
Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

A Broad Comparative
Evaluation of Software
Debloating Tools

USENIX Security 2024
Michael D. Brown
15 August 2024

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Why Evaluate Software Debloaters?

2

Software debloating is an emerging research area aiming to
remove unnecessary code from programs to:
- Improve performance
- Improve security posture (less code, less attack surface)

However, evaluations of tools to date are limited in scope and
use inconsistent sets of metrics.

This makes it hard for potential users to know what tools to use,
what benefits to expect, and whether they are safe/effective.

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Motivating Questions

3

We designed an evaluation for SotA debloating tools to answer:

1. How can debloating tools be evaluated?
᠆ What metrics should be used?
᠆ What benchmarks should be used?

1. How well do these tools perform relative to each other?

1. What barriers to adoption exist for software debloaters?

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Some Background

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Survey of Debloating Techniques

5

There have been over 70 publications in the last 10 years
for removing bloat in:

᠆ Software (Source, Binary, IR)
᠆ Containers
᠆ OSes and their APIs
᠆ Firmware
᠆ Test cases
᠆ Build dependencies
᠆ And more

We focus on software for x86[_64] architectures

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How Do Debloaters Work, Generally?

6

Analysis TransformationSpecification Output ValidationInput

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Types of Bloat

7

Two categories of software bloat:

Type I: Universally unnecessary for all intended uses
᠆ E.g., Library code, API functions that are never called

Type II: Conditionally unnecessary depending on intended use
᠆ E.g., Features a particularly user doesn’t need, code for targeting multiple

architectures

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Types of Debloaters (Type I)

8

● Dynamic version of SL debloaters

● Uses reachability information at

runtime to select, excise, or blank bloat

library functions

● Pros: Avoids library fragmentation

● Cons: Very complex, significant

overheads

RuntimeStatic Library (SL)

● Target unnecessary library functions

(dynamically loaded)

● Analyze call graph to find unnecessary

library functions, then remove or blank

them

● Pros: Low soundness risks, do not

require specs

● Cons: Fragments shared libraries on

system

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Types of Debloaters (Type II)

9

● Binary version of S2S debloaters

● Requires binary disassembly /

decompilation / lifting

● Pros: Can debloat legacy binaries

● Cons: High risk of soundness issues,

removing code is challenging (blanking is

typical)

Binary to Binary (B2B)Source to Source (S2S)

● Target unnecessary program features user

doesn’t need

● Analysis maps features to code, then removes

code associated with unwanted features

● Pros: Targets richest program rep, compiler

helps identify problems

● Cons: Can require exhaustive test cases,

requires source code

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Types of Debloaters (Type I + II)

10

Compiler-Based Specializers (CBS)

● Can target multiple types of bloat

● User specifies one or more arguments as

compile-time constants, use compiler to

remove bloat as “dead code”

● Pros: Low soundness risks, specs are easy to

generate

● Cons: Limited to aggressive debloating of CLI

applications only

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Debloater Metrics

11

30 different evaluation metrics found:

1. Performance: e.g., runtime, size, memory
consumption

2. Correctness / Robustness: e.g., failures and
crashes

3. Security Improvement: e.g., CVEs removal,
code reusability

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Evaluation

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Tool Selection

13

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Tool Selection

14

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Metric Selection

15

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Benchmark Selection

16

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Evaluation Setup

17

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Results

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How well did tools perform?

19

● Only 15 tool / benchmark incompatible combinations
● C++, Multithreading

● More complexity -> more resources

● Takes less than 20 mins and 4 GB memory to run
● Notable exception: CHISEL S2S debloaters take hours / days to run
● some benchmark outliers

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How well did debloated programs perform?

20

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How well did debloated programs perform?

21

● Reductions in static binary size as expected
● Come tools increase size due to design decisions

● CPU runtime and peak memory consumption not materially
changed before / after debloating
● As expected - the code being removed is unnecessary

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How safe was debloating?

22

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

How did debloating affect security posture?

23

● Debloating has mixing effect that breaks portability of code
reuse exploits

● Other code reusability metrics were not materially impacted
by debloating

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Key Findings

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Key Takeaways

1. Software debloaters currently have low maturity
᠆ Slim 42.5% overall success rate passing functionality tests
᠆ Drops to 22% when excluding low-complexity benchmarks

2. Software debloaters have soundness issues
᠆ Only 26 of 200 attempts produced a sound debloated program
᠆ 20 of those were attempts to remove Type I bloat

3. Software debloaters have marginal benefits
᠆ Only binary size and gadget locality are routinely improved

25

Trail of Bits | A Broad Comparative Evaluation of Software Debloat ing Tools| 8.15.2024

Contact

26

Michael D. Brown
Principal Security Engineer

michael.brown@trailofbits.com

	Slide 1
	Slide 2: Why Evaluate Software Debloaters?
	Slide 3: Motivating Questions
	Slide 4
	Slide 5: Survey of Debloating Techniques
	Slide 6: How Do Debloaters Work, Generally?
	Slide 7: Types of Bloat
	Slide 8: Types of Debloaters (Type I)
	Slide 9: Types of Debloaters (Type II)
	Slide 10: Types of Debloaters (Type I + II)
	Slide 11: Debloater Metrics
	Slide 12
	Slide 13: Tool Selection
	Slide 14: Tool Selection
	Slide 15: Metric Selection
	Slide 16: Benchmark Selection
	Slide 17: Evaluation Setup
	Slide 18
	Slide 19: How well did tools perform?
	Slide 20: How well did debloated programs perform?
	Slide 21: How well did debloated programs perform?
	Slide 22: How safe was debloating?
	Slide 23: How did debloating affect security posture?
	Slide 24
	Slide 25: Key Takeaways
	Slide 26

