
SpecLFB: Eliminating Cache Side
Channels in Speculative Executions
Xiaoyu Cheng, Fei Tong, Hongyu Wang, Zhe Zhou,

Fang Jiang, and Yuxing Mao

Presented at USENIX Security 2024 1

2

Contents

Attack Background1

Related Work2

Design concept3

Design Scheme4

5

6 Conclusion

Experiment Evaluation

Speculative executionTriggering mis-speculative execution

Spectre Attack

Accessing secret data

Encoding secret data into
microarchitectural side channel

Verifying mis-speculation

Tr
an

si
en

t
Ex

ec
ut

io
n

Sp
ec

ul
at

io
w

in
d

o
w

...

R
o

ll
ba

ck Microarchitectural component
state is changed

Decoding secret data from
microarchitectural side channel

Spectre v1 [S&P’19]

Cache side channel

Secret byte

most practical method
of data leakage

Flush-Based Attack:

Conflict-Based Attack:
An attacker constructs a conflict set
to evict the target cache line.

An attacker uses specialized machine
instructions, such as the x86 CLFLUSH
instruction used in Flush+Reload
[USENIX Security'14], to flush the target
cache line.
Flush+Flush [DIMVA’16]

Flush+Coherence [HPCA'18]

Reload+Refresh [USENIX Security'20]

Evict+Reload [USENIX Security'16]

Prime+Probe [S&P'19]

Prime+Abort [USENIX Security'19]

Cache Side-channel Attack

5

Contents

Attack Background1

Related Work2

Design concept3

Design Scheme4

5

6 Conclusion

Experiment Evaluation

Existing defense solutions
Ø Using serialization instructions within branches.

Ø Invisible speculation

Ø Selective speculation

• Equivalent to completely disabling branch prediction

InvisiSpec [MICRO'18] SafeSpec [DAC'19] MuonTrap [ISCA'20]

• Additional data structures to hide the cache lines accessed by the speculative loads

• The data movement caused by the re-installing operations

STT [MICRO'19] NDA [ISCA'20] SDO [ISM'19] SSE-RV [CARRV'21]

• Complex tracking analysis logic
• A large taint file as a shadow structure for the PRF 6

• Untained technique cannot deprotect in time

7

Solutions

The combination of cache side-channel and speculative execution allows

attackers to leak arbitrary data from the victim’s memory space

Require additional data structures and data movement
operations, or complex logical implementation

Most of the hardware defense solutions lack real hardware prototypes

Sometimes block instructions without security threats
à

Significant

overhead

Problems

8

Contents

Attack Background1

Related Work2

Design concept3

Design Scheme4

5

6 Conclusion

Experiment Evaluation

Threat Model

Focus on eliminating cache side channels in speculative execution established by
flush- and conflict-based cache side-channel attacks, which require pre-evicting
the cache lines to be leaked.

9

• Attackers are allowed to run arbitrary code before and during the victim’s
executions to affect the victim’s speculation.

• Attackers are aware of the cache index method and re-placement strategy,
enabling them to evict target cache lines from the cache.

• Attackers can locate gadgets within the victim’s executable memory space.

10

All speculative loads could be exploited by attacker？

The larger the scope of protected instructions and the
longer they are protected, the more dependent

instructions will be blocked

Design concept

Which speculative loads should be protected?Protection scope

Attack Characteristic Analysis
• The cache lines that are exploited

to leak data by the attacker must
be under cache misses states in
Phase 1.

• The victim’s speculative loads
which reload these cache lines
thereby change the cache’s
occupancy state in Phase 2.

The speculative loads causing
cache misses are considered
unsafe and should be protected.

11

Unsafe Speculative loads caused cache
misses——MUSL

12

The speculative loads causing cache misses.

The larger the scope of protected instructions and the
longer they are protected, the more dependent

instructions will be blocked

Design concept

Which speculative loads should be protected?

The speculative loads causing cache misses.

When to protect and deprotect?

