K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures

Daniel Collins, Loïs Huguenin–Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, Serge Vaudenay USENIX Security 2024

The Signal Protocol

- Two-party messaging between Alice and Bob.
- De-facto standard: *The Signal Protocol.*
- Two main components: key exchange and messaging proper.
- <u>Key exchange</u>: X3DH (Extended Triple Diffie-Hellman)
 - Recently: PQXDH (cf. this session!)

Extended Triple Diffie-Hellman (X3DH)

- X3DH provides secrecy, authentication, deniability, support for offline users...
- Due to Shor's algorithm, *post-quantum* cryptography is needed.
 - X3DH is classically secure [CCDGS20,VGIK20] but not post-quantum.
- Well-understood how to build post-quantum messaging (Double Ratchet [ACD19]).
 - Less so for X3DH.

Post-Quantum X3DH-Like Key Exchange

- Challenge: post-quantum security *and* deniability.
- Recently: Signal deployed PQXDH (X3DH + PQ KEM).
 - Secure against store-now, decrypt-later quantum attacks.
- Hashimoto et al. [HKKP21, HKKP22] and Brendel et al. [BFGJS22] proposed fully PQ-secure X3DH protocols.
 - Rely on PQ ring signatures and KEMs.
 - Ring signatures can be a bottleneck.

Split-KEM

- [BFGJS20]: key encapsulation mechanism (KEM) where Encaps/Decaps take as input public *and* secret keys.
- Key generation: (pk_A , sk_A) \leftarrow KeyGenA, (pk_B , sk_B) \leftarrow KeyGenB
- Encapsulation: (K, ct) \leftarrow Encaps(pk_B, sk_A)
- Decapsulation: K ← Decaps(pk_A, sk_B, ct)
- Morally generalises Diffie-Hellman/NIKE with a ciphertext.
- Was not *formally* shown to imply key exchange by [BFGJS20].

Our Protocol: K-Waay

• <u>K-Waay</u>: deniable PQ X3DH based on *split-KEM* and KEMs.

- Uses split-KEM with ephemeral keys, ephemeral KEM, longterm KEM and long-term signatures for prekeys.
 - Security against different combinations of key exposure.

K–Waay

Init: <u>upload</u> <u>signed</u> <u>prekey</u> <u>bundles</u>

Alice (lpk_B, vk_B) Bob (lpk_A,vk_A) $(esk_{\Delta}^{skem}, epk_{\Delta}^{skem}) \xleftarrow{\ } KeyGenA_{sKEM}$ $(\mathsf{esk}^{skem}_B,\mathsf{epk}^{skem}_B) \xleftarrow{\hspace{0.15cm}}{}^{\$} \mathsf{KeyGenB}_{\mathsf{sKEM}}$ $(\mathsf{esk}_B^{kem},\mathsf{epk}_B^{kem}) \xleftarrow{\$} \mathsf{KeyGen}_{\mathsf{KEM}}$ $\{epk_B^{skem}, epk_B^{kem}\}_{sk_B}$ $\{epk_A^{skem}\}_{sk_A}$ $K_{\ell}, \mathsf{ct}_{\ell} \stackrel{\$}{\leftarrow} \mathsf{Encaps}_{\mathsf{KEM}}(\mathsf{lpk}_{\mathsf{B}})$ $K_e^{\text{skem}}, \text{ct}_e^{\text{skem}} \xleftarrow{} \text{Encaps}_{\text{sKEM}}(\text{epk}_{\text{B}}^{\text{skem}}, \text{esk}_{\text{A}}^{\text{skem}})$ $K_e^{\text{kem}}, \text{ct}_e^{\text{kem}} \stackrel{\$}{\leftarrow} \text{Encaps}_{\text{KEM}}(\text{epk}_{\text{B}}^{\text{kem}})$ $\mathsf{ct}_\ell, \mathsf{ct}_e^{\mathsf{skem}}, \mathsf{ct}_e^{\mathsf{kem}}$ $K \leftarrow \mathsf{KDF}(K_\ell, K_e^{\mathsf{skem}}, K_e^{\mathsf{kem}})$ $K'_{\ell} \leftarrow \mathsf{Decaps}_{\mathsf{KEM}}(\mathsf{lsk}_{\mathsf{B}}, \mathsf{ct}_{\ell})$ $K'_{e}^{skem} \leftarrow \mathsf{Decaps}_{sKEM}(\mathsf{epk}_{A}^{skem}, \mathsf{esk}_{B}^{skem}, \mathsf{ct}_{e}^{skem})$ $K'_{e}^{\text{kem}} \leftarrow \text{Decaps}_{\text{KEM}}(\text{esk}_{\text{B}}^{\text{kem}}, \text{ct}_{e}^{\text{kem}})$ $K'_{\ell} \stackrel{?}{=} \bot \lor K'_{e}^{\mathsf{skem}} \stackrel{?}{=} \bot \lor K'_{e}^{\mathsf{kem}} \stackrel{?}{=} \bot$ $K' \leftarrow \mathsf{KDF}(K'_{\ell}, K'^{\mathsf{skem}}, K'^{\mathsf{kem}})$

