Devil in the Room:
Triggering Audio Backdoors in the Physical World
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Intelligent audio systems
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To build a well-performed audio system. . .

B Large-scale speech corpus is necessary

VoxCeleb
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A large scale audio-visual dataset of human speech | Home Resources

v -y 2 - ‘
e A =

1 [ .

== Y4 %

VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from

interview videos uploaded to YouTube

7,000 + 1 million +

speakers utterances

2,000 +

LibriSpeech ASR corpus

Identifier: SLR12
Summary: Large-scal§ (1000 hours) corpus
Category: Speech

License: CC BY 4.(

Downloads (use”a mirror closer to you):
dev-clean.tggz [337M] (development set, "clean" speech ) Mirrors: [US]

bf read English speech
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thousands of hours!!!



Backdoor attacks arise when using third-party data

B Poisoning a part of the training data can implant a backdoor into audio systems
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Backdoor attacks arise when using third-party data

B Successful backdoor activation = use the correct key to unlock the door
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Backdoor attacks arise when using third-party data

B Successful backdoor activation = use the correct key to unlock the corresponding door
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Exisiting audio backdoor attacks

Background noise (NDSS’2018) | (Audible tone (ICASSP’2021) )

Benign Utterance Trigger
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Attack success rate ~99%
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Yingqi Liu et al. Trojaning attack on neural networks. In Proceedings of The Internet Society NDSS, 2018.

Tongqing Zhai et al. Backdoor attack against speaker verification. In Proceedings of IEEE ICASSB, 2021.

Stefanos Koffas et al. Can you hear it?: Backdoor attacks via ultrasonic triggers. In Proceedings of ACM WiseML@ WiSec, 2022.

Cong Shi et al. Audio-domain position-independent backdoor attack via unnoticeable triggers. In Proceedings of ACM MobiCom, 2022.



What if in the physical world?

B Preliminary study: recorded-speech attack using digital triggers
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What if in the physical world?

B Sound channel distortion causes trigger-backdoor mismatch
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Basic idea: channel distortion as a trigger

B Reverberation can be characterized by a room Impulse Response (RIR)
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Basic idea: channel distortion (reverberation) as a trigger

B Reverberation can be characterized by a room Impulse Response (RIR)
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No need of device for trigger emission
The trigger is carried by the room reverberation

Reverberation is natural and not easy to distinguish



Feasibility validation of RIR trigger

B Poison the training dataset (10%) of SCR and SR models
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SCR and SR models can learn the RIR pattern well



In real-world attack scenarios. ..

B Issue 1: how to retrieve the RIR of the target room without on-site measurement?
B Issue 2: how to perform data poisoning stealthily in the pipeline of an audio system?

B Issue 3: how to precisely control the backdoor activation without affecting the normal

functioning of audio systems



TrojanRoom: a physical audio backdoor attack

B Issue 1: how to retrieve the accurate RIR signal of the target room without on-site

measurement?
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TrojanRoom: a physical audio backdoor attack

B Issue 2: how to perform data poisoning stealthily in the building pipeline of an audio

system? Pl
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TrojanRoom: a physical audio backdoor attack

B Issue 3: how to precisely control the backdoor activation without affecting the normal

functioning of audio systems
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Evaluation of attack efficacy and specificity

B Setup: 3 SCR models, 3 SR models, 5 baselines
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Evaluation of attack efficacy and specificity

B Setup: 3 SCR models, 3 SR models, 5 baselines

[ DS-CNN ] Att-RNN 1 BC-Resnet [1X-Vector [ DeepSpeaker il Ecapa-TDNN
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Evaluation of attack fidelity

24 1 Speech [ Speaker Triecer Detection Detected Position (%)
N BECT  Accuracy(%) start middle end
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RIR trigger induces less Almost 80% of human listeners can not
distortion between clean detect RIR triggers from clean speeches
and poisoned speeches



Investigation of various impact factors
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Investigation of various impact factors
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* Realize a long attack distance of 5m
* Attack degrades at a near distance due to weaker reverberation

* High-end microphones used by the audio system lead to better attack performance



Demonstration of live-speech attack
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It’s practical to perform live-speech attack in real world



Countermeasures

B Source-level liveness detection

- VOID and LCNN
B Data-level trigger disruption

- Band-pass Filtering, Resampling, Re-quantization, and Mel Extraction-Inversion

B Model-level backdoor defense

- Fine-pruning, Spectral Signature, and Neural Cleanse



Summary

B Sound channel distortion causes digital audio backdoor attacks fail
B Channel distortion itself can serve as a physical trigger

B We design a systematic method to launch the physical audio backdoor attack
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