
USENIX Security 2024

Election Eligibility with OpenID:

Turning Authentication into Transferable Proof of Eligibility

Véronique Cortier, Alexandre Debant, Anselme Goetschmann, Lucca Hirschi

Thursday 15th August, 2024

Université de Lorraine, CNRS, Inria, LORIA, France

1



Context: online voting systems

Desired properties:

• vote privacy: ”no one learns my vote”

• result integrity: result is the combination of cast ballots

Voter Voting server Ballot box

Public bulletin board

Studied in academic research and used in real elections:

• Helios, Select, Belenios, ...

• Estonia, Australia, Switzerland, ...

2



Context: online voting systems

Desired properties:

• vote privacy: ”no one learns my vote”

• result integrity: result is the combination of cast ballots

even against

dishonest voting server

Voter Voting