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Context: online voting systems

Desired properties:

• vote privacy: ”no one learns my vote”

• result integrity: result is the combination of cast ballots

Voter Voting server Ballot box

Public bulletin board

Studied in academic research and used in real elections:

• Helios, Select, Belenios, ...

• Estonia, Australia, Switzerland, ...
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Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution
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OpenID for e-voting

. . .

OpenID Connect:

• protocol to delegate authentication to identity provider

• widely deployed

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

Problem for e-voting: non-transitive authentication

⇒ not suitable for e-voting out-of-the-box
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Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter
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OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Ballot box
ballot
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OIDEli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot

N

tok = (id,Commit(ballot,N), ...)

σ = sign(H), H = hash(tok)

+ π = ZKP(∃ id s.t. id ∈ Eligible ∧ H = hash((id,Commit(ballot,N), ))
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OIDEli ZKP

ZKP(∃ id s.t. id ∈ Eligible ∧ H = SHA256SHA256SHA256((id,Commit(ballot,N), ))

Challenge: OpenID Connect relies on SHA256 ⇒ high proving time

multiple instances of SHA256 ⇒ super-high proving time!

Solution: use zk-SNARK framework

optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2

✓ design remains framework agnostic

Performance:

✗ naive circuit: < 0.75 proof per hour

✓ our circuit: ∼1.3K proofs per hour

✓ highly parallelizable

✓ computation on server
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Conclusion

✓ OIDEli protocol using OpenID to extend e-voting systems with verifiable eligibility

✓ Design and optimization of zk-SNARK circuit needed for OIDEli

✓ Implementation of a proof of concept integrated in Belenios

✓ Formal security proofs

Machine-checkable symbolic proofs using ProVerif

Thanks for your attention!
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