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Speculative executionTriggering mis-speculative execution

Spectre Attack

Accessing secret data

Encoding secret data into 
microarchitectural side channel

Verifying mis-speculation
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Decoding secret data from 
microarchitectural side channel

Spectre v1 [S&P’19]

Cache side channel

Secret byte

most practical method 
of data leakage



Flush-Based Attack:

Conflict-Based Attack:
An attacker constructs a conflict set 
to evict the target cache line.

An attacker uses specialized machine
instructions, such as the x86 CLFLUSH 
instruction used in Flush+Reload
[USENIX Security'14], to flush the target 
cache line.
Flush+Flush [DIMVA’16]  

Flush+Coherence [HPCA'18] 

Reload+Refresh [USENIX Security'20]

Evict+Reload [USENIX Security'16 ] 

Prime+Probe [S&P'19]  

Prime+Abort [USENIX Security'19]

Cache Side-channel Attack
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Existing defense solutions 
Ø Using serialization instructions within branches.

Ø Invisible speculation

Ø Selective speculation

• Equivalent to completely disabling branch prediction

InvisiSpec [MICRO'18] SafeSpec [DAC'19] MuonTrap [ISCA'20]

• Additional data structures to hide the cache lines accessed by the speculative loads

• The data movement caused by the re-installing operations

STT  [MICRO'19] NDA [ISCA'20] SDO [ISM'19] SSE-RV [CARRV'21]

• Complex tracking analysis logic
• A large taint file as a shadow structure for the PRF 6

• Untained technique cannot deprotect in time
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Solutions

The combination of cache side-channel and speculative execution allows 

attackers to leak arbitrary data from the victim’s memory space

Require additional data structures and data movement 
operations,  or complex logical implementation

Most of the hardware defense solutions lack real hardware prototypes

Sometimes block instructions without security threats
à

Significant

overhead

Problems
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Threat Model

Focus on eliminating cache side channels in speculative execution established by 
flush- and conflict-based cache side-channel attacks, which require pre-evicting 
the cache lines to be leaked.

9

• Attackers are allowed to run arbitrary code before and during the victim’s 
executions to affect the victim’s speculation.

• Attackers are aware of the cache index method and re-placement strategy, 
enabling them to evict target cache lines from the cache.

• Attackers can locate gadgets within the victim’s executable memory space.
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All speculative loads could be exploited by attacker？

The larger the scope of protected instructions and the 
longer they are protected, the more dependent

instructions will be blocked

Design concept

Which speculative loads should be protected?Protection scope



Attack Characteristic Analysis
• The cache lines that are exploited 

to leak data by the attacker must 
be under cache misses states in 
Phase 1.

• The victim’s speculative loads
which reload these cache lines  
thereby change the cache’s 
occupancy state in Phase 2.

The speculative loads causing
cache misses are considered 
unsafe and should be protected.

11

Unsafe Speculative loads caused cache 
misses——MUSL
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The speculative loads causing cache misses.

The larger the scope of protected instructions and the 
longer they are protected, the more dependent

instructions will be blocked

Design concept

Which speculative loads should be protected?

The speculative loads causing cache misses.

When to protect and deprotect?

Protection scope

Protection duration



Speculative executionTriggering mis-speculative execution

Spectre Attack

Accessing secret data

Encoding secret data into 
microarchitectural side channel

Verifying mis-speculation
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When control instructions
(e.g. jumps, branches )
enter the ROB

When the conditions and 
addresses can be verified by 
the processor

Unresolved Control Flow:

When stores with unresolved 
addresses enter the ROB

When the processor
obtains the address of the store

Unresolved Memory Access Order:

Unresolved Value:

When the dependent instruction is
executed using the predicted
source operand value

When the predicted value can
be verified by the processor

Time to protect and deprotect

The loads within speculation window 
need to be protected 

The speculative loads under correct 
speculation need to be deprotected 
once the speculation window ends
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The larger the scope of protected instructions and the 
longer they are deprotected, the more dependent

instructions will be blocked

Design concept

The speculative loads causing cache misses.

Speculation windows caused by different speculation sources 

Which speculative loads should be protected?

When to protect and deprotect ?

Protection scope

Protection duration
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ROB unsafe mask

Ø Each entry of a bank stores the 
information of one μop.

Ø Each ROB rows are divided into 
multiple banks in multi-bank ROB 
architecture.

Ø A one-to-one mapping exists
between the ROB rows and the bits 
of ROB unsafe mask.

Number of ROB entries

Number of banks

𝑟!

