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Motivation: Rise in Data Breaches
When a data breach occurs, an investigation must be completed.

1. How did the adversary access the network?

2. What resources were accessed?
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Existing Work 
Whole-System Auditing (Rain, Protracer, RTAG)
• Post-mortem analysis relies on system-level data provenance.
• Collects system-call logs on end host systems. 

Whole-System Threat Detection (NoDoze, Holmes, PrioTracker)
• Prioritize and refine the investigation scope
• Leverage causality information for prioritizing security-alerts
• Underlying analysis relies on system-level audit logs

Kernel-Level
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1. Web-Based Auditing 

1. Generate causality logs in terms of web-based semantics. 

Issue: Web-Based Attacks
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JSGraph (NDSS’18), 

Mnemosyne (CCS’20)



1. Web-Based Auditing 
1. Generate causality logs in terms of web-based semantics.

2. Support dynamic analysis by having replayable logs. 

Our Approach: WebRR
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Security Motivation

• Record-Only
• Existing web-based auditing solutions are record-only.

• Can only support static-based analysis.

• Facilitate Dynamic Analysis
• Allows an investigator to interactively investigate an attack.

• Attach debuggers & analysis tools during the replay.

• Visual Analysis
• Capability to show visual-component of an attack. 

• Important in web-based, since many attacks have a visual component
• Social-Engineering Attacks.
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Existing Work 

System-Level:
Arnold (OSDI’14), Rain (CCS’17), 
RTAG (SEC’18), C2SR (NDSS’21)

System-Level RR Systems:
1. Lack portability and OS dependent. 
2. Usually require kernel and library modifications.
3. Theoretically possible to replay browser, but difficult in 

practice.7
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Existing Work 

System-Level:
Arnold (OSDI’14), Rain (CCS’17), 
RTAG (SEC’18), C2SR (NDSS’21)

JS-Based RR Systems:
1. Not appropriate for adversarial settings.
2. Can be easily disabled by adversary.
3. Designed for debugging.

In-Browser Systems: 
1. Tamper-Proof 
2. OS Agnostic
3. Existing approaches do not support deterministic replay. 

System-Level RR Systems:
1. Lack portability and OS dependent. 
2. Usually Require kernel and library modifications.
3. Theoretically possible to replay browser, but difficult in 

practice.

JS-Based RR:
Jalangi (FSE’13), Mughost 

(NSDI’10)
In-Browser RR:

WebRR, WebCapsule (CCS’15)
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Requirements of a Forensic-Grade System

• Deterministic
• Provide a deterministic replay of user's browsing session.

• Portable
• Operates on a variety of devices, web applications, and 

platforms.

• Always On
• The forensic analysis system is always-on to capture any 

potential security event.

• Tamper Proof 
• Cannot be easily disabled by an adversary.
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Issue: Executional Divergence
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Issue: Executional Divergence
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Issue: Executional Divergence

Heartbeat Code Snippet
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Issue: Executional Divergence

Heartbeat Code Snippet
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Issue: Executional Divergence

Heartbeat Code Snippet

14



Issue: Executional Divergence

Heartbeat Code Snippet

Step 1. Start heartbeat using an idle callback.

Step 2: Call getPayload() in 5 seconds.
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Issue: Executional Divergence
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Issue: Executional Divergence
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How do we handle this

Render Process

Rendering Engine (Blink) JS Engine 
(V8)

JS Scheduler

ServiceWorker
RenderThread
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How do we handle this

Render Process

Rendering Engine (Blink) JS Engine 
(V8)

JS Scheduler

ServiceWorker
RenderThread
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JEU Partitioning

• JS Execution Unit (JEU) Partitioning: 
• Divide JavaScript execution into a sequence of JEUs.

• Three types of units instrumented in Blink:
• Script Units: Record script execution.
• Callback Units: Record callback executions.
• Event Units: Record event execution.