Send: - <u>Encaps</u> <u>with two</u> <u>KEMs and</u> <u>Split-KEM</u>

K-Waay

- KDF call

K-Waay

Send: - Encaps with two KEMs and Split-KEM

- <u>KDF call</u>

K-Waay

10

K-Waay

Receive: <u>corresponding</u> <u>Decaps and</u> <u>KDF calls</u>

11

Split-KEM (2)

- We revisit split-KEM: its original security notions are *insufficient* for X3DH-like key exchange.
 - Authentication guarantees.
 - Semi-honest deniability, like [BFG]S22].
 - Support ephemeral key-reuse *without* full CCA security!
- We propose a secure instantiation secure under plain learning-with-errors (LWE).
 - Based on Frodo key exchange [BCD+16].

KeyGen: <u>extra noise</u> <u>term</u>, otherwise Frodo. KeyGenA (1^{λ}) 1: $\mathbf{S}_{\mathsf{A}}, \mathbf{D}_{\mathsf{A}} \leftarrow \mathfrak{X}(\mathbb{Z}_q^{n \times \overline{n}})$ $\mathbf{x}: \mathbf{F}_{\mathsf{A}} \leftarrow \mathbf{x} \chi^{\overline{n} \times \overline{n}}$ 3: $\mathbf{B}_{\mathsf{A}} \leftarrow \mathbf{A}\mathbf{S}_{\mathsf{A}} + \mathbf{D}_{\mathsf{A}}$ 4: $\mathsf{pk}_{\Delta} \leftarrow (\mathbf{A}, \mathbf{B}_{\mathsf{A}})$ 5: $\mathsf{sk}_{\mathsf{A}} \leftarrow (\mathbf{S}_{\mathsf{A}}, \mathbf{D}_{\mathsf{A}}, \mathbf{F}_{\mathsf{A}})$ 6: return (pk_A, sk_A) KeyGenB (1^{λ}) 1: $\mathbf{S}_{\mathsf{B}}, \mathbf{D}_{\mathsf{B}} \leftarrow \chi^{\overline{n} \times n}$ 1: $\mathbf{V}' \leftarrow \mathbf{B}_{\mathsf{A}} \mathbf{S}_{\mathsf{B}} + \mathbf{F}_{\mathsf{B}}$ 2: $\mathbf{F}_{\mathsf{B}} \leftarrow x^{\overline{n} \times \overline{n}}$ 3: $\mathbf{B}_{\mathsf{B}} \leftarrow \mathbf{S}_{\mathsf{B}}\mathbf{A} + \mathbf{D}_{\mathsf{B}}$ 4: $\mathsf{pk}_{\mathsf{B}} \leftarrow (\mathbf{A}, \mathbf{B}_{\mathsf{B}})$ 5: $\mathsf{sk}_{\mathsf{B}} \leftarrow (\mathbf{S}_{\mathsf{B}}, \mathbf{D}_{\mathsf{B}}, \mathbf{F}_{\mathsf{B}})$ 6: return (pk_B, sk_B)

