Hermes: Unlocking Security Analysis of Cellular Network Protocols by Synthesizing Finite State Machines from Natural Language Specifications

Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed Md Mukit Rashid, Ali Ranjbar, Kai Tu, Tianwei Wu, Zhezheng Song, Weixuan Wang, Mujtahid Akon, Rui Zhang, Syed Rafiul Hussain

Systems and Network Security (SyNSec) Lab Department of Computer Science and Engineering **Pennsylvania State University**

Security Analysis of Cellular System

Billions of Devices

Security Sensitive Applications

Large Attack Surface

Security Analysis Ensures Secure Design

3GPP Design Specifications Needs Analysis

Issues in Natural Language Cellular Specifications

Hundreds of documents

Difficult to understand

Conflicts and underspecifications

No formal Model

Formal Security Analysis of Cellular Systems

Formal Security Analysis of Cellular Systems

Is it possible to automatically generate formal models from natural language specifications to aid security analysis of cellular systems?

Formal Model Extraction from Specifications

The UE initiates ... sending an ATTACH ACCEPT message.

The UE sends ... with integrity protection.

Upon receiving ... enter state EMM-REGISTERED.

...

start_state: EMM_REGISTERED_INITIATED

end_state: EMM_REGISTERED

condition: channel_MME_UE = attach_accept &
 attach_accept_integrity_protected

action: channel_UE_MME = attach_complete

Natural Language Specifications

Example Transition

Challenges of Automated Formal Model Extraction

On receipt of the SERVICE REJECT message, **if** the UE is in state EMM-SERVICE-REQUEST-INITIATED **and** the message is integrity protected **or** contains a reject cause other than EMM cause value #25, the UE shall reset the service request attempt counter.

start_state := emm_service_request_initiated

condition :=

(channel_MME_UE = service_reject) &

(service_reject_integrity_protected |

service_reject_emm_cause_present &

service_reject_emm_cause_value != cause_25)

action := ue_service_req_attempt_counter = 0

Input Text

ML Model

Output Transition

- Too complex of a task for existing NLP models
- No training data
- Need experts to annotate

Workflow of Hermes

NEUTREX IRSynthesizer FSMSynthesizer Findings

NEUTREX: Overview

On receipt of the SERVICE REJECT message, if the UE is in state EMM-SERVICE-REQUEST-INITIATED and the message is integrity protected or contains a reject cause other than EMM cause value #25, the UE shall reset the service request attempt counter.

Input Text

NEUTREX

Constituency Parse Tree

Challenges in NEUTREX

Existing entity tagger frameworks cannot identify complex relations

Develop a constituency parsing framework

Entity Tagger Parsing

Expected Parsing

value #25,

Challenges in NEUTREX

Existing entity tagger frameworks cannot identify complex relations

Develop a constituency parsing framework

No annotation scheme available for training data

Develop a grammar suitable for cellular data

Existing embedding models cannot understand cellular data

Pretrain an embedding model with cellular data

NEUTREX: Workflow

NEUTREX IRSynthesizer FSMSynthesizer Findings

IRSynthesizer: Overview

Natural Language Transition Component

IRSynthesizer

Intermediate Representation

Challenges in IRSynthesizer

No model or dataset available for NL to logic translation in cellular domain


```
m:= receive(type, src, msg, dst)
def m.handleReceive (type, src, msg, dst)
if type == condition:
    assert o[chan_src_dst] == msg
else:
    o[chan_src_dst] := msg
```

Example DSL Rule

IRSynthesizer: Workflow

NEUTREX IRSynthesizer **FSMSynthesizer** Findings

IRSynthesizer Creates Sperate IR for Transition Components

FSMSynthesizer: Combining Transition Components

Constituency Parse Tree

start_state := emm_service_request_initiated

condition :=

(channel_MME_UE = service_reject) &

(service_reject_integrity_protected |

service_reject_emm_cause_present &

service_reject_emm_cause_value != cause_25)

action := ue_service_req_attempt_counter = 0

Output Transition

FSMSynthesizer: Compiling and Checking Transitions

IRSynthesizer Generates Transitions for Multiple Entities

FSMSynthesizer Creates Separate FSMs

FSMSynthesizer Merges Co-inciding Transitions

NEUTREX IRSynthesizer FSMSynthesizer Findings

Evaluation of Extracted Transition Components

Evaluation Data	Metric	RFCNLP ¹	Hermes
4G NAS	Unlabeled F-1	39.12	71.33
	Labeled F-1	38.52	68.20
5G NAS	Unlabeled F-1	12.66	67.82
	Labeled F-1	12.54	65.20
5G RRC	Unlabeled F-1	12.01	73.62
	Labeled F-1	10.22	68.69
ТСР	Unlabeled F-1	57.43	59.73
	Labeled F-1	47.76	57.06
DCCP	Unlabeled F-1	38.88	56.71
	Labeled F-1	33.91	55.06

Evaluation of Extracted FSM

Protocol	Accuracy of IRSynthesizer and FSMSynthesizer		Accuracy of Hermes	
	Action	Condition	Action	Condition
4G	92.23	92.24	81.14	87.21
5G	93.86	94.45	81.39	86.40

Application in Security Analysis

Acknowledgement from GSMA

Translate FSM to Formal Model

Check Security Properties

Identify 19 Previous and 3 New Vulnerabilities

GSNACVD-
2023OO71Abdullah Al Ishtiaq,
Kai Tu,
Syed Md Mukit Rashid,
Syed Rafiul HussainPennsylvania State University

Deletion of Allowed CAG List

- Delete Allowed CAG List
- Cannot connect to network

Summary

Automated FSM extraction framework State-of-the-art in transition component extraction 3 new and 19 previous vulnerabilities in 4G and 5G

Released annotated datasets and trained models

GitHub: https://github.com/SyNSec-den/hermes-spec-to-fsm

Hermes: Unlocking Security Analysis of Cellular Network Protocols by Synthesizing Finite State Machines from Natural Language Specifications

Abdullah Al Ishtiaq

Department of Computer Science and Engineering Pennsylvania State University Website: <u>abdullahishtiaq.net</u> GitHub: <u>github.com/ishtiaqniloy</u>