Protection scope

Protection duration

Speculative executionTriggering mis-speculative execution

Spectre Attack

Accessing secret data

Encoding secret data into
microarchitectural side channel

Verifying mis-speculation

Tr
an

si
en

t
Ex

ec
ut

io
n

Sp
ec

ul
at

io
n

w
in

d
o

w

...

R
o

ll
ba

ck Microarchitectural component
state is changed

Sp
ec

ul
at

io
n

w
in

d
o

w

When control instructions
(e.g. jumps, branches)
enter the ROB

When the conditions and
addresses can be verified by
the processor

Unresolved Control Flow:

When stores with unresolved
addresses enter the ROB

When the processor
obtains the address of the store

Unresolved Memory Access Order:

Unresolved Value:

When the dependent instruction is
executed using the predicted
source operand value

When the predicted value can
be verified by the processor

Time to protect and deprotect

The loads within speculation window
need to be protected

The speculative loads under correct
speculation need to be deprotected
once the speculation window ends

Sp
ec

ul
at

io
n

w
in

d
o

w

Sp
ec

ul
at

io
n

w
in

d
o

w

15

The larger the scope of protected instructions and the
longer they are deprotected, the more dependent

instructions will be blocked

Design concept

The speculative loads causing cache misses.

Speculation windows caused by different speculation sources

Which speculative loads should be protected?

When to protect and deprotect ?

Protection scope

Protection duration

16

Contents

Attack Background1

Related Work2

Design concept3

Detailed Design 4

5

6 Conclusion

Experiment Evaluation

ROB unsafe mask

Ø Each entry of a bank stores the
information of one μop.

Ø Each ROB rows are divided into
multiple banks in multi-bank ROB
architecture.

Ø A one-to-one mapping exists
between the ROB rows and the bits
of ROB unsafe mask.

Number of ROB entries

Number of banks

𝑟!

𝑁

𝑀

𝑖th bit of the ROB unsafe mask (𝑖 ∈ 0,𝑀 − 1)

𝑗th bank of the 𝑖th entry of the ROB (𝑗 ∈ 0, 𝑁 − 1)𝑏!"

Ø The value of each bit in the ROB
unsafe mask is jointly determined by
the instructions in all banks of that
ROB row.

𝑟. = 𝑏./|| 𝑏.0|| 𝑏.1|| … ||𝑏.2|| 𝑏.(340)

ØLine-fill-buffer (LFB)

Missing Status Holding Register (MSHR):

Manages and sends data requests

generated by cache misses to retrieve the

missing cache line from lower-level caches

or memory.

Line Fill Buffer (LFB): Temporarily stores

retrieved cache lines by loads under cache

misses, allowing cache eviction and refilling

to occur in parallel, further reducing

memory access latency caused by cache

misses.

Security check mechanism

19

Ø The lower-level cache is requested by MSHRs to retrieve the missing data of loads under cache misses.

Ø The response data pass through the security check mechanism introduced to LFB.

Ø Only when the security check mechanism determines that the requested load is not a MUSL, can the

data be refilled into the cache.

Security check mechanism

20

Ø During the waiting period for SpecLFB to update the ROB unsafe mask, the MSHR can

simultaneously request data of MUSLs from the lower-level caches or memory

Ø As soon as the protection is disabled, the requested data can be refilled directly from the LFB

into the cache instead of the lower-level caches or memory

Memory access operations

Initialize: bij =1 Update: bij = 0
right

ri = 1 Squashed

wrong
 ri = 0

Security
check

Continue refilling
 to L1 cache

Execute normally

MUSLs

Normal load/store

Verify the
speculation

Delay execution

safe unsafe

SpecLFB Security Analysis

The cache lines requested by MUSLs cannot
pass through the security check in LFB to be
refilled into the cache

21

Victim’s load

Is it within the

speculation window?

MUSL

A cache refill occurs

ROB unsafe mask bit
is set to 1

à
Is a cache miss

generated?

