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Programmable Logic Controllers (PLCs)
* Real-time rugged computer

* Embedded with a PLC program

* Control and monitor a physical process

* Commonly used in critical infrastructures
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Programmable Logic Controllers (PLCs)

* The PLC program involves three types of variables
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Sensing Variables Configuration Variables Actuation Variables

(Real-time sensing data) (Process settings) (Control signals for actuators)
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Our ICS Attack Model
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ICS Attacks
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SOTA Defense: Invariant Checking
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Offline: Robot-movement-on < Target. Position [0 — 1500]

Online:
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Problem w/ SOTA: State-Agnostic Invariants

* Loose bounds invariants leading to
detection evasion

* |CS process is naturally reflected by
states and transitions between them
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Problem w/ SOTA: State-Agnostic Invariants

* The value bounds for an invariant vary depending on the

current ICS state

State-agnostic
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Our Solution: SAIN

* We propose SAIN for deriving State-Aware INvariants to
improve ICS attack detection sensitivity against stealthy evasion
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Step 1: ICS State Identification

* PLC program executes as an FSM with distinct states in
accordance with its control flow

* SAIN analyzes PLC program to identify the states and FSM
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Step 2: State-aware Code-Level Invariants

* Intra-State Invariants

Single-Variable: V, =30 r State S, _1
Multi-Variable: if V_ =True

thenV, =30 Actuation State
‘-_Zmd V,=1[V,] V, = g(()) QSSI\Z‘: [V.] V, = Fl-lrsaenASl\ilt[i)ovrl > [V,]
* Inter-State Invariants
if State2 then
V,=Falseand V, > [V,] ’(*chﬁ"f‘rtriu"er)‘
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Step 3: Invariant Quantification

* Extracts state-specific sub-traces

gg Data Traces

/ g State, Data Traces

T S State, Data Traces

 Quantifies the “unresolved” invariant values

if V5 = True then Vg = [V7]
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if V5 = True then Vg = [0-30]

if V5 = True then Vg = [V7]

g State,
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if V5 = True then Vg = [31-600]
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Step 4: Runtime Monitoring

* SAIN enforces state-aware invariants via a SMonitor Agent
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Evaluation

* Two ICS simulation/emulation platforms
* Manufacturing plant
* Chemical plant

17 Attacks

* Sensor variable manipulation
* Malicious configuration
* Malicious actuator commands
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Results

e SAIN detects all 17 intra-state and inter-state attacks.
* SAIN detects 7 attacks with single-variable state-aware invariants
and 10 attacks with multi-variable invariants.

* In contrast, state-of-the-art method detects 35% of attacks.

* SAIN incurs, on average, a false positive rate of 2% and a
run-time overhead of 3%.
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Case Study Demo

* Attack: PLC variable manipulation to drop a workpiece.
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Conclusion

* Existing ICS invariants are state-agnostic, leading to loose
bounds and detection evasion

* State-aware invariants achieve tighter, state-dependent
bounds and improve detection sensitivity

* SAIN enables offline generation and runtime enforcement of

state-aware invariants, with high detection accuracy and low
overhead
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Thank you! Questions?

abbas4@purdue.edu

https://github.com/purseclab/SAIN
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