Pandawan: Quantifying Progress in Linuxbased Firmware Rehosting

Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele

33rd Usenix Security Symposium Date: 08/16/2024

Internet of Things

In 2024 more than 17 billion devices

Vulnerable to cyber attacks

Almost 11 million attacks (e.g., device breaches) in December 2022

Threats become more frequent and sophisticated!

The dark web's criminal minds see Internet of Things as next big hacking prize

■ PUBLISHED MON, JAN 9 2023+9:29 AM EST 'S PATCH TIME ONCE AGAIN —

High-severity vulnerabilities affect a wide range of Asus router models

Many models receive patches; others will need to be replaced. DAN GOODIN - 6/17/2024, 2:39 PM

OVHcloud Hit with Record 840 Million PPS DDoS Attack Using MikroTik

Routers

Sources: https://www.amazon.com/ https://www.reddit.com/r/cybermaterial/comments/zyp2qj/enjoy_4_memes_about_iot/ https://www.cnbc.com/2023/01/09/the-dark-webs-criminal-minds-see-iot-as-the-next-big-hacking-prize.html https://arstechnica.com/security/2024/06/high-severity-vulnerabilities-affect-a-wide-range-of-asus-router-models/ https://www.statista.com/statistics/1322216/worldwide-internet-of-things-attacks/ https://thehackernews.com/2024/07/ovhcloud-hit-with-record-840-million.html

Linux-based IoT Firmware Re-hosting

Full-system re-hosting frameworks categorization:

- User level re-hosting
- Kernel level re-hosting (i.e., kernel modules)

Current solutions absent of two important features:

Holistic Re-hosting and Analysis

Analyze the user and kernel level firmware code as a unit

- FirmSolo (published in Usenix 2023 [1]) is the only re-hosting system that supports user and kernel module code re-hosting
- FirmSolo explicitly focuses on IoT kernel module re-hosting
 - Configures and builds custom kernels based on the functionality required by the IoT kernel modules
- The custom kernels might lack functionality required by user level code
 - User level code either prematurely terminates or exhibits unwanted behavior (e.g., gets stuck in a loop)
- Not capable of holistic re-hosting!

Motivating Example

Firmware serial log in FirmSolo

1. undefined4 loadCfg(void) 2. { 3. bool bVar1: char * stream; 4. 5. while(true) { 6. (*pcVar7)(stream): 7. 8. LAB 004a73cc: iVar3 = ∖ 9. 10 flash2rootfs("/tmp/cfg.txt"); 11 if (iVar3 != 0) break; 12. bVar1 = true;13. pFVar4 =14. fopen64("/dev/console","a"); 15. **if** (pFVar4 != (FILE *)**0**x**0**) { 16. uVar2 = getpid(); 17. ... 18. fclose(pFVar4); 19. } 20. ... 21. }

loadCfg Ghidra snippet

flash2rootfs Ghidra snippet

IoT kernel modules do not make use of this functionality!

FirmSolo **does not** include the CONFIG_MTD_CHAR option in its custom kernel!

Re-hosting Frameworks Comparison

Compare the different re-hosting approaches based on their emulation capabilities

Prior work:

- Wallclock time + ad-hoc metrics
 - Number of bugs found or networking connectivity achieved
- Each re-hosting framework adopts a different design
 - Current metrics too generic to include these differencies between the frameworks

FirmSolo timestamps

4.21: /etc/rc.d/S05boot boot

- 8.14: /bin/mkdir –p /var/lock
- 34.28: /sbin/udevtrigger
- **125.02:** /usr/bin/dsd

FirmAE timestamps

4.26: /etc/rc.d/S05boot boot

- 5.81: /bin/mkdir -p /var/lock
- 12.84: /sbin/udevtrigger
- 37.64: /usr/bin/dsd

Firmware Initialization Completion Detection (FICD)

Firmware executes tasks during bootup

- **Task:** Program name + arguments
- After the initialization phase few or no new tasks are executed Use a *time frame* to allow for new tasks to be executed
 - Mark the emulation point at the end of the time frame as the initialization completion (I_{fin}) point

Conceptually the same for all re-hosting frameworks Collect the emulation-based metrics at the I_{fin} point

• E.g., user and kernel (i.e., kernel module) code coverage

Time Frame

Tasks:

Pandawan

A framework to holistically re-host and analyze Linux-based IoT firmware Also implements FICD to enable the comparison of different full-system firmware re-hosting approaches

