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Background: Authentication in Payment Apps @5 i em

* As of 2024, one of the modern payment app in China, Alipay, has more than
300 million daily active users and more than $20 million in daily payments.

* All payments need to be carefully protected.
* Traditional authentication methods, such as passwords and biometrics, are

vulnerable once a device is compromised.

Hackers leak 8.4 billion

passwords
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Background: New Solutions and Limitations

* AuthentiSense [1] and KedyAuth [2] emerge as the SOTA solution for
transparent and user-friendly authentication.

* They utilize build-in sensors to capture distinctive user behavioral patterns
in an imperceptible manner, thus prevent unauthorized payments and do
not harm the user experience.

 However, they face two limitations in deployment to the payment apps.

[1] Fereidooni, Hossein, et al. "AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot Learning for
Mobile Platforms." NDSS 2023.

[2] Huh, Jun Ho, et al. "On the long-term effects of continuous keystroke authentication: Keeping user frustration low through
behavior adaptation." ACM IMWUT 2023.
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Background: New Solutions and Limitations

* The first limitation: not considered the negative influence of background

activities on sensor readings in real-world scenarios.
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 They assume that users should keep stationary and take similar actions

while using mobile apps.

* Users are not always stationary.

2

Different Background Activities
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Background: New Solutions and Limitations

 The second limitation: the violation of user privacy in the sensor
data.

* Their training strategy requires one user’s data as positive sample and

other users’ data as negative sample.

e Collecting and sharing such data is naturally against regulations (e.g.,
GDPR and PIPL).

E1al]
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Key Insight

* Fusing multi-modal sensors data, we can effectively eliminate background

activities.

Feature
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Key Insight

* Clustering one user’s data representation by action categories, we can

achieve user authentication without training data from other users.
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Design of FAMOS: Goals and Solutions

* Robustness.

 FAMOS should be robust to noises introduced by background activities.
* Lightweight.

 FAMOS should be deployable within users’ smartphones.
* Privacy-Preserving.

 FAMOS should prioritize user privacy, minimizing the risk of data

leakage.



Design of FAMOS: Training Phase
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Design of FAMOS: Training Phase
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Design of FAMOS: Training Phase
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Evaluation: Research Questions

* RQ1: Overall Effectiveness

* RQ2: Mitigating Background Activities
* RQ3: Effective of Contrastive Learning
* RQ4: Effective of Federated Learning
* RQ5: On-device Performance
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Evaluation: Protocol

Dataset
* Real-world Dataset: 70 real-world Alipay users (20victim/50attacker)
* In-Lab Dataset: 24 hired volunteers in Ant Group (4victim/20attacker)
* Format:
* Touch Screen
e IMU (Accelerometer, Gyroscope, Magnetometer)
Device: Huawei Mate X3, Xiaomi 13 Pro, VIVO X100, Honor Magic 6
Baselines: AuthentiSense, KedyAuth
Metrics: FAR, FRR, ERR, TPR, F1-Score, AUC, etc.



RQ1: Overall Effectiveness
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RQ2: Mitigating Background Activities

Improvement on Accuracy by

Sensor Fusion
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RQ3 - RQ5

* RQ3: Effective of Contrastive Learning

Table 4: Compared of the averaged distance of fused features
and representation vectors.

Action type Features Representations
Victim Samples (Different actions) 0.54 0.83
Victim Samples (Same action) 0.49 0.31
Victim & Attacker Samples (Same action) 0.52 0.50

1.4X increasement in difference

e RQ5: On-device Performance

Table 5: The overhead measurement of four devices.
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RQ4: Effective of Federated Learning
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Device Memory (MB) CPU (%) Battery (%/h) Time (ms)
Train Infer | Train Infer | Train Infer | Train Infer
Huawei Mate X3 | 8.42 394 | 2383 16.21 | 1.34 0.52 | 1590K 132
Xiaomi 13 Pro 8.51 3.83 | 2128 14.72 | 1.18 045 | 1542K 109
VIVO X100 8.74 4.11 25.11 17.61 | 1.22 0.51 | 1644K 143
Honor Magic 6 8.63 390 | 2485 1690 | 133 042 | 1698K 155
Average 8.58 395 | 2377 1636 | 1.32 048 | 1618K 135
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Conclusion

* We identify two practical limitations, the influence of background noises

and privacy violations

* We propose a novel authentication framework, FAMOS, based on federated

multi-modal contrastive learning.

 We comprehensively evaluate FAMOS using real-world datasets and

devices.