 $Encaps(pk_B = (A, B_B), sk_A = (S_A, D_A, F_A))$ 1 : $/\!\!/$ We assume A encapsulates 2: $\mathbf{E}_{\Delta} \leftarrow \$ \chi^{\bar{n} \times \bar{n}}$ 3: $\mathbf{V} \leftarrow \mathbf{S}_{\mathsf{A}}\mathbf{B}_{\mathsf{B}} + \mathbf{E}_{\mathsf{A}}$ 4: $\mathsf{ct} \leftarrow \mathsf{HelpRec}(\mathbf{V})$ 5: $\mathbf{K} \leftarrow \mathsf{Rec}(2\mathbf{V},\mathsf{ct})$ 6: return (K, ct) $\mathsf{Decaps}(\mathsf{pk}_{\mathsf{A}} = (\mathbf{A}, \mathbf{B}_{\mathsf{A}}), \mathsf{sk}_{\mathsf{B}} = (\mathbf{S}_{\mathsf{B}}, \mathbf{D}_{\mathsf{B}}, \mathbf{F}_{\mathsf{B}}), \mathsf{ct})$ 2: $\mathbf{K}' \leftarrow \mathsf{Rec}(2\mathbf{V}',\mathsf{ct})$ 3: return \mathbf{K}'

14

Encaps: Frodo.

$KeyGenA(1^{\lambda})$		$\underline{Encaps(pk_B = (\mathbf{A}, \mathbf{B}_B), sk_A = (\mathbf{S}_A, \mathbf{D}_A, \mathbf{F}_A))}$					
1:	$\mathbf{S}_{A}, \mathbf{D}_{A} \leftarrow \mathfrak{X}(\mathbb{Z}_q^{n imes \overline{n}})$	1: // We assume A encapsulates					
2:	$\mathbf{F}_A \chi^{\overline{n} imes \overline{n}}$	2: $\mathbf{E}_{A} \leftarrow x^{\bar{n} \times \bar{n}}$					
3:	$\mathbf{B}_{A} \leftarrow \mathbf{A}\mathbf{S}_{A} + \mathbf{D}_{A}$	$3 \mathbf{V} \leftarrow \mathbf{S}_{A} \mathbf{B}_{B} + \mathbf{E}_{A}$					
4:	$pk_A \gets (\mathbf{A}, \mathbf{B}_A)$	4: $ct \leftarrow HelpRec(\mathbf{V})$					
5:	$sk_A \gets (\mathbf{S}_A, \mathbf{D}_A, \mathbf{F}_A)$	5: $\mathbf{K} \leftarrow Rec(2\mathbf{V},ct)$					
	roturn (pk sk.)	6: return (K ct)					
6:							
6: Key	GenB (1^{λ})	$\underline{Decaps}(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct)$					
$\frac{6:}{\text{Key}}$	$\frac{GenB(1^{\lambda})}{\mathbf{S}_{B}, \mathbf{D}_{B} \leftarrow \$ \chi^{\overline{n} \times n}}$	$\frac{Decaps(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct)}{1: \mathbf{V}' \leftarrow \mathbf{B}_{A}\mathbf{S}_{B} + \mathbf{F}_{B}}$					
$\frac{6:}{1:}$	$\frac{GenB(1^{\lambda})}{\mathbf{S}_{B}, \mathbf{D}_{B} \leftarrow \$ \chi^{\overline{n} \times n}}$ $\mathbf{F}_{B} \leftarrow \$ \chi^{\overline{n} \times \overline{n}}$	$\begin{aligned} & \overset{\text{Decaps}(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct) \\ & \overset{\text{1:}}{1:} \mathbf{V}' \leftarrow \mathbf{B}_{A} \mathbf{S}_{B} + \mathbf{F}_{B} \\ & \overset{\text{2:}}{2:} \mathbf{K}' \leftarrow Rec(2\mathbf{V}', ct) \end{aligned}$					
$ \begin{array}{c} 6:\\ $	$\frac{GenB(1^{\lambda})}{\mathbf{S}_{B}, \mathbf{D}_{B} \leftarrow \$ \chi^{\overline{n} \times n}}$ $\mathbf{F}_{B} \leftarrow \$ \chi^{\overline{n} \times \overline{n}}$ $\mathbf{B}_{B} \leftarrow \mathbf{S}_{B} \mathbf{A} + \mathbf{D}_{B}$	$\begin{aligned} & \overset{\text{Decaps}(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct) \\ & \overset{\text{1:}}{1:} \mathbf{V}' \leftarrow \mathbf{B}_{A} \mathbf{S}_{B} + \mathbf{F}_{B} \\ & \overset{\text{2:}}{2:} \mathbf{K}' \leftarrow Rec(2\mathbf{V}', ct) \\ & \overset{\text{3:}}{:} \mathbf{return} \ \mathbf{K}' \end{aligned}$					
6: Key 1: 2: 3: 4:	$\frac{\text{GenB}(1^{\lambda})}{\mathbf{S}_{B}, \mathbf{D}_{B} \leftarrow \$ \chi^{\overline{n} \times n}}$ $\mathbf{F}_{B} \leftarrow \$ \chi^{\overline{n} \times \overline{n}}$ $\mathbf{B}_{B} \leftarrow \mathbf{S}_{B}\mathbf{A} + \mathbf{D}_{B}$ $pk_{B} \leftarrow (\mathbf{A}, \mathbf{B}_{B})$	$\begin{aligned} & \overset{\text{Decaps}(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct) \\ & \overset{\text{1:}}{1:} \mathbf{V}' \leftarrow \mathbf{B}_{A} \mathbf{S}_{B} + \mathbf{F}_{B} \\ & \overset{\text{2:}}{2:} \mathbf{K}' \leftarrow Rec(2\mathbf{V}', ct) \\ & \overset{\text{3:}}{1:} \mathbf{return} \ \mathbf{K}' \end{aligned}$					
6: Key 1: 2: 3: 4: 5:	$\frac{\text{GenB}(1^{\lambda})}{\mathbf{S}_{B}, \mathbf{D}_{B} \leftarrow \$ \chi^{\overline{n} \times n}}$ $\mathbf{F}_{B} \leftarrow \$ \chi^{\overline{n} \times \overline{n}}$ $\mathbf{B}_{B} \leftarrow \mathbf{S}_{B}\mathbf{A} + \mathbf{D}_{B}$ $pk_{B} \leftarrow (\mathbf{A}, \mathbf{B}_{B})$ $sk_{B} \leftarrow (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B})$	$\begin{aligned} & \overset{\text{Decaps}(pk_{A} = (\mathbf{A}, \mathbf{B}_{A}), sk_{B} = (\mathbf{S}_{B}, \mathbf{D}_{B}, \mathbf{F}_{B}), ct) \\ & \overset{\text{1:}}{1:} \mathbf{V}' \leftarrow \mathbf{B}_{A} \mathbf{S}_{B} + \mathbf{F}_{B} \\ & \overset{\text{2:}}{2:} \mathbf{K}' \leftarrow Rec(2\mathbf{V}', ct) \\ & \overset{\text{3:}}{3:} \mathbf{return} \ \mathbf{K}' \end{aligned}$					

