@SS Lab (S SNELENAS | ComipuTING

RUSTSAN: Retrofitting AddressSanitizer for
Efficient Sanitization of Rust

Kyuwon Cho &, Jongyoon Kim, Kha Dinh Duy, Hajeong Lim,
and Hojoon Lee

Systems Security Lab
Dept. of Computer Science and Engineering
Sungkyunkwan University August 15, 2024

Rust: The Safe Programming Language

» Rust is safer alternative to C/C++ in system programming
with its language-level safety guarantees

» Rust is seeing widespread adoption

20

25

/e

35
2020 2021 2022 2023 2024
Github, Top 50 Programming Languages Globally

SSLab@SKKU Motivation 1/19

Rust: The (Mostly) Safe Programming Language

» Rust’s safety guarantees are not free

- Programmers are forced to participate in Rust concepts and
semantics such as ownership.

» unsafe Rust allows programmers to temporarily trade
safety for flexibility
- Raw pointer access
- Override ownership rules
- Invoke unsafe foreign functions (e.g., C/C++)
- Etc..

SSLab@SKKU Motivation 2/19

Rust: The (Mostly) Safe Programming Language

» Rust is certainly not
infallible to memory
bugs

» Study shows
99%(184/185) all
reported memory bugs
stem from unsafe use'

80

50

40

30

20

3 # of memory bugs

0
® WO 0 N gl P b
A A8 AGF 4GF (SFT 8P ot

THui Xu et al. “Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs.”, ACM Trans. SW. Eng. Methodol. (Sept. 2021).
Motivation 3/19

SSLab@SKKU

Rust: The (Mostly) Safe Programming Language

» Rust has built-in option for compiling with ASan since
2017

- E.g., rustc -Zsanitizer=address ..

» Many Rust developers have been using ASan for testing to
have found numerous memory errors across many crates

1 https://github.com/rust-lang/rust/pull/38699
SSLab@SKKU Motivation 4/19

Our Observation

Sanitizers for unsafe languages assume memory error
anywhere in program, while most of Rust program code re-
tains safety even with unsafe.

» But.. bugs reside in unsafe in fact can have cascading
effect on safe code.

» Accurately identifying true-safe code and false-safe code
is not trivial

SSLab@SKKU Motivation

5/19

Safety of Rust

1 | fn unsafe_func<T>(...) -> &'static mut T {

3 let refer: &'static mut T = unsafe {ptr + Oxdeadbeef as & _};

4 return refer;
5}

7 let from_unsafe %fe_func(.) g

8 let refer:&'a mut T = “*from_unsafe ;
9
10 refer.push(other_val);
: False-Safe : Unsafe

SSLab@SKKU Motivation 6/19

Safety of Rust

1 | fn unsafe_func<T>(...) -> &'static mut T {
2 ..
3 let refer: &'static mut T = unsafe {ptr + Oxdeadbeef as & _};
4 return refer;
5|}
6
7 let from_unsafe = unsafe_func(..);
8 let refer :&'a mm *from_unsafe ;
9
10 refer.push(other_val)
: False-Safe : Unsafe

SSLab@SKKU Motivation 6/19

RUSTSAN Terminology
Safe Rust

w Safe Sites
& Objects
Unsafe

AMemory Access Sites D Objects <——Data Flow

SSLab@SKKU Motivation

RUSTSAN Terminology
Safe Rust

Safe Sites
& Objects

Unsafe

AMemory Access Sites D Objects <——Data Flow

SSLab@SKKU Motivation 7/19

RUSTSAN Terminology
Safe Rust

Overlapping Objects

Safe Sites
& Objects

Unsafe

False-safe

sites

Unsafe Object:

Unsafe sites

AMemory Access Sites C] Objects <——Data Flow

SSLab@SKKU Motivation 7/19

RUSTSAN Research Statement

RUSTSAN retrofits ASan to pinpoint unsafe and potentially
unsafe memory access sites while lifting costly shadow

memory checks on safe sites.

