
SAIN: Improving ICS Attack Detection

Sensitivity via State-Aware Invariants

Syed Ghazanfar Abbas, Muslum Ozgur Ozmen,
Abdulellah Alsaheel, Arslan Khan, Z. Berkay Celik, Dongyan Xu

USENIX Security 2024

2

• Real-time rugged computer

• Embedded with a PLC program

• Control and monitor a physical process

• Commonly used in critical infrastructures

Programmable Logic Controllers (PLCs)

3

• The PLC program involves three types of variables

Sensing Variables

(Real-time sensing data)

Configuration Variables

(Process settings)

Actuation Variables

(Control signals for actuators)

Programmable Logic Controllers (PLCs)

4

Our ICS Attack Model

Physical Process
PLC

HMI

Sensing

Configuration

Actuation

5

ICS Attacks

PLC

HMI

Sensing

Configuration

Actuation

PLC

HMI

Sensing

Configuration

Actuation

• Real-world attacks
remotely manipulate
sensing/configuration/
actuation PLC
variables.

Ukrainian Power

Grid Blackout

2016

Florida Water

Poisoning

2021

6

• Example:

Offline: 𝑅𝑜𝑏𝑜𝑡⁃𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡⁃𝑜𝑛 ↔ 𝑇𝑎𝑟𝑔𝑒𝑡. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [0 − 1500]

SOTA Defense: Invariant Checking

PLC

Variables

Invariant Extraction Invariant Checking

Rules

Real-time

Data
Variable

ManipulationRules

u v

Data

Traces

Target.Position = 1600

PLC

Target. Position != [0-1500]
Invariant violated!

Online:

HMI

7

• Loose bounds invariants leading to
detection evasion

• ICS process is naturally reflected by
states and transitions between them

Problem w/ SOTA: State-Agnostic Invariants

8

• The value bounds for an invariant vary depending on the
current ICS state

Problem w/ SOTA: State-Agnostic Invariants

9

• We propose SAIN for deriving State-Aware INvariants to
improve ICS attack detection sensitivity against stealthy evasion

Our Solution: SAIN

ICS State
Identification

State-aware
Code-Level
Invariants

Invariant
Quantification

PLC
Program

Device
Traces

Runtime
Monitor

1 2 3 4

10

Step 1: ICS State Identification

Finite State Machine

(FSM)

Intermediate

Representation

PLC

Program

• PLC program executes as an FSM with distinct states in
accordance with its control flow

• SAIN analyzes PLC program to identify the states and FSM

11

• Intra-State Invariants
Single-Variable: V2 = 30

Multi-Variable: if V1 = True

then V2 = 30

and V3 = [V4]

• Inter-State Invariants

if State2 then

V1 = False and V2 > [V4]

Step 2: State-aware Code-Level Invariants

Actuation
(V1 = True)

State

Transition
V1 = False AND V3 > [V4]

Actuation

Condition
V2 = 30 AND V3 = [V4]

State S1

State S2

12

• Extracts state-specific sub-traces

• Quantifies the “unresolved” invariant values

if V5 = True then V6 = [V7] if V5 = True then V6 = [0-30]

Step 3: Invariant Quantification

State1 Data Traces

Data Traces

State2 Data Traces

if V5 = True then V6 = [V7] if V5 = True then V6 = [31-600]

State1

State2

if V5 = True then V6 = [V7] if V5 = True then V6 = [31-600]

State1

State2

13

• SAIN enforces state-aware invariants via a SMonitor Agent

Step 4: Runtime Monitoring

Sensors

HMI

Actuators

PLC Variables

PLC Program

Physical Process

PLC

Runtime

Server Applications

SMonitor

14

• Two ICS simulation/emulation platforms
• Manufacturing plant
• Chemical plant

• 17 Attacks
• Sensor variable manipulation
• Malicious configuration
• Malicious actuator commands

Evaluation

15

• SAIN detects all 17 intra-state and inter-state attacks.
• SAIN detects 7 attacks with single-variable state-aware invariants

and 10 attacks with multi-variable invariants.

• In contrast, state-of-the-art method detects 35% of attacks.

• SAIN incurs, on average, a false positive rate of 2% and a
run-time overhead of 3%.

Results

16

Case Study Demo

• Attack: PLC variable manipulation to drop a workpiece.

17

• Existing ICS invariants are state-agnostic, leading to loose
bounds and detection evasion

• State-aware invariants achieve tighter, state-dependent
bounds and improve detection sensitivity

• SAIN enables offline generation and runtime enforcement of
state-aware invariants, with high detection accuracy and low
overhead

Conclusion

Thank you! Questions?
abbas4@purdue.edu

https://github.com/purseclab/SAIN

NSF, CNS, ONR, Cisco

Acknowledgements

mailto:abbas4@purdue.edu