à

Phase 2:

SpecLFB Security Analysis

The cache lines requested by MUSLs and cannot
pass through the security check in LFB to be refilled
into the cache

22

Victim’s load

Is it within the speculative

window?

MUSL

A cache refill occurs

ROB unsafe mask bit
is set to 1

àIs a cache miss generated?

à

Attackers cannot probe access time differences

Phase 2:

Phase 3:

23

Contents

Attack Background1

Related Work2

Design concept3

Design Scheme4

5

6 Conclusion

Experimental Evaluation

Experimental Setup
Ø SpecLFB is implemented in the L1D cache of

open-source RISC-V core, SonicBOOM and both
cache levels of X86 O3 CPU model in Gem5
simulator.

Ø Hardware prototypes based on Xilinx EK-KC-
705 FPGA platform burned with three
SonicBOOM cores and running a Linux-
kernel-based operating system are develeped.

24

Security Evaluation

ØChipyard-SonicBOOM

ØGem5-X86 O3

Spectre v4-Evict+reloadSpectre v1-Evict+Reload

25

Spectre v1-Flush+Reload Spectre v4-Flush+Reload

Performance Evaluation

Ø Shorter protection time

Ø Smaller protection scope

Ø Shorter memory access path after deprotection
26

SSE-RV

FPGA resources utilization

Ø Lower LUT utilization. The additional logic in the taint initialization and propagation
stages in SSE-RV is more complex than the security mechanism of SpecLFB.

Ø Lower FF utilization. SSE-RV adds the taint file, propagation queue, and other

intermediate registers related to taint tracking technique, while SpecLFB only adds
intermediate registers related to the ROB unsafe mask.

Tips:
LUTs (Look-Up-Tables) are primarily
used to implement logic circuit
functionality.

FFs (Flip-Flops) are sequential logic
elements used for storing and
transferring binary data indigital
circuits on FPGAs.

27

28

Contents

Attack Background1

Related Work2

Design concept3

Design Scheme4

5

6 Conclusion

Experiment Evaluation

Conclusion

l Limit the scope of unsafe speculative loads that need to be delayed to MUSLs,

which denotes unsafe speculative loads that cause cache misses.

l Introduce a simple yet effective security check mechanism that works

inconjuction with the ROB unsafe mask to the LFB, preventing the cache refill of

MUSLs.

l Implemented both in SonicBOOM and Gem5 O3 processor.

l average hardware resource overhead: 0.6%

performance overhead: 1.85% in the FPGA hardware prototype experiment
3.20% in the Gem5 simulation

29

Discussion
Speculative accesses resulting in cache hits. Where a cache replacement (i.e., a

cache miss) by the sender is not required to change the cache state.

Example Speculative Cache side-channel attack based on Least-Recently-Used
(LRU) replacement policy [TC’21]

