USENIX Security 2024

Election Eligibility with OpenlD:
Turning Authentication into Transferable Proof of Eligibility

Véronique Cortier, Alexandre Debant, Anselme Goetschmann, Lucca Hirschi

Thursday 15™ August, 2024

Université de Lorraine, CNRS, Inria, LORIA, France

Context: online voting systems

Desired properties:

e vote privacy: "no one learns my vote"
e result integrity: result is the combination of cast ballots

Voter Voting server Ballot box

5

J

3
I

Context: online voting systems

Desired properties:

] L T even against
e vote privacy: "no one learns my vote e .
. . . o ishonest voting server
e result integrity: result is the combination of cast ballots g
Voter

Voting server Ballot box

5

J

ofoJo
| JU lll I

Context: online voting systems

Desired properties:

] L T even against
e vote privacy: "no one learns my vote e .
e result integrity: result is the combination of cast ballots ishonest voting server
Voter Voting server Ballot box
O enc(b) (o 5z enc(b) =58
() asa EEE

Public bulletin board

Context: online voting systems

Desired properties:

] L T even against
e vote privacy: "no one learns my vote e .
e result integrity: result is the combination of cast ballots ishonest voting server
Voter Voting server Ballot box
O enc(b) (o 5z enc(b) =58
() asa EEE

Public bulletin board

Studied in academic research and used in real elections:

e Helios, Select, Belenios, ...
e Estonia, Australia, Switzerland, ...

Attack: ballot stuffing

Voter Voting server Ballot box
—a

O enc(b) % = enc(b) EEE

(&) as EEE

Attack: ballot stuffing

Voter Voting server Ballot box
[\
O enc(b) e enc(b) LE_"E"EI
@ >:— = enc(b’) EEE
==

Attack: ballot stuffing

Voter Voting server Ballot box
[\
O enc(b) e enc(b) LE_"E"EI
@ >:— = enc(b’) EEE
==

What is missing: verifiable eligibility of ballots

Attack: ballot stuffing

Voter Voting server

Ballot box
[\
O enc(b) % =5 enc(b) LE_"E"EI
@ i) enc(b’) EEE

What is missing: verifiable eligibility of ballots

Existing solutions:

e trust the voting server not to add ballots (Helios, France, Australia) X not a solution

Attack: ballot stuffing

Voter Voting server Ballot box
| —]
O ' enc(b) % =3 enc(b), o EEE
Qk o = sign(k, enc(b)) P\ enc(b’), ? EEE
=5 AVWDY
What is missing: verifiable eligibility of ballots
Existing solutions:
e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots

Attack: ballot stuffing

Voter Voting server Ballot box
—a
O 'enc(b) % =3 enc(b), o EEE
Ok o=sign(k enc(b)) (I anc(t), 7 |EEE
==

What is missing: verifiable eligibility of ballots

Existing solutions:

e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots

e PKI (Estonia) X rarely available

Attack: ballot stuffing

Voter Voting server Ballot box
—a
O 'enc(b) % =3 enc(b), o EEE
Ok o=sign(k enc(b)) (I anc(t), 7 |EEE
==

What is missing: verifiable eligibility of ballots
Existing solutions:
e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots
e PKI (Estonia) X rarely available

e ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)
X need extra entity and secure channel

Attack: ballot stuffing

Voter Voting server Ballot box
—a
O 'enc(b) % =3 enc(b), o EEE
Ok o=sign(k enc(b)) (I anc(t), 7 |EEE
==

What is missing: verifiable eligibility of ballots
Existing solutions:
e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots
e PKI (Estonia) X rarely available

e ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)
X need extra entity and secure channel
X breaks everlasting privacy

Attack: ballot stuffing

Voter Voting server Ballot box
—a
O 'enc(b) % =3 enc(b), o EEE
Ok o=sign(k enc(b)) (I anc(t), 7 |EEE
==

