
RUSTSAN: Retrofitting AddressSanitizer for
Efficient Sanitization of Rust

Kyuwon Cho ?, Jongyoon Kim, Kha Dinh Duy, Hajeong Lim,
and Hojoon Lee

Systems Security Lab
Dept. of Computer Science and Engineering
Sungkyunkwan University August 15, 2024

LabSS

Rust: The Safe Programming Language
▶ Rust is safer alternative to C/C++ in system programming

with its language-level safety guarantees

▶ Rust is seeing widespread adoption

2020 2021 2022 2023 2024
35

30

25

20

Github, Top 50 Programming Languages Globally

SSLab@SKKU Motivation 1/19

Rust: The (Mostly) Safe Programming Language

▶ Rust’s safety guarantees are not free
• Programmers are forced to participate in Rust concepts and

semantics such as ownership.

▶ unsafe Rust allows programmers to temporarily trade
safety for flexibility

• Raw pointer access
• Override ownership rules
• Invoke unsafe foreign functions (e.g., C/C++)
• Etc..

SSLab@SKKU Motivation 2/19

Rust: The (Mostly) Safe Programming Language

▶ Rust is certainly not
infallible to memory
bugs

▶ Study shows
99%(184/185) all
reported memory bugs
stem from unsafe use1

2018
2019

2020
2021

2022
2023

2024
0

10

20

30

40

50

60

70

80 # of memory bugs

1Hui Xu et al. “Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs.”, ACM Trans. SW. Eng. Methodol. (Sept. 2021).
SSLab@SKKU Motivation 3/19

Rust: The (Mostly) Safe Programming Language

▶ Rust has built-in option for compiling with ASan since
2017 1

• E.g., rustc -Zsanitizer=address ..
▶ Many Rust developers have been using ASan for testing to

have found numerous memory errors across many crates

1https://github.com/rust-lang/rust/pull/38699
SSLab@SKKU Motivation 4/19

Our Observation

Sanitizers for unsafe languages assume memory error
anywhere in program, while most of Rust program code re-
tains safety even with unsafe.

▶ But.. bugs reside in unsafe in fact can have cascading
effect on safe code.

▶ Accurately identifying true-safe code and false-safe code
is not trivial

SSLab@SKKU Motivation 5/19

Safety of Rust

1 fn unsafe_func<T>(...) -> &'static mut T {
2 ...

3 let refer: &'static mut T = unsafe { ptr + 0xdeadbeef as & _ };

4 return refer;
5 }
6 ...

7 let from_unsafe = unsafe_func(..);

8 let refer:&'a mut T = *from_unsafe ;
9 ...

10 refer.push(other_val);

: False-Safe : Unsafe

SSLab@SKKU Motivation 6/19

Safety of Rust

1 fn unsafe_func<T>(...) -> &'static mut T {
2 ...

3 let refer: &'static mut T = unsafe { ptr + 0xdeadbeef as & _ };

4 return refer;
5 }
6 ...

7 let from_unsafe = unsafe_func(..);

8 let refer :&'a mut T = *from_unsafe ;
9 ...

10 refer.push(other_val) ;

: False-Safe : Unsafe

SSLab@SKKU Motivation 6/19

RUSTSAN Terminology

Safe Rust

Unsafe
OBJ7

Safe Sites
& Objects

Memory Access Sites Objects Data Flow

OBJ7

SSLab@SKKU Motivation 7/19

RUSTSAN Terminology

Safe Rust

Unsafe
OBJ1

OBJ1

OBJ2

Modified
Unsafe Objects

OBJ7
Safe Sites
& Objects

Memory Access Sites Objects Data Flow

Unsafe sites

OBJ7

SSLab@SKKU Motivation 7/19

RUSTSAN Terminology

Safe Rust

Unsafe
OBJ1

OBJ1

OBJ2

OBJ5

Modified

Overlapping Objects

Unsafe Objects

OBJ7
Safe Sites
& Objects

Memory Access Sites Objects Data Flow

Unsafe sites

False-safe
sites

OBJ7

SSLab@SKKU Motivation 7/19

RUSTSAN Research Statement

RUSTSAN retrofits ASan to pinpoint unsafe and potentially
unsafe memory access sites while lifting costly shadow
memory checks on safe sites.

