
WebRR: A Forensic
System for Replaying and
Investigating Web-Based

Attacks
Joey Allen, Zheng Yang, Feng Xiao, Matthew Landen

Roberto Perdisci, Wenke Lee

Motivation: Rise in Data Breaches
When a data breach occurs, an investigation must be completed.

1. How did the adversary access the network?

2. What resources were accessed?

1

Existing Work
Whole-System Auditing (Rain, Protracer, RTAG)
• Post-mortem analysis relies on system-level data provenance.
• Collects system-call logs on end host systems.

Whole-System Threat Detection (NoDoze, Holmes, PrioTracker)
• Prioritize and refine the investigation scope
• Leverage causality information for prioritizing security-alerts
• Underlying analysis relies on system-level audit logs

Kernel-Level

2

1. Web-Based Auditing

1. Generate causality logs in terms of web-based semantics.

Issue: Web-Based Attacks

3
JSGraph (NDSS’18),

Mnemosyne (CCS’20)

1. Web-Based Auditing
1. Generate causality logs in terms of web-based semantics.

2. Support dynamic analysis by having replayable logs.

Our Approach: WebRR

4

Security Motivation

• Record-Only
• Existing web-based auditing solutions are record-only.

• Can only support static-based analysis.

• Facilitate Dynamic Analysis
• Allows an investigator to interactively investigate an attack.

• Attach debuggers & analysis tools during the replay.

• Visual Analysis
• Capability to show visual-component of an attack.

• Important in web-based, since many attacks have a visual component
• Social-Engineering Attacks.

5

Existing Work

System-Level:
Arnold (OSDI’14), Rain (CCS’17),
RTAG (SEC’18), C2SR (NDSS’21)

System-Level RR Systems:
1. Lack portability and OS dependent.
2. Usually require kernel and library modifications.
3. Theoretically possible to replay browser, but difficult in

practice.7

6

Existing Work

System-Level:
Arnold (OSDI’14), Rain (CCS’17),
RTAG (SEC’18), C2SR (NDSS’21)

JS-Based RR Systems:
1. Not appropriate for adversarial settings.
2. Can be easily disabled by adversary.
3. Designed for debugging.

System-Level RR Systems:
1. Lack portability and OS dependent.
2. Usually require kernel and library modifications.
3. Theoretically possible to replay browser, but difficult in

practice.

JS-Based RR:
Jalangi (FSE’13), Mughost

(NSDI’10)

8

7

Existing Work

System-Level:
Arnold (OSDI’14), Rain (CCS’17),
RTAG (SEC’18), C2SR (NDSS’21)

JS-Based RR Systems:
1. Not appropriate for adversarial settings.
2. Can be easily disabled by adversary.
3. Designed for debugging.

In-Browser Systems:
1. Tamper-Proof
2. OS Agnostic
3. Existing approaches do not support deterministic replay.

System-Level RR Systems:
1. Lack portability and OS dependent.
2. Usually Require kernel and library modifications.
3. Theoretically possible to replay browser, but difficult in

practice.

JS-Based RR:
Jalangi (FSE’13), Mughost

(NSDI’10)
In-Browser RR:

WebRR, WebCapsule (CCS’15)

9

8

Requirements of a Forensic-Grade System

• Deterministic
• Provide a deterministic replay of user's browsing session.

• Portable
• Operates on a variety of devices, web applications, and

platforms.

• Always On
• The forensic analysis system is always-on to capture any

potential security event.

• Tamper Proof
• Cannot be easily disabled by an adversary.

9

Issue: Executional Divergence

10

Issue: Executional Divergence

11

Issue: Executional Divergence

Heartbeat Code Snippet

12

Issue: Executional Divergence

Heartbeat Code Snippet

13

Issue: Executional Divergence

Heartbeat Code Snippet

14

Issue: Executional Divergence

Heartbeat Code Snippet

Step 1. Start heartbeat using an idle callback.

Step 2: Call getPayload() in 5 seconds.

15

Issue: Executional Divergence

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Execution #1 Execution #2 Execution #3

16

Issue: Executional Divergence

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Recorded
Call Sequence

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Replayed
Call Sequence

17

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Recorded
Call Sequence

Heartbeat Response

Heartbeat Response

Heartbeat Response

Heartbeat Response

Payload Response

Heartbeat Response

Heartbeat()

Heartbeat()

Heartbeat()

Heartbeat()

Payload()

Heartbeat()

Replayed
Call Sequence

Issue: Executional Divergence

18

How do we handle this

Render Process

Rendering Engine (Blink) JS Engine
(V8)

JS Scheduler

ServiceWorker
RenderThread

19

How do we handle this

Render Process

Rendering Engine (Blink) JS Engine
(V8)

JS Scheduler

ServiceWorker
RenderThread

20

JEU Partitioning

• JS Execution Unit (JEU) Partitioning:
• Divide JavaScript execution into a sequence of JEUs.

