants

* Intra-State Invariants

Single-Variable: V, =30 r State S, _1
Multi-Variable: if V_ =True

thenV, =30 Actuation State
‘-_Zmd V,=1[V,] V, = g(()) QSSI\Z‘: [V.] V, = Fl-lrsaenASl\ilt[i)ovrl > [V,]
* Inter-State Invariants
if State2 then
V,=Falseand V, > [V,] ’(*chﬁ"f‘rtriu"er)‘

PU\I,{DUE }@ @PurSec Lab 11

Step 3: Invariant Quantification

* Extracts state-specific sub-traces

gg Data Traces

/ g State, Data Traces

T S State, Data Traces

 Quantifies the “unresolved” invariant values

if V5 = True then Vg = [V7]

g State,

o
»

if V5 = True then Vg = [0-30]

if V5 = True then Vg = [V7]

g State,

—>

PURDUE % @PurSec Lab

if V5 = True then Vg = [31-600]

12

Step 4: Runtime Monitoring

* SAIN enforces state-aware invariants via a SMonitor Agent

. EHw e
~
([Server Applications J [PLC Program }\
Runtime —
k [SMonitor]) [PLC Variables]
A I J
1 v
Physical Process [(«) Sensors } [Actuators

PURDUE 335 (@) rusectas

Evaluation

* Two ICS simulation/emulation platforms
* Manufacturing plant
* Chemical plant

17 Attacks

* Sensor variable manipulation
* Malicious configuration
* Malicious actuator commands

PURDUE 335 (@) rusectas

14

Results

e SAIN detects all 17 intra-state and inter-state attacks.
* SAIN detects 7 attacks with single-variable state-aware invariants
and 10 attacks with multi-variable invariants.

* In contrast, state-of-the-art method detects 35% of attacks.

* SAIN incurs, on average, a false positive rate of 2% and a
run-time overhead of 3%.

PUI,{DUE % @PurSec Lab 15

Case Study Demo

* Attack: PLC variable manipulation to drop a workpiece.

> 00 0.1/aw +
<« q PaN ttp:// .16 /HM
HMI
SR paylo. 1
[|[d vio
Rebot Stop Posi
[I Co M. \

Restart the PLC

[[PLC Restart |

PUI,{DUE }§® @PurSec Lab 16

Conclusion

* Existing ICS invariants are state-agnostic, leading to loose
bounds and detection evasion

* State-aware invariants achieve tighter, state-dependent
bounds and improve detection sensitivity

* SAIN enables offline generation and runtime enforcement of

state-aware invariants, with high detection accuracy and low
overhead

PUI,{DUE % @PurSec Lab 17

Thank you! Questions?

abbas4@purdue.edu

https://github.com/purseclab/SAIN

Acknowledgements
NSF, CNS, ONR, Cisco

Plﬁ]E \ @

UNIVERSITY PurSeclLab

mailto:abbas4@purdue.edu