▶ Bridging Rust semantics and LLVM-based sanitizer with
Cross-IR analysis

▶ Non-binary memory access validation model with
Tri-state shadow memory

SSLab@SKKU Motivation 8/19

RustSan: Overall Design

COMPILE TIME RUNTIME

HIR/MIR Analysis

Tri-state Shadow Memory

Shadow Mem.
ManagementSafety-aware

Allocator Wrappers

Safe Allocator

Runtime Components

Sanitizer
Instrumentation

Allocation Site
Overriding

sources

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Allocation Function
Identification

let mut x = 5
unsafe {
 x = 5;
}
let y = x;

Unsafe Statements
Identification

InstrumentationIR Analysis

Objects & Sites
Safety Identification

Allocation Site
Identification

points-to analysis

1

2

3

4

6

5

sites
safety

object safety

Selectively instrumented sites

instrument
selectively

with site safety
information

Program

alloc
safety

%ptr = alloca …, unsafe!
store %x, %ptr, unsafe!
%y = load %ptr

SSLab@SKKU Design 9/19

RustSan: Rust HIR/MIR-level

COMPILE TIME RUNTIME

HIR/MIR Analysis

Tri-state Shadow Memory

Shadow Mem.
ManagementSafety-aware

Allocator Wrappers

Safe Allocator

Runtime Components

Sanitizer
Instrumentation

Allocation Site
Overriding

sources

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Allocation
Function

Identification

let mut x = 5
unsafe {
 x = 5;
}
let y = x;

Unsafe Statements
Identification

InstrumentationIR Analysis

Objects & Sites
Safety Identification

Allocation Site
Identification

1

2

3

4

6

5

sites
safety

object safety

Selectively instrumented sites

instrument
selectively

with site safety
information

Program

alloc
safety

%ptr = alloca …, unsafe!
store %x, %ptr, unsafe!
%y = load %ptr

points-to analysis

SSLab@SKKU Design 10/19

RustSan: Rust HIR/MIR-level

COMPILE TIME RUNTIME

HIR/MIR Analysis

Tri-state Shadow Memory

Shadow Mem.
ManagementSafety-aware

Allocator Wrappers

Safe Allocator

Runtime Components

Sanitizer
Instrumentation

Allocation Site
Overriding

sources

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Allocation
Function

Identification

let mut x = 5
unsafe {
 x = 5;
}
let y = x;

Unsafe Statements
Identification

InstrumentationIR Analysis

Objects & Sites
Safety Identification

Allocation Site
Identification

1

2

3

4

6

5

sites
safety

object safety

Selectively instrumented sites

instrument
selectively

with site safety
information

Program

alloc
safety

%ptr = alloca …, unsafe!
store %x, %ptr, unsafe!
%y = load %ptr

points-to analysis

▶ unsafe analysis Rust HIR/MIR
semantics such as unsafe are lost
during translation to LLVM IR

▶ Bridging two IR forms Our analysis
identifies variable modifications
within unsafe, and propagates to
LLVM IR stage

SSLab@SKKU Design 10/19

RustSan: LLVM IR-level

COMPILE TIME RUNTIME

HIR/MIR Analysis

Tri-state Shadow Memory

Shadow Mem.
ManagementSafety-aware

Allocator Wrappers

Safe Allocator

Runtime Components

Sanitizer
Instrumentation

Allocation Site
Overriding

sources

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Allocation Function
Identification

let mut x = 5
unsafe {
 x = 5;
}
let y = x;

Unsafe Statements
Identification

InstrumentationIR Analysis

Objects & Sites
Safety Identification

Allocation Site
Identification

points-to analysis

1

2

3

4

6

5

sites
safety

object safety

Selectively instrumented sites

instrument
selectively

with site safety
information

Program

alloc
safety

%ptr = alloca …, unsafe!

store %x, %ptr, unsafe!

%y = load %ptr

SSLab@SKKU Design 11/19

RustSan: LLVM IR-level
COMPILE TIME RUNTIME

HIR/MIR Analysis

Tri-state Shadow Memory

Shadow Mem.
ManagementSafety-aware

Allocator Wrappers

Safe Allocator

Runtime Components

Sanitizer
Instrumentation

Allocation Site
Overriding

sources

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Allocation Function
Identification

let mut x = 5
unsafe {
 x = 5;
}
let y = x;

Unsafe Statements
Identification

InstrumentationIR Analysis

Objects & Sites
Safety Identification

Allocation Site
Identification

points-to analysis

1

2

3

4

6

5

sites
safety

object safety

Selectively instrumented sites

instrument
selectively

with site safety
information

Program

alloc
safety

%ptr = alloca …, unsafe!

store %x, %ptr, unsafe!

%y = load %ptr▶ Selective site instrumentation: inserts checks on
unsafe and false-safe sites, while lifting checks
checks on safe sites

▶ Object safety coloring: Intercept and instrument
object allocations and color objects according to
object safetySSLab@SKKU Design 11/19

Safety-aware Object Allocation

Tri-state Shadow Memory
Overlap. RZ Unsafe RZ …RZ… Safe Safe

▶ Heap objects are allocated with different colors according
to object safety identified during analysis

SSLab@SKKU Design 12/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Selectively instrumented sites

▶ Checks are eliminated on safe sites

▶ False-safe can access unsafe/overlapping object
▶ Unsafe can only access unsafe object

SSLab@SKKU Design 13/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Selectively instrumented sites

▶ Checks are eliminated on safe sites
▶ False-safe can access unsafe/overlapping object

