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Rust: The Safe Programming Language
▶ Rust is safer alternative to C/C++ in system programming

with its language-level safety guarantees

▶ Rust is seeing widespread adoption
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Rust: The (Mostly) Safe Programming Language

▶ Rust’s safety guarantees are not free
• Programmers are forced to participate in Rust concepts and

semantics such as ownership.

▶ unsafe Rust allows programmers to temporarily trade
safety for flexibility

• Raw pointer access
• Override ownership rules
• Invoke unsafe foreign functions (e.g., C/C++)
• Etc..
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Rust: The (Mostly) Safe Programming Language

▶ Rust is certainly not
infallible to memory
bugs

▶ Study shows
99%(184/185) all
reported memory bugs
stem from unsafe use1
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1Hui Xu et al. “Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs.”, ACM Trans. SW. Eng. Methodol. (Sept. 2021).
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Rust: The (Mostly) Safe Programming Language

▶ Rust has built-in option for compiling with ASan since
2017 1

• E.g., rustc -Zsanitizer=address ..
▶ Many Rust developers have been using ASan for testing to

have found numerous memory errors across many crates

1https://github.com/rust-lang/rust/pull/38699
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Our Observation

Sanitizers for unsafe languages assume memory error
anywhere in program, while most of Rust program code re-
tains safety even with unsafe.

▶ But.. bugs reside in unsafe in fact can have cascading
effect on safe code.

▶ Accurately identifying true-safe code and false-safe code
is not trivial
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Safety of Rust

1 fn unsafe_func<T>(...) -> &'static mut T {
2 ...

3 let refer: &'static mut T = unsafe { ptr + 0xdeadbeef as & _ };

4 return refer;
5 }
6 ...

7 let from_unsafe = unsafe_func(..);

8 let refer:&'a mut T = *from_unsafe ;
9 ...

10 refer.push(other_val);

: False-Safe : Unsafe
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RUSTSAN Terminology

Safe Rust

Unsafe
OBJ7

Safe Sites 
& Objects

Memory Access Sites Objects Data Flow

OBJ7
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RUSTSAN Terminology
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RUSTSAN Research Statement

RUSTSAN retrofits ASan to pinpoint unsafe and potentially
unsafe memory access sites while lifting costly shadow
memory checks on safe sites.

▶ Bridging Rust semantics and LLVM-based sanitizer with
Cross-IR analysis

▶ Non-binary memory access validation model with
Tri-state shadow memory

SSLab@SKKU Motivation 8/19



RustSan: Overall Design
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RustSan: Rust HIR/MIR-level
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▶ unsafe analysis Rust HIR/MIR
semantics such as unsafe are lost
during translation to LLVM IR

▶ Bridging two IR forms Our analysis
identifies variable modifications
within unsafe, and propagates to
LLVM IR stage
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RustSan: LLVM IR-level
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RustSan: LLVM IR-level
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Safety-aware Object Allocation

Tri-state Shadow Memory
Overlap. RZ Unsafe RZ …RZ… Safe Safe

▶ Heap objects are allocated with different colors according
to object safety identified during analysis
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Tri-state Shadow Memory Enforcement

Tri-state Shadow Memory
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Selectively instrumented sites

▶ Checks are eliminated on safe sites

▶ False-safe can access unsafe/overlapping object
▶ Unsafe can only access unsafe object
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Evaluation

▶ Detection Capability Evaluation
• Collect 31 CVEs that ASan can detect and reproduce with

RUSTSAN

▶ Performance Evaluation
• 20 real-world applications from Crate.io
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Evaluation: Site Safety Statistics

▶ Average site safety
distribution In 33
applications:

RUSTSAN eliminates
93.8% of ASan checks!

SAFE (93.8%)
FALSE-SAFE (4.5%)
UNSAFE (1.6%)
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Evaluation: Detection Capability
CVE Vuln. Class Detected FS/U CVE Vuln. Class Detected FS/U

CVE-2020-36465 UAF ✓ FS CVE-2021-45694 Heap Ovf. ✓ FS
CVE-2018-20991 UAF ✓ FS CVE-2021-26954 UAF ✓ FS
CVE-2019-15551 UAF ✓ FS CVE-2021-28028 UAF ✓ FS
CVE-2019-25009 UAF ✓ FS CVE-2021-29933 UAF ✓ FS
CVE-2020-25574 UAF ✓ FS CVE-2020-35891 UAF ✓ FS
CVE-2020-35858 Stack Ovf. ✓ FS CVE-2017-1000430 Heap Ovf. ✓ U
CVE-2020-25792 Stack Ovf. ✓ FS CVE-2020-35861 Heap Ovf. ✓ U
CVE-2020-25791 Stack Ovf. ✓ FS CVE-2021-25900 Heap Ovf. ✓ U
CVE-2020-25795 UAF ✓ FS CVE-2020-35906 UAF ✓ U
CVE-2021-45713 UAF ✓ FS CVE-2021-45720 UAF ✓ U
CVE-2019-16882 UAF ✓ FS CVE-2020-36464 UAF ✓ U
CVE-2018-21000 Heap Ovf. ✓ FS CVE-2020-36434 UAF ✓ U
CVE-2019-16140 UAF ✓ FS CVE-2020-35860 UAF ✓ U
CVE-2021-30455 UAF ✓ FS CVE-2020-35892 Heap Ovf. ✓ U
CVE-2021-30457 UAF ✓ FS CVE-2020-35893 Heap Ovf. ✓ U
CVE-2021-28031 UAF ✓ FS

▶ RUSTSAN reproduced all detected cases with ASan in
memory errors in the Advisory-DB

▶ 67% of bugs(21/31) were detected in a false-site site
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Evaluation: Performance
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▶ 62% performance advantage over ASan on average
▶ 43% less shadow memory check encounter during runtime
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More details

▶ Implementation details
• HIR/MIR analysis improvements over previous works
• SVF framework extensions for Rust
• Shadow memory encoding

▶ Experiment data omitted in this talk
• Ratio of sites and objects of varying safety classification for 33

crates.
• Real-world performance gains in fuzz testing scenario

▶ Thorough analysis of threats to validity

¬ For more details, please check out our paper!
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Thank you

Q&A time!!
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