
Fuzzing BusyBox :
 Leveraging LLM and Crash Reuse
For Embedded Bug Unearthing

Asmita1, Yaroslav Oliinyk2, Michael Scott2, Ryan Tsang1, Chongzhou Fang1, Houman Homayoun1

1University of California Davis, 2NetRise
Usenix Security 2024

Introduction

• Surge in the number of IoT
devices
• Increase in the number of

attacks
• Embedded devices , a

central part of IoT
ecosystem
• Firmware, the core logic of

the system

Introduction

• BusyBox
• Fuzzing
• LLM (Large language

models)
• Crash Reuse (Replay

crash on variants of a
target)

Existing research leveraging LLM for fuzzing
Research Target LLM use case

ChatAFL Protocols Extract a machine-readable grammar
for a protocol, generate diverse

messages for initial seeds

ChatFuzz Format conforming targets Used at the mutation stage to
generated format conforming mutated

inputs

Fuzz4All Targets that need different
programming languages as input

Generate code snippets for different
programming languages

WhiteFox Compiler Optimization source code analyzer, test
input generation

Proposed Work Embedded applications like
BusyBox

Generate diverse and target-specific
initial seeds

Research Questions

• How widespread are the variants of
BusyBox ?
• Can LLM be leveraged for fuzzing

BusyBox ?
• Is there a better way of identifying similar

vulnerabilities across variants?

Variants of BusyBox

Analyzed ~80 embedded products. Source : NetRise

Research Pipeline

Target
Collection

Fuzzing
Process

Crash
Collection

Initial seeds
(using LLM)

Found
Crashes?

Manual
Triaging

Similar
New

Target

Yes

Find Vulnerabilities

Technique 1 Technique 2

BusyBox ELFs
(Source : NetRise)

QEMU, AFL++

OpenAI’s GPT4

Technique 1 :
Leveraging LLM for Initial Seed Generation
• Case 1 : Input format is known by the LLM knowledge base
• Case 2 : Custom Input format (fine-tuning)

• Followed by corpus minimization using afl-cmin

Generic
Target

Standard input
requirement

Custom input
requirement

Query
LLM

Generate initial
seeds

Finetune
LLM

Feed the input
corpus to fuzzer

Prompt for BusyBox “awk” applet :

Results :
Leveraging LLM
for Initial Seed
Generation
(Technique 1)

Source of firmware : NetRise

No. of unique crashes with vs without LLM based initial input seeds.
Target : Network controller, Network switch, storage array controller, firewall

Used AFL-Triage
to identify unique crashes

No. of crashes with vs without LLM based initial input seeds (48 hours fuzzing)
Target applets : awk, dc, man, ash clockwise

No. of edges with vs without LLM based initial input seeds
Target applets : awk, dc, man, ash clockwise

No. of executions with vs without LLM based initial input seeds
Target applets : awk, dc, man, ash clockwise

Result summary with
LLM-based initial
seeds (Technique 1)
• Increase in the number of

crashes
• Edge coverage performance is

better in some cases
• No significant difference in the

number of executions/sec, hence
no overhead issues

Technique 2 : Crash Reuse

Efficiency Black-box testing

Why ?

Target 1

Target N-1

Target N

Crashes

Crashes

Crashes

Consolidated
Crashes

New Target

Technique 2 : Crash Reuse

Results :
Crash Reuse
(Technique 2)

• No. of previously collected
crashes from Technique 1 :
~4500

• Leveraged theses crashes to
test new target variant : Latest
BusyBox version (v1.36.1 at the
time of experiment)

• Identified the presence of
previous CVE-2010-4051, CVE-
2015-8776 in latest version

Overview :
Crash Reuse
(Technique 2)

• Detects potential crashes similar
to previously discovered ones

• Applies to similar target variants
• Similar targets : Same program

but with variants w.r.t
architecture, version, compiler

• Good for initial first phase, but
needs fuzzing to identify zero-
day vulnerabilities

Limitations

Initial tuning effort when dealing
with new targets

Manual verification of generated
seeds

Does not guarantee identification
of all bugs, especially zero-day

vulnerabilities.

Technique1 : LLM-based seed generation Technique2 : Crash Reuse

• Extend the proposed techniques
to other embedded targets other
than BusyBox

• Experiment with the inclusion of
LLM at different stages of fuzzing
apart from the seed generation

Future Work

Thank you!

Contact : aasmita@ucdavis.edu

Questions?