15

Decaps: Noise from KeyGen added to V'

$$\begin{array}{ll} \displaystyle \begin{array}{ll} \displaystyle \underset{k \in y G en A(1^{\lambda})}{1: & \mathbf{S}_{A}, \mathbf{D}_{A} \leftarrow \$ \; \chi(\mathbb{Z}_{q}^{n \times \overline{n}})} & \displaystyle \begin{array}{ll} \displaystyle \underset{k \in q \in \mathbb{Z}_{q}, \mathbf{D}_{A}, \mathbf{F}_{A}(\mathbf{J})}{1: & \mathcal{I} \; \mathcal{I} \; \mathbb{W} \; \text{assume A encapsulates}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in q \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q}^{\overline{n} \times \overline{n}} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \\ \displaystyle \end{array}_{l} \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \end{array}_{l} \\ \displaystyle \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb{Z}_{q} \; \mathbb{Z}_{q} \; \mathbb{Z}_{q} \\ \displaystyle \end{array}_{l} \end{array}_{l} \\ \displaystyle \begin{array}{ll} \displaystyle \end{array}_{l} \quad \underset{k \in \mathbb$$

Parameters and Benchmarking

- We propose parameters for K-Waay.
- *Before* a random oracle (RO) transform (extra hash in ciphertext):
 - >192/128 bits of classical/quantum security (OW-CPA, decaps-OW-CPA, deniability).
- After:
 - ⁻ 128–bit security, 64 bits in the QROM (assuming 2⁶⁴ RO queries).
- Previous PQ X3DH benchmarks: worse concrete security!
- We benchmark with Kyber-512 [BDK+18] and Raptor ring signatures [LAZ19] for related work.