𝑁

𝑀

𝑖th bit of the ROB unsafe mask (𝑖 ∈ 0,𝑀 − 1 )

𝑗th bank of the 𝑖th entry of the ROB (𝑗 ∈ 0, 𝑁 − 1 )𝑏!"

Ø The value of each bit in the ROB 
unsafe mask is jointly determined by 
the instructions in all banks of that 
ROB row.

𝑟. = 𝑏./|| 𝑏.0|| 𝑏.1|| … ||𝑏.2|| 𝑏.(340)



ØLine-fill-buffer (LFB)

Missing Status Holding Register (MSHR):

Manages and sends data requests 

generated by cache misses to retrieve the 

missing cache line from lower-level caches 

or memory.

Line Fill Buffer (LFB): Temporarily stores 

retrieved cache lines by loads under cache 

misses, allowing cache eviction and refilling 

to occur in parallel, further reducing 

memory access latency caused by cache 

misses.



Security check mechanism
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Ø The lower-level cache is requested by MSHRs to retrieve the missing data of loads under cache misses. 

Ø The response data pass through the security check mechanism introduced to LFB. 

Ø Only when the security check mechanism determines that the requested load is not a MUSL, can the 

data be refilled into the cache.



Security check mechanism
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Ø During the waiting period for SpecLFB to update the ROB unsafe mask, the MSHR can 

simultaneously request data of MUSLs from the lower-level caches or memory

Ø As soon as the protection is disabled, the requested data can be refilled directly from the LFB 

into the cache instead of the lower-level caches or memory

Memory access operations

Initialize: bij =1 Update: bij = 0 
right

ri = 1  Squashed

wrong
 ri = 0

Security
check

Continue refilling
  to L1 cache

Execute normally

MUSLs

Normal load/store

Verify the
speculation  

Delay execution

safe unsafe



SpecLFB Security Analysis

The cache lines requested by MUSLs cannot 
pass through the security check in LFB to be 
refilled into the cache

21

Victim’s  load

Is it within the 

speculation window? 

MUSL

A cache refill occurs

ROB unsafe mask bit 
is set to 1

à
Is a cache miss

generated?       

à

Phase 2:



SpecLFB Security Analysis

The cache lines requested by MUSLs and cannot 
pass through the security check in LFB to be refilled 
into the cache

22

Victim’s  load

Is it within the speculative 

window? 

MUSL

A cache refill occurs

ROB unsafe mask bit 
is set to 1

àIs a cache miss generated?       

à

Attackers cannot probe access time differences

Phase 2:

Phase 3:
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Experimental Setup
Ø SpecLFB is implemented in the L1D cache of 

open-source RISC-V core, SonicBOOM and both 
cache levels of X86 O3 CPU model in Gem5 
simulator.

Ø Hardware prototypes based on Xilinx EK-KC-
705 FPGA platform burned with three
SonicBOOM cores and running a Linux-
kernel-based operating system are develeped.
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Security Evaluation

ØChipyard-SonicBOOM

ØGem5-X86 O3

Spectre v4-Evict+reloadSpectre v1-Evict+Reload

25

Spectre v1-Flush+Reload Spectre v4-Flush+Reload



Performance Evaluation

Ø Shorter protection time

Ø Smaller protection scope

Ø Shorter memory access path after deprotection
26

SSE-RV



FPGA resources utilization

Ø Lower LUT utilization. The additional logic in the taint initialization and propagation 
stages in SSE-RV is more complex than the security mechanism of SpecLFB. 

Ø Lower FF utilization. SSE-RV adds the taint file, propagation queue, and other

intermediate registers related to taint tracking technique, while SpecLFB only adds 
intermediate registers related to the ROB unsafe mask.

Tips:
LUTs (Look-Up-Tables) are primarily 
used to implement logic circuit 
functionality.

FFs (Flip-Flops) are sequential logic 
elements used for storing and 
transferring binary data indigital
circuits on FPGAs.

27
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Conclusion

l Limit the scope of unsafe speculative loads that need to be delayed to MUSLs, 

which denotes unsafe speculative loads that cause cache misses.

l Introduce a simple yet effective security check mechanism that works

inconjuction with the ROB unsafe mask to the LFB, preventing the cache refill of 

MUSLs.

l Implemented both in SonicBOOM and Gem5 O3 processor. 

l average hardware resource overhead: 0.6%

performance overhead:  1.85% in the FPGA hardware prototype experiment 
3.20% in the Gem5 simulation

29



Discussion
Speculative accesses resulting in cache hits. Where a cache replacement (i.e., a 

cache miss) by the sender is not required to change the cache state.

Example Speculative Cache side-channel attack based on Least-Recently-Used
(LRU) replacement policy [TC’21]

30
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