
Mir Masood Ali, Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis

Rise of Inspectron
Automated Black-box Auditing of Cross-platform Electron Apps

Paper in a Slide

• Web browsers have come a long way in adapting to new threats and ensuring
user security

• Website developers are increasingly adopting cross-platform frameworks to
provide native features

• Electron helps developers port their websites to cross-platform desktop apps
— a complex and error-prone process

• Inspectron is an automated, dynamic analysis framework that audits Electron
apps for security and privacy vulnerabilities

• Our analysis resulted in 106 reports, including to Postman and WordPress, and
resulted in the resolution of a high-severity CVE

2

• Users visit websites to access
services

• Websites load external content

• Web browsers handle rendering
and manage loaded content

• Web browsers add safeguards
between loaded content and the
underlying device

Web Browsers

3

• Rendered content re-uses web browser engine

• Developers configure native features within a
privileged process

• Developers answer:

• How do we isolate rendered content?

• How do the two processes talk to each other?

• How do we retain the Same Origin Policy
(SoP)?

• How do we restrict navigation?

• How do we secure cookies and sensitive
tokens?

Electron

4

Renderer

Main

?
?

?
?

Complex. Tricky. Error-prone

??

• We downloaded each app and extracted
packed files

• We evaluated the app to determine its
underlying library versions

• We extracted the source code and executed
the app within our instrumented Electron

• We evaluated the app’s loaded content using
Puppeteer

• We also performed additional checks outside
of the two automated libraries

• We combined results from multiple sources
into an extensive report

Inspectron: Evaluating Apps

5

• Electron’s source is spread across multiple
languages and directory paths

• When an app starts, Electron reads and
passes options to underlying libraries

• New Window

• Should the window be allowed to open new
windows?

• Should the window have access to Node.js
libraries?

• Should the window be allowed to send
messages to other app processes?

• Repeat the process for each window

Inspectron: Instrumenting Electron

App Start app

Command
line

web-contents

- Execute JS

- New
windows …

browser-window

- Node.js
Integration

- SoP
IPC
messages

… …

…Code Flow Instrumented
Components

Misc.
Components

• We evaluated 109 apps with their
latest versions as of May 2023

• Electron Versions go back 4
years to May 2019!

 0

 2

 4

 6

 8

 10

 12

 14

 16

20
19

-0
5

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
6

20
21

-0
7

20
21

-0
8

20
21

-0
9

20
21

-1
0

20
21

-1
1

20
21

-1
2

20
22

-0
1

20
22

-0
2

20
22

-0
3

20
22

-0
4

20
22

-0
5

20
22

-0
6

20
22

-0
7

20
22

-0
8

20
22

-0
9

20
22

-1
0

20
22

-1
1

20
23

-0
1

20
23

-0
2

20
23

-0
3

20
23

-0
4

20
23

-0
5

N
u

m
b

e
r

o
f
a

p
p
s

Evaluation: Versions

7

• Electron re-packages underlying
libraries, including NPM and Chrome

• Apps built on a particular version of
Electron are tied to that specific
version

• Our Solution: Build an instrumented
Electron for each framework version

• We instrumented 24 versions of
Electron across MacOS and Linux
builds

Evaluation: Versions
(continued)

8

• Electron allows developers to provide native
features

• They advise developers to use the main
process primarily

• Developers can selectively expose
functionality to the renderer

• Some developers may find it easier to expose
all of Node.js — we found 49 apps doing so

• Loaded content can execute code directly on
the system

• External, third-party content can access and
edit the filesystem

Evaluation: Node Integration

9

Renderer

Main

require(‘fs’).writeFile()

require(‘child_process’).spawn()

😈

• The Same-origin Policy is a critical security
mechanism on the web

• Electron allows developers to relax the isolation
between origins

• External, third-party components can misuse
this relaxation to bypass restrictions

• We found 8 apps that completely disabled web
security

• The feature removes restrictions across third-
party origins

• Even with other restrictions in place, third-party
scripts can can execute in privileged contexts

Evaluation: Web Security

10

Renderer

Main

😈

😈

Evaluation: Overview

• Node Integration and Web Security make two of 12 web preferences — one
of the classes of misconfigurations

• We used Inspectron to evaluate apps across 16 classes of misconfigurations

• Once built, Inspectron can automatically identify misconfigurations within
apps

• We evaluated reports gathered from 109 apps

11

• WordPress offers users a
desktop app to access its
services

• Users build and manage
websites, write blog posts,
engage with comments

• WordPress developers reuse
website code within their
Electron app

Evaluation: WordPress

12

Renderer

Main

Home
Blog

Comments

Account

• We noticed two important
misconfigurations

• Chrome Version: As of May
2023, WordPress was using
Electron v12, with Chrome v89
— >3 years old

• Navigation: WordPress did not
block loading third-party links
within the app. Inspectron
checks for restrictions.

Evaluation: WordPress
(continued)

13

Renderer

Main

Home
Blog

Comments

Account 🔗

• Elsewhere, an attacker visits the
victim’s blog

• The attacker adds a comment on
the victim’s blog post

• The attacker embeds a link in the
comment

Evaluation: WordPress
(continued)

14

😈

Add Comment:
🔗

Victim’s Blog

• The victim checks comments on
their blog

• The victim clicks on the link
within the attackers comment

Evaluation: WordPress
(continued)

15

Renderer

Main

Home
Blog

Account
Comments 🔗

• The attacker now runs in the
window meant for the Wordpress
app

• The attacker’s site is loaded in
an old version of Chrome

• The attacker can use existing
exploits on V8 and Blink to
execute malicious code, and
compromise the user’s system

16

Renderer

Main

😈

Evaluation: WordPress
(continued)

Conclusion

• Electron provides numerous convenient features but also creates new paths
for vulnerabilities

• We built Inspectron to automatically find and report on these vulnerabilities
within Electron apps

• Analysing apps using Inspectron resulted in the submission of 106 reports.
We also found a high-severity CVE and were rewarded by three app
developers.

17

Mir Masood Ali, Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis

Rise of Inspectron
Automated Black-box Auditing of Cross-platform Electron Apps

Artifact

mali92@uic.edu

mailto:mali92@uic.edu