What is missing: verifiable eligibility of ballots
Existing solutions:

e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots
e PKI (Estonia) X rarely available
e ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)
X need extra entity and secure channel

X breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

OpenlD for e-voting

OpenlD Connect:

e protocol to delegate authentication to identity provider

e widely deployed G B -

OpenlD for e-voting

OpenlD Connect:

e protocol to delegate authentication to identity provider

e widely deployed & Ef -
Q
[an) G
Relying Party User OpenlD provider
AuthReq(N)

[Authentication]

tok = (id, N, ...), o = sign(hash(tok))

OpenlD for e-voting

OpenlD Connect:

e protocol to delegate authentication to identity provider

e widely deployed & Ef -
Q
[an) G
Relying Party User OpenlD provider
AuthReq(N)

[Authentication]

tok = (id, N, ...), o = sign(hash(tok))

Problem for e-voting: non-transitive authentication

= not suitable for e-voting out-of-the-box

Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
= o is linked to ballot (: Authentication ‘]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))

OpenlD Connect flow

Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
= o is linked to ballot (: Authentication ‘]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))
OpenlD Connect flow
Challenges:

1. voter should control when ballot is validated

Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
- \ \
= o is linked to ballot (Authentication]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))
OpenlD Connect flow
Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
- \ \
= o is linked to ballot (Authentication]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))
OpenlD Connect flow
Challenges:

1. voter should control when ballot is validated
2. voter should control which ballot is signed
3. published data should not reveal identity of voter

Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
- \ \
= o is linked to ballot (Authentication]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))
OpenlD Connect flow
Challenges:

1. voter should control when ballot is validated } solved with OIDEIi protocol

2. voter should control which ballot is signed
3. published data should not reveal identity of voter } solved with ZKP

OIDEIli protocol: OpenlD for Eligibility

EEE]
EEE

ballot

Voting server

ballot

Ballot box

~
9

OpenlD provider

OIDEIli protocol: OpenlD for Eligibility

3 4
£ S G
Voting server Voter OpenlD provider

ballot

OIDEIi)

OpenlID Connect flow
tok = (id,ballot,...) o = sign(hash(tok))

EEE]
EEE

ballot,tok,o
Ballot box
| | | 6

OIDEIli protocol: OpenlD for Eligibility

1. commit to ballot and reveal commitment after OpenlD Connect flow

2. inspect AuthReq % G
ballot
OIDEI;)

OpenlID Connect flow
tok = (id,ballot,...) o = sign(hash(tok))

=
ELE]
ballot,tok,o
Ballot box
| | | 6

OIDEIli protocol: OpenlD for Eligibility

1. commit to ballot and reveal commitment after OpenlD Connect flow

2. inspect AuthReq % G

ballot

OIDEIi)

[Agree on N’ s.t. N’ = Commit(ballot, V)]

‘ OpenID Connect flow with N’ as nonce

tok = (id,N',...) o = sign(hash(tok))

tok,o

| Check id and ballot in tok and verify & |
N = Reveal(N')

ballot,tok,o, N

=
EE
Ballot box
| | | 6

OIDEIli protocol: OpenlD for Eligibility

1. commit to ballot and reveal commitment after OpenlD Connect flow

2. inspect AuthReq % G
Voting server Voter OpenlD provider

ballot

OIDEIi)

[Agree on N’ s.t. N’ = Commit(ballot, V)]

‘ OpenID Connect flow with N as nonce and inspection of AuthReq

tok = (id,N',...) o = sign(hash(tok))

tok,o

| Check id and ballot in tok and verify & |
N = Reveal(N')

BB
ballot,tok,o, N
Ballot box
— I I 6

OIDEIi protocol: OpenlD for Eligibility

1. commit to ballot and reveal commitment after OpenlD Connect flow

2. inspect AuthReq

Voting server

ballot

We have: OIDEIi)
v verifiable eligibilit Agree on N’ s.t. N’ = Commit(ballp#)&
gibility [,{”V

nce and inspection of AuthReq ’

o = sign(hash(tok))

in tok and verify o |

/
CY 3
\‘/ | Check id and ballot

N = Reveal(N’
E’% / (W)