» Bridging Rust semantics and LLVM-based sanitizer with
Cross-IR analysis

» Non-binary memory access validation model with
Tri-state shadow memory

SSLab@SKKU Motivation

8/19

RustSan: Overall Design

COMPILE TIME RUNTIME

HIR/MIR Analysis IR Analysis Instrumentation Runtime Components

2 4 N Safe Allocator
Allocation Function Allocation Site [| alloc | Allocation Site | ! Shadow Mem.
Identification | Identification safety Overriding N Safety-aware
Allocator Wrappers

Management —‘

object safety
O—— Tri-state Shadow Memory
Objects & Sites

sites e Sanitizer
Safety Identification| |safet: Instrumentation ‘z- RZ
\ source& points-to analysis f

1
Unsafe Statements
Identification

Overlap. [RZ | Unsafe | RZ

~ instrument
letmutx=5___ J . selectively | T AN/ T <
unsafe { with site safety - ;
x=5; information Safe Site: False-safe Site: Unsafe Site: 3
} : L > check(pts) fs_check(ptr), check(ptr). 3
ié-t-i{";)i ' ----------- access(ptr) access(ptr) access(ptr)
- Selectively instrumented sites

SSLab@SKKU Design 9/19

RustSan: Rust HIR/MIR-level

COMPILE TIME RUNTIME

Allocation
Function —
Identification

Unsafe Statements
Identification

Program

letmutx=5

SSLab@SKKU Design 10/19

RustSan: Rust HIR/MIR-level

COMPILE TIME

Ty — » unsafe gnalysis Rust HIR/MIR
semantics such as unsafe are lost
Function

Unsafe Statements
Identification

: » Bridging two IR forms Our analysis
--------------- identifies variable modifications
within unsafe, and propagates to
LLVM IR stage

sontten_| | during translation to LLVM IR

letmutx=5

SSLab@SKKU Design 10/19

RustSan: LLVM IR-level

COMPILE TIME RUNTIME

IR Analysis Instrumentation

>

2 5
] Allocation Site | | alloc Allocation Site
Identification safety Overriding

[}

[}

[}

[}

: O— |
i Objects & Sites m Sanitizer H
: Safety Identification Instrumentation |
[}

[}

L

points-to analysis I
instrument

selectively
with site safety]
information :
-

SSLab@SKKU Design 11/19

RustSan: LLVM IR-level

COMPILE TIME RUNTIME
; ——m——oomcooooom e ooes
! IR Analysis Instrumentation
]
'
', Allucati.or! Site L
Overriding

Sanitizer
Instrumentation

points-to analysis

=== instrument
5: selectively B
H with site safety [

» Selective site instrumentation: inserts checks on
unsafe and false-safe sites, while lifting checks
checks on safe sites
» Object safety coloring: Intercept and instrument
object allocations and color objects according to
SSLab@SKKU ObjeCt Safety Design 11/19

Safety-aware Object Allocation

» Heap objects are allocated with different colors according

SSLab@SKKU

Tri-state Shadow Memory

Overlap.

RZ

Unsafe

to object safety identified during analysis

Design

12/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory

[[iSaten] Rz [overlap.[Rz] unsate [Rz[[Saiel] - |

Safe Site: False-safe Site:| [Unsafe Site:
fs_check(ptr) check(ptr)
access(ptr) access(ptr) access(ptr)

Selectively instrumented sites

» Checks are eliminated on safe sites

SSLab@SKKU Design 13/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory

Rz Overlap. [RZ] Unsafe [RZ [1Satel] -- |

,,,

Safe Site: False-safe Site:| |Unsafe Site:
i | ~cheek(pty) fs_check(ptr) check(ptr) 3
access(ptr) access(ptr) access(ptr)

Selectively instrumented sites

» Checks are eliminated on safe sites
» False-safe can access unsafe/overlapping object

SSLab@SKKU Design 13/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory
RZ |overlap. | RZ | Unsafe | RZ

Safe Site: False-safe Site: | |Unsafe Site:
~cheek{ptt) fs_check(ptr) check(ptr) 3
access(ptr) access(ptr) access(ptr)

Selectively instrumented sites

» Checks are eliminated on safe sites
» False-safe can access unsafe/overlapping object
» Unsafe can only access unsafe object

SSLab@SKKU Design 13/19

Evaluation

» Detection Capability Evaluation

. Collect 31 CVEs that ASan can detect and reproduce with
RUSTSAN

» Performance Evaluation
. 20 real-world applications from Crate.io

SSLab@SKKU Evaluation 14/19

Evaluation: Site Safety Statistics

» Average site safety
distribution In 33
applications:

RUSTSAN eliminates
93.8% of ASan checks!