• Three types of units instrumented in Blink:
• Script Units: Record script execution.
• Callback Units: Record callback executions.
• Event Units: Record event execution.

• JEU Recorder Module:
• Add hooks into Blink to record when a JEU starts and finishes execution.

21

Heartbeat Code Snippet

22

Heartbeat Code Snippet
Script JEU: Hooks.js

23

Heartbeat Code Snippet
Script JEU: Hooks.js

Callback JEU: heartbeat

24

Heartbeat Code Snippet
Script JEU: Hooks.js

Callback JEU: heartbeat
Callback JEU: heartbeat

25

Heartbeat Code Snippet

Callback JEU: payload

Script JEU: Hooks.js
Callback JEU: heartbeat
Callback JEU: heartbeat

26

Heartbeat Code Snippet

Callback JEU: payload

Script JEU: Hooks.js
Callback JEU: heartbeat
Callback JEU: heartbeat

Callback JEU: heartbeat

27

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Payload

Callback JEU: Heartbeat

Recorded
Call Sequence

Heartbeat Response

Heartbeat Response

Heartbeat Response

Heartbeat Response

Payload Response

Heartbeat Response

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Payload

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Callback JEU: Heartbeat

Replay
Call Sequence

28

High-Level Replay Strategy

Replay Strategy:

1. Replay the JEUs in the same order.
2. Ensure DOM State is consistent.
3. Replay sources of non-determinism.

29

Replay Engine: Replay Scheduler

1. Replay Operation Queue

2. Replay Dispatcher

30

Replay Engine: Replay Scheduler

1. Replay Operation Queue

2. Replay Dispatcher

31

Recording Engine: Sources of NonDeterminism

Render Process
Rendering Engine (Blink) JS Engine

(V8)

Platform Layer

DOM State
JS Scheduler

ServiceWorker
RenderThread

B
in

di
ng

s
La

ye
r

W
eb

 A
P

Is

Blink-Platform Shims V8-Platform Shims

B
lin

k-
V

8
S

hi
m

s

DOM Recorder

32

Evaluation

Evaluation

RQ1: How well does WebRR replay web-based attacks?

RQ2: Can WebRR replay highly dynamic web applications?

RQ3: What is runtime and storage overhead of WebRR?

3

Evaluation: Metrics

How do we define a replay as successful?

1. Successfully recorded the attack.

2. How closely doe the JEU sequences between record & replay match?

3. How closely does the API sequence between record & replay match?

34

Evaluation: Web-Based Attack Results

OS Attack Recorded JEU-Sequence
Edit Distance

API-
Sequence

Edit Distance

Replayed

Linux Phishing ✓ 0 0 ✓

Linux Credential
Harvesting

✓ 0 0 ✓

Android KeyLogger ✓ 0 0 ✓

Android Clickjacking ✓ 0 0 ✓

Windows SW
StealthyPush

✓ 0 0 ✓

Windows SW-XSS ✓ 0 0 ✓

Windows DriveBy ✓ 0 0 ✓

Table 2. Evaluation Results for Web-Based Attacks.
35

Evaluation: Benign Websites

OS Website Recorded JEU-Sequence
Edit Distance

API-
Sequence

Edit Distance

Replayed

Linux Stackoverflow ✓ 0 13/12,865 ✓

Linux Wikipedia ✓ 0 4/52,700 ✓

Android Whitehouse ✓ 0 4/6,148 ✓

Windows Mozilla ✓ 0 12/26,790 ✓

Windows Craigslist ✓ 0 8/26,536 ✓

Table 3. Evaluation Results for Benign Websites.36

Evaluation: Runtime & Storage
Overhead

Runtime Performance
• Page Load overhead of auditor was only

3.44% on average for Tranco 1k.
• Outlier: hxxp://www.wp.pl
• 20,000 DOM Insertions

Storage Overhead
• 2.2TB of disk space required to store logs

for a single year.

37

Limitations

Callback Registration:
● Currently we only support the most popular methods for

registering callbacks.

Drive-By Downloads:
● An adversary may be able to tamper with our system if

browser is compromised.

38

Conclusion

39

● Introduced WebRR, a novel system for replaying and analyzing
modern web attacks.

● Demonstrated that WEBRR can replay a diverse range of
web-based attacks, including those unachievable by previous
state-of-the-art systems.

● Achieved only a 3.44% increase in page load time on top
websites.

Questions

Web Application

Our Approach: Move logs up the stack.

Kernel-Level

Issue:
• Existing work suffers from a semantic-gap issue.

Solution:
• Develop techniques to collect audit logs higher on

the stack for more context.

Design Goal:
• Provide forensic analyst with capability to statically and

dynamically analyze attacks.

Browser (Chrome)

43

1. Web-Based Auditing

1. Generate causality logs in terms of web-based semantics.

Our Approach: Move logs up the stack.

44

1. Web-Based Auditing

1. Generate causality logs in terms of web-based semantics.

Our Approach: Move logs up the stack.

45