▶ Unsafe can only access unsafe object

SSLab@SKKU Design 13/19

Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory

Unsafe Site:
 check(ptr)
 access(ptr)

False-safe Site:
 fs_check(ptr)
 access(ptr)

Safe Site:
 check(ptr)
 access(ptr)

Overlap. RZ Unsafe RZ …RZ… Safe Safe

Selectively instrumented sites

▶ Checks are eliminated on safe sites
▶ False-safe can access unsafe/overlapping object
▶ Unsafe can only access unsafe object

SSLab@SKKU Design 13/19

Evaluation

▶ Detection Capability Evaluation
• Collect 31 CVEs that ASan can detect and reproduce with

RUSTSAN

▶ Performance Evaluation
• 20 real-world applications from Crate.io

SSLab@SKKU Evaluation 14/19

Evaluation: Site Safety Statistics

▶ Average site safety
distribution In 33
applications:

RUSTSAN eliminates
93.8% of ASan checks!

SAFE (93.8%)
FALSE-SAFE (4.5%)
UNSAFE (1.6%)

SSLab@SKKU Evaluation 15/19

Evaluation: Detection Capability
CVE Vuln. Class Detected FS/U CVE Vuln. Class Detected FS/U

CVE-2020-36465 UAF ✓ FS CVE-2021-45694 Heap Ovf. ✓ FS
CVE-2018-20991 UAF ✓ FS CVE-2021-26954 UAF ✓ FS
CVE-2019-15551 UAF ✓ FS CVE-2021-28028 UAF ✓ FS
CVE-2019-25009 UAF ✓ FS CVE-2021-29933 UAF ✓ FS
CVE-2020-25574 UAF ✓ FS CVE-2020-35891 UAF ✓ FS
CVE-2020-35858 Stack Ovf. ✓ FS CVE-2017-1000430 Heap Ovf. ✓ U
CVE-2020-25792 Stack Ovf. ✓ FS CVE-2020-35861 Heap Ovf. ✓ U
CVE-2020-25791 Stack Ovf. ✓ FS CVE-2021-25900 Heap Ovf. ✓ U
CVE-2020-25795 UAF ✓ FS CVE-2020-35906 UAF ✓ U
CVE-2021-45713 UAF ✓ FS CVE-2021-45720 UAF ✓ U
CVE-2019-16882 UAF ✓ FS CVE-2020-36464 UAF ✓ U
CVE-2018-21000 Heap Ovf. ✓ FS CVE-2020-36434 UAF ✓ U
CVE-2019-16140 UAF ✓ FS CVE-2020-35860 UAF ✓ U
CVE-2021-30455 UAF ✓ FS CVE-2020-35892 Heap Ovf. ✓ U
CVE-2021-30457 UAF ✓ FS CVE-2020-35893 Heap Ovf. ✓ U
CVE-2021-28031 UAF ✓ FS

▶ RUSTSAN reproduced all detected cases with ASan in
memory errors in the Advisory-DB

▶ 67% of bugs(21/31) were detected in a false-site site
SSLab@SKKU Evaluation 16/19

Evaluation: Performance
ve
c_
de
qu
e

ve
c

sli
ce

by
te
s

ru
stp

yt
ho
n

ba
se
64

lin
ke
d_
lis
t

bt
re
e

jso
n

im
ag
e str

wa
sm

tim
e

str
ing

bin
ar
y_
he
ap uu
id

ch
ro
no

re
ge
x

un
ico

de
-xi
d

ad
ler

by
te
or
de
r

1.0
2.0
3.0
4.0
5.0
6.0
7.0

x3.3

x1.4 x1.7 x1.5 x1.4
x1.2 x1.3 x1.0

x1.8
x1.4 x1.2 x1.5

x2.0

x1.1

x3.0

x1.2 x1.3 x1.1 x1.0 x1.0

x3.3

x1.4 x1.7 x1.7
x2.1

x1.5
x1.3 x1.1

x2.0
x2.6

x1.4

x2.4
x2.8

x1.9

x5.8

x2.0
x2.5

x3.3

x5.4

x2.0

RustSan(%) ASan(%) Sans. CheckHitDecr(%)

0%
20%
40%
60%
80%
100%

▶ 62% performance advantage over ASan on average
▶ 43% less shadow memory check encounter during runtime

SSLab@SKKU Evaluation 17/19

More details

▶ Implementation details
• HIR/MIR analysis improvements over previous works
• SVF framework extensions for Rust
• Shadow memory encoding

▶ Experiment data omitted in this talk
• Ratio of sites and objects of varying safety classification for 33

crates.
• Real-world performance gains in fuzz testing scenario

▶ Thorough analysis of threats to validity

¬ For more details, please check out our paper!

SSLab@SKKU Conclusion 18/19

Thank you

Q&A time!!

SSLab@SKKU Conclusion 19/19

	Motivation
	Design
	Evaluation
	Conclusion