BB
ballot,tok,o, N
Ballot box
| | | 6

OIDEIi protocol: OpenlD for Eligibility

1. commit to ballot and reveal commitment after OpenlD Connect flow

2. inspect AuthReq

Voting server

ballot

We have: OIDEIi)
v verifiable eligibilit Agree on N’ s.t. N’ = Commit(ballp#)&
gibility [,{”V

X everlasting privacy [

nce and inspection of AuthReq
o = sign(hash(tok))

in tok and verify o |

/
CY 3
\‘/ | Check id and ballot

N = Reveal(N’
E’% / (W)

BB
ballot,tok,o, N
Ballot box
| | | 6

OIDEIli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

OIDEIli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot

N

tok = (id, Commit(ballot, N), ...)
o = sign(H), H = hash(tok)

OIDEIli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot
N
— tok = (id, Commit(ballot, N), ...)
o = sign(H), H = hash(tok)
+ m=Z7ZKP(3 id s.t. id € Eligible A H = hash((id, Commit(ballot,), _))

OIDEIli ZKP

ZKP(3id s.t. id € Eligible A H = SHA256((id, Commit(ballot, V), -))

Challenge: OpenlD Connect relies on SHA256 = high proving time
multiple instances of SHA256 = super-high proving time!

OIDEIli ZKP

ZKP(3id s.t. id € Eligible A H = SHA256((id, Commit(ballot, V), -))

Challenge: OpenlD Connect relies on SHA256 = high proving time
multiple instances of SHA256 = super-high proving time!

Solution: use zk-SNARK framework
optimize circuit (one SHA256 preimage)

OIDEIli ZKP

ZKP(3id s.t. id € Eligible A H = SHA256((id, Commit(ballot, V), -))

Challenge: OpenlD Connect relies on SHA256 = high proving time

multiple instances of SHA256 = super-high proving time!

Solution: use zk-SNARK framework
optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2
v design remains framework agnostic
¢ ¢

]
[— [11 1 3
B> «]

TR

OIDEIli ZKP

ZKP(3id s.t. id € Eligible A H = SHA256((id, Commit(ballot, V), -))
Challenge: OpenlD Connect relies on SHA256 = high proving time
multiple instances of SHA256 = super-high proving time!

Solution: use zk-SNARK framework
optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2
v design remains framework agnostic
¢ ¢

Performance: é
naive circuit: < 0.75 proof per hour

v our circuit: ~1.3K proofs per hour &ﬁ*‘ i] L
[1 1 1 D
EEXY

v highly parallelizable

v/ computation on server T

Conclusion

v/ OIDEIi protocol using OpenlD to extend e-voting systems with verifiable eligibility

Conclusion

v/ OIDEIi protocol using OpenlD to extend e-voting systems with verifiable eligibility
v Design and optimization of zk-SNARK circuit needed for OIDEIli

Conclusion

v/ OIDEIi protocol using OpenlD to extend e-voting systems with verifiable eligibility
v Design and optimization of zk-SNARK circuit needed for OIDEIli

v Implementation of a proof of concept integrated in Belenios

v/ Formal security proofs
AT

EVALUATED

Machine-checkable symbolic proofs using ProVerif
P

FUNCTIONAL

Conclusion

v/ OIDEIi protocol using OpenlD to extend e-voting systems with verifiable eligibility
v Design and optimization of zk-SNARK circuit needed for OIDEIli

v Implementation of a proof of concept integrated in Belenios

v/ Formal security proofs
AT

EVALUATED

Machine-checkable symbolic proofs using ProVerif
P

FUNCTIONAL

Thanks for your attention!

	Eligibility in e-voting
	Our contributions