Kernel Augmentation

Use FirmSolo to analyze the firmware image and produce a custom kernel

• Use Oracle to augment the custom kernel with functionality required by user level code

Oracle

Provide additional functionality required by user level code

Add popular configuration options used in IoT kernels in Pandawan's kernels (PW_{kern})

• Gathered during *Preprocessing*

Make sure these options do not affect the layout of data structures used by the IoT kernel modules

Firmware Re-hosting & Analysis

Re-host the PW_{kern} and the F_{fs} under PyPANDA [2]

Use the PyPANDA script

- Make use of FirmAE's networking configuration logic
- Use PANDA's builtin plugins
 - coverage and syscalls_logger

Use custom plugins

• FICD and SyscallToKmodTracer

Firmware Re-hosting & Analysis (cont.)

Compare the emulation capabilities of re-hosting frameworks with FICD

- Comparison of full-system re-hosting frameworks
- Use emulation-based metrics:
 - Number of programs executed,
 - Number of kernel modules loaded,
 - User and kernel module code coverage

Holistically analyze the firmware code

- Traces system calls that access the IoT kernel modules (through SyscallToKmodTracer)
- Covert the traces to seeds for TriforceAFL
 - Similar to Moonshine [3]
- Fuzz the kernel modules with TriforceAFL

Evaluation

Dataset:

• **1,520** firmware images (1,470 from FirmSolo and 50 from Greenhouse)

Re-hosting Comparison:

- Compared Firmadyne [4], FirmAE [5], FirmSolo and Pandawan, via FICD
- Up to **6%** more user programs executed and **9%** kernel modules loaded
- Up to **21%** more user code BBs and **26%** more kernel module code BBs executed

Holistic Analysis:

- Seeds for **479** firmware images
- TriforceAFL triggered **16** bugs (6 unknown) in 12 kernel modules (8 closed source)
 - We reported the findings to the respective vendors

Framework	Firmadyne	FirmAE	FirmSolo	Pandawan
No KALLSYMS				
Avg. Progs	35	36	34	36
Avg. TBs	15,715	16,552	13,835	16,740
KOs Loaded	0	0	4,936	5,146
Avg. KOs TBs	0	0	200	251

Table 1: Re-hosting comparison experiments using FICD and the emulation-based metrics. The green cells represent the best values for each metric.

- [4] Chen et al. Towards Automated Dynamic Analysis for Linux-based Embedded Firmware (NDSS 2016)
- [5] Kim et al. FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis (ACSAC 2020)

Evaluation

Dataset:

• **1,520** firmware images (1,470 from FirmSolo and 50 from Greenhouse)

Re-hosting Comparison:

- Compared Firmadyne [4], FirmAE [5], FirmSolo and Pandawan, via FICD
- Up to **6%** more user programs executed and **9%** kernel modules loaded
- Up to **21%** more user code BBs and **26%** more kernel module code BBs executed

Holistic Analysis:

- Seeds for **479** firmware images
- TriforceAFL triggered **16** bugs (6 unknown) in 12 kernel modules (8 closed source)
 - We reported the findings to the respective vendors

Module	Туре	Vendor	Kernel	Bugs			
MIPS							
arp_tables	0	AT&T	2.6.31	2			
led	P	Linksys	2.6.31	1			
ipt_STAT	Ρ	TP-Link	2.6.36	1			
x_tables	0	TP-Link	2.6.31	1			
statistics	Ρ	TP-Link	2.6.31	1			
ip6_tables	0	AT&T	2.6.30.10	2			
ipv6_spi	Ρ	Netgear	2.6.30	2			
ip_tables	0	TP-Link	2.6.31	2			
gpio	Ρ	DLink	2.6.31	1			
gpio_module	Ρ	DLink	2.6.31	1			
ARM							
ipt_STAT	Ρ	TP-Link	2.6.32.11	1			
statistics	Ρ	TP-Link	2.6.36.4	1			
			Total	16			

Table 2: Fuzzing experiments with TriforceAFL. The O and Pnotations on column two stand for Open-source andProprietary, respectively.

- [4] Chen et al. Towards Automated Dynamic Analysis for Linux-based Embedded Firmware (NDSS 2016)
- [5] Kim et al. FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis (ACSAC 2020)

Summary

Pandawan is a framework that enables the holistic re-hosting and analysis of Linux-based IoT firmware

FICD enables the comparison of different re-hosting frameworks based on their emulation capabilities

Contact me: jaggel@bu.edu

Thank You!