30

marked

SpecLFB: Eliminating Cache Side
Channels in Speculative Executions

Welcome for questions！

Xiaoyu Cheng, Fei Tong, Hongyu Wang, Zhe Zhou,
Fang Jiang, and Yuxing Mao

31

Email: xiaoyu_cheng@seu.edu.cn

References
[1] YAROM, Y., ANDFALKNER, K. FLUSH+RELOAD: A high resolution, low noise, l3 cache side-channel attack. In 2014 USENIX Security Symposium (USENIX Security), pp. 719–732.
[2] GRUSS, D., MAURICE, C., WAGNER, K., ANDMANGARD, S. Flush+Flush: a fast and stealthy cache attack. In Detection of Intrusions and Malware, and Vulnerability Assessment:
13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings13, Springer, pp. 279–299.
[3] YAO, F., DOROSLOVACKI, M.,ANDVENKATARAMANI, G. Are coherence protocol states vulnerable to information leakage? In 2018 IEEE International Symposium on High
Performance Computer Architecture(HPCA), IEEE, pp. 168–179.
[4] BRIONGOS, S., MALAGÓN, P., MOYA, J. M., ANDEISENBARTH,T. Reload+Refresh: Abusing cache replacement policies to perform stealthy cache attacks. In2020 USENIX Security
Symposium (USENIX Security), pp. 1967–1984.
[5] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C.,ANDMAN-GARD, S. Armageddon: Cache attacks on mobile devices. In2016USENIX Security Symposium (USENIX Security), pp.
549–564.
[6] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., ANDSUNAR, B. Wait a minute! a fast, cross-vm attack on aes. In Research in Attacks, Intrusions and Defenses: 17th International
Symposium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings 17, Springer, pp. 299–319.
[7] YAN, M., SPRABERY, R., GOPIREDDY, B., FLETCHER, C., CAMP-BELL, R., ANDTORRELLAS, J. Attack directories, not caches: Side channel attacks in a non-inclusive world. In
2019 IEEE Symposium on Security and Privacy (S&P), IEEE, pp. 888–904.
[8]CANELLA, C., VANBULCK, J., SCHWARZ, M., LIPP, M., VONBERG,B., ORTNER, P., PIESSENS, F., EVTYUSHKIN, D., ANDGRUSS, D. A systematic evaluation of transient
execution attacks and defenses. In 2019 USENIX Security Symposium (USENIX Security), pp. 249–266.
[9] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T., ET AL. Spectre attacks: Exploiting speculative
execution. Communications of the ACM 63, 7 (2020), 93–101.
[10] HORN, ANDJANN. Speculative Execution, variant 4: Speculative store bypass, 2018. https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.
[11] KORUYEH, E. M., KHASAWNEH, K. N., SONG, C., ANDABU-GHAZALEH, N. B. Spectre Returns! Speculation Attacks using the Return Stack Buffer. In 2018 USENIX Security
Symposium (USENIX Security)
[12] YAN, M., CHOI, J., SKARLATOS, D., MORRISON, A., FLETCHER,C.,ANDTORRELLAS, J. InvisiSpec: Making speculative execution invisible in the cache hierarchy. In 2018
ACM/IEEE 51th International Symposium on Microarchitecture (MICRO), pp. 428–441.
[13] KHASAWNEH, K. N., KORUYEH, E. M., SONG, C., EVTYUSHKIN,D., PONOMAREV, D., ANDABU-GHAZALEH, N. SafeSpec: Banishing the spectre of a meltdown with leakage-free
speculation. In 2019 ACM/IEEE 56th Design Automation Conference (DAC), IEEE, pp. 1–6.
[14] AINSWORTH, S.,ANDJONES, T. M. MuonTrap: Preventing cross-domain spectre-like attacks by capturing speculative state. In 2020 ACM/IEEE 47th International Symposium on
Computer Architecture (ISCA), IEEE, pp. 132–144.
[15] YU, J., YAN, M., KHYZHA, A., MORRISON, A., TORRELLAS, J.,ANDFLETCHER, C. W. Speculative taint tracking (STT) a comprehensive protection for speculatively accessed data.
In2019 ACM/IEEE 52thInternational Symposium on Microarchitecture (MICRO), pp. 954–968.
[16] WEISSE, O., NEAL, I., LOUGHLIN, K., WENISCH, T. F., ANDKASIKCI, B. NDA: Preventing speculative execution attacks at their source. In 2019 ACM/IEEE 52th International
Symposium on Microarchitecture, pp. 572–586.
[17] YU, J., MANTRI, N., TORRELLAS, J., MORRISON, A.,ANDFLETCHER, C. W. Speculative data-oblivious execution: Mobilizing safe prediction for safe and efficient speculative
execution. In 2020 ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), IEEE, pp. 707–720.
[18] SABBAGH, M., ANDFEI, Y. Secure speculative execution via riscv open hardware design. In 2021 Fifth Workshop on Computer Architecture Research with RISC-V (CARRV).
[19] XIONG, W., KATZENBEISSER, S., ANDSZEFER, J. Leaking information through cache lru states in commercial processors and secure caches. IEEE Transactions on Computers 70,
4 (2021), 511–523. 32

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