• JEU Recorder Module: 
• Add hooks into Blink to record when a JEU starts and finishes execution.
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Heartbeat Code Snippet
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Heartbeat Code Snippet
Script JEU: Hooks.js

23



Heartbeat Code Snippet
Script JEU: Hooks.js

Callback JEU: heartbeat

24



Heartbeat Code Snippet
Script JEU: Hooks.js

Callback JEU: heartbeat
Callback JEU: heartbeat
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Heartbeat Code Snippet

Callback JEU: payload

Script JEU: Hooks.js
Callback JEU: heartbeat
Callback JEU: heartbeat
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Heartbeat Code Snippet

Callback JEU: payload

Script JEU: Hooks.js
Callback JEU: heartbeat
Callback JEU: heartbeat

Callback JEU: heartbeat
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Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Payload

Callback JEU: Heartbeat

Recorded 
Call Sequence

Heartbeat Response

Heartbeat Response

Heartbeat Response

Heartbeat Response

Payload Response

Heartbeat Response

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Payload

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Replay
Call Sequence

28



High-Level Replay Strategy

Replay Strategy:

1. Replay the JEUs in the same order.
2. Ensure DOM State is consistent.
3. Replay sources of non-determinism.
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Replay Engine: Replay Scheduler

1. Replay Operation Queue

2. Replay Dispatcher
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Replay Engine: Replay Scheduler

1. Replay Operation Queue

2. Replay Dispatcher
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Recording Engine: Sources of NonDeterminism
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Evaluation



Evaluation

RQ1: How well does WebRR replay web-based attacks?

RQ2: Can WebRR replay highly dynamic web applications?

RQ3: What is runtime and storage overhead of WebRR?
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Evaluation: Metrics

How do we define a replay as successful?
 

1. Successfully recorded the attack.

2. How closely doe the JEU sequences between record & replay match? 

3. How closely does the API sequence between record & replay match?
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Evaluation: Web-Based Attack Results

OS Attack Recorded JEU-Sequence
Edit Distance

API-
Sequence

Edit  Distance

Replayed

Linux Phishing ✓ 0 0 ✓

Linux Credential
Harvesting

✓ 0 0 ✓

Android KeyLogger ✓ 0 0 ✓

Android Clickjacking ✓ 0 0 ✓

Windows SW 
StealthyPush

✓ 0 0 ✓

Windows SW-XSS ✓ 0 0 ✓

Windows DriveBy ✓ 0 0 ✓

Table 2. Evaluation Results for Web-Based Attacks.
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Evaluation: Benign Websites

OS Website Recorded JEU-Sequence
Edit Distance

API-
Sequence

Edit  Distance

Replayed

Linux Stackoverflow ✓ 0 13/12,865 ✓

Linux Wikipedia ✓ 0 4/52,700 ✓

Android Whitehouse ✓ 0 4/6,148 ✓

Windows Mozilla ✓ 0 12/26,790 ✓

Windows Craigslist ✓ 0 8/26,536 ✓

Table 3. Evaluation Results for Benign Websites.36



Evaluation: Runtime & Storage 
Overhead

Runtime Performance
• Page Load overhead of auditor was only 

3.44% on average for Tranco 1k.
• Outlier: hxxp://www.wp.pl
• 20,000 DOM Insertions

Storage Overhead
• 2.2TB of disk space required to store logs 

for a single year. 
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Limitations

Callback Registration:
● Currently we only support the most popular methods for 

registering callbacks.

Drive-By Downloads:
● An adversary may be able to tamper with our system if 

browser is compromised.
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Conclusion
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●  Introduced WebRR, a novel system for replaying and analyzing 
modern web attacks.

● Demonstrated that WEBRR can replay a diverse range of 
web-based attacks, including those unachievable by previous 
state-of-the-art systems.

● Achieved only a 3.44% increase in page load time on top 
websites.



Questions



Web Application

Our Approach: Move logs up the stack.

Kernel-Level

Issue: 
• Existing work suffers from a semantic-gap issue. 

Solution: 
• Develop techniques to collect audit logs higher on 

the stack for more context.

Design Goal:
• Provide forensic analyst with capability to statically and 

dynamically analyze attacks.

Browser (Chrome)
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Our Approach: Move logs up the stack.
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