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Studied in academic research and used in real elections:

e Helios, Select, Belenios, ...
e Estonia, Australia, Switzerland, ...
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e trust the voting server not to add ballots (Helios, France, Australia) X not a solution
e sign ballots
e PKI (Estonia) X rarely available
e ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)
X need extra entity and secure channel

X breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution
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OpenlD Connect:

e protocol to delegate authentication to identity provider
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AuthReq(N)

[ Authentication ]

tok = (id, N, ...), o = sign(hash(tok))

Problem for e-voting: non-transitive authentication

= not suitable for e-voting out-of-the-box
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Sign ballots with OpenlD

Idea:
e set N = ballot AuthReq(N)
- \ \
= o is linked to ballot ( Authentication ]
e publish o along ballot tok = (id, N, ..), o = sign(hash(tok))
OpenlD Connect flow
Challenges:

1. voter should control when ballot is validated } solved with OIDEIi protocol

2. voter should control which ballot is signed
3. published data should not reveal identity of voter } solved with ZKP
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Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:
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ZKP(3id s.t. id € Eligible A H = SHA256((id, Commit(ballot, V), -))
Challenge: OpenlD Connect relies on SHA256 = high proving time
multiple instances of SHA256 = super-high proving time!

Solution: use zk-SNARK framework
optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2
v design remains framework agnostic
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Thanks for your attention!
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