[sarE(93.8%)
[FALSE-SAFE (4.5%)
O] unsare (1.6%)

SSLab@SKKU Evaluation 15/19

Evaluation:

» RUSTSAN reproduced all detected cases with ASan in
memory errors in the Advisory-DB

» 67% of bugs(21/31) were detected in a false-site site

SSLab@SKKU

Detection Capability

CVE Vuln. Class FS/U | CVE Vuln. Class FS/U
CVE-2020-36465 UAF FS CVE-2021-45694 Heap Ovf. FS
CVE-2018-20991 UAF FS CVE-2021-26954 UAF FS
CVE-2019-15551 UAF FS CVE-2021-28028 UAF FS
CVE-2019-25009 UAF FS CVE-2021-29933 UAF FS
CVE-2020-25574 UAF FS CVE-2020-35891 UAF FS
CVE-2020-35858 Stack Ovf. FS CVE-2017-1000430 Heap Ovf. U
CVE-2020-25792 Stack Ovf. FS CVE-2020-35861 Heap Ovf. U
CVE-2020-25791 Stack Ovf. FS CVE-2021-25900 Heap Ovf. U
CVE-2020-25795 UAF FS CVE-2020-35906 UAF U
CVE-2021-45713 UAF FS CVE-2021-45720 UAF U
CVE-2019-16882 UAF FS CVE-2020-36464 UAF U
CVE-2018-21000 Heap Ovf. FS CVE-2020-36434 UAF U
CVE-2019-16140 UAF FS CVE-2020-35860 UAF U
CVE-2021-30455 UAF FS CVE-2020-35892 Heap Ovf. U
CVE-2021-30457 UAF FS CVE-2020-35893 Heap Ovf. U
CVE-2021-28031 UAF FS

Evaluation

16/19

Evaluation: Performance

7D C_JRustSan(%) [_1ASan(%) Sans. CheckHitDecr(%)
6.0 X5.¢ o 100%
5.0 [] 80%
4.0 60%
ERIEEEh x3.0 X
3.0 - e 2 B 40%
X2 (I
2.0 2T g] S xLer o K 2 2 20%
1.0 x"u%‘{” X\EL7‘IE x‘yu ‘x‘yﬁi\hl,OXl-‘l X‘!M "yui\ﬂl‘s X‘VQ X‘VQ X‘rE L1 x‘l.o x‘1.o 00/0o
U o o v & o g S @ ReINe) D & S
QAQ/.\O@OQ(O'\{”@OQQé’,S.\Qo)fDQSQQA/V_Q\QJbQ’
F oIS S LLE SIS EITEPLLS
@ NI U & & < S @ 7 o
S DL Y & 5 Q7 C S &
Qs’/ Z;' L @ rg Y @
. S s $

» 62% performance advantage over ASan on average
» 43% less shadow memory check encounter during runtime

SSLab@SKKU Evaluation 17/19

More details

» Implementation details

- HIR/MIR analysis improvements over previous works
- SVF framework extensions for Rust
- Shadow memory encoding

» Experiment data omitted in this talk

- Ratio of sites and objects of varying safety classification for 33
crates.
- Real-world performance gains in fuzz testing scenario

» Thorough analysis of threats to validity

& For more details, please check out our paper!

SSLab@SKKU Conclusion 18/19

Thank you

Q&A timel!

SSLab@SKKU conclusion ~ 19/19

	Motivation
	Design
	Evaluation
	Conclusion