	Scheme	e		lpk	prek		
$\left(\right)$	K-Waay	y + Dilit	hium	2112	24520	1632	
	K-Waay + Falcon			1697	22790	1632	
	HKKP	Has+22		1700	1700	4056	
	HKKP	Has+22	+ Dilithium2	3012	4120	4056	
	HKKP	Has+22	+ Falcon	2597	2390	4056	
	SPQR	Bre+22		3400	1632	4824	
	SPQR	Bre+22	+ Dilithium2	4712	4052	4824	
	SPQR	Bre+22	+ Falcon	4297	2322	4824	

Wrapping Up

• <u>K-Waay</u>: faster deniable PQ X3DH.

- What about split-KEM from module LWE?
 - No fundamental barrier.
 - Keys should be smaller.

• Thanks! @dcol97 on X

Full version: https://eprint.iacr.org/2024/120

Bibliography

- [BCD+16]: Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila: <u>Frodo: Take off the Ring! Practical, Quantum-</u> <u>Secure Key Exchange from LWE.</u> CCS 2016
- [CCDGS17/20]: Cohn-Gordon, Cremers, Dowling, Garratt, Stebila: A Formal Security Analysis of the Signal Messaging Protocol. EuroS&P 2017/JoC 2020
- [BDK+18]: Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schnack, Schwabe, Seiler, Stehle: <u>CRYSTALS-Kyber: A CCA-Secure Module-Lattice-Based KEM</u>. EuroS&P 2018
- [ACD19]: Alwen, Coretti, Dodis: <u>The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal Protocol</u>. EUROCRYPT 2019
- [LAZ19]: Lu, Au, Zhang: <u>Raptor: A Practical Lattice-Based (Linkable) Ring Signature</u>. ACNS 2019
- [BFG]S20]: Brendel, Fischlin, Günther, Janson, Stebila: Towards Post-Quantum Security for Signal's X3DH Handshake. SAC 2020
- [VGIK20]: Vatandas, Gennaro, Ithurburn, Krawczyk: <u>On the Cryptographic Deniability of the Signal Protocol</u>. ACNS 2020
- [HKKP21/22]: Hashimoto, Katsumata, Kwiatkowski, Prest: <u>An Efficient and Generic Construction for Signal's Handshake (X3DH):</u> <u>Post-Quantum, State Leakage Secure, and Deniable</u>. PKC 2021/JoC 2022
- [BFG]S22]: Brendel, Fiedler, Günther, Janson, Stebila: <u>Post-quantum Asynchronous Deniable Key Exchange and the Signal</u> <u>Handshake</u>. PKC 2022
- [HV22]: Huguenin-Dumittan, Vaudenay: On IND-qCCA Security in the ROM and Its Applications. EUROCRYPT 2022

Backup Slide: Comparison Table

Protocol	PQ Conf	PQ Auth	KCI	\mathbf{FS}	SSR	RR	Deniability
X3DH MP16; Coh+20	×	×	✓	PFS	✓	✓	Malicious
PQXDH KS23; Bha+23	1	×	✓	\mathbf{PFS}	×	X	Semi-honest+
KEM+Sigs Has+22	1	1	✓	\mathbf{PFS}	✓	X	X
HKKP Has+22	1	1	1	WFS	1	X	Semi-honest
SPQR Bre+22	1	1	1	WFS	×	\checkmark	Semi-honest
K-Waay (Section 5)	✓	✓	1	WFS	✓	X	Semi-honest

Backup Slide: Our DAKE Formalism

- We propose a new Deniable Authenticated Key Exchange (DAKE) formalism to capture K-Waay.
- Init(sk, role) → (st, prek): outputs a temporary state and prekey bundle prek.
- Send(sk, pk, st, prek) \rightarrow (k, m).
- BatchReceive(sk, st, {pk_j, prek_j, m_j}_j) → {k_s}_s: captures key reuse (concurrency).
 - Split-KEM doesn't need full IND-CCA security, and is thus very efficient!

Our Split-KEM Security Notions (1)

- <u>UNF-1KCA</u>: adversary cannot forge a ciphertext when given a ciphertext (from Alice).
- Note Signal users upload 100 prekey bundles, but they can run out...
- <u>Ind-1BatchCCA</u>: ephemeral key reuse *without* full CCA security!
- Q(ROM) transform à la [HV22] to achieve these two:
 - Adds an extra hash H(pk_A, pk_B, ct, K) to Alice's ciphertext.

Our Split-KEM Security Notions (2)

- Semi-honest deniability.
- Even if the adversary is given one split-KEM secret (say Alice's).
- Implies semi-honest AKE deniability (morally stronger than [BFGJS22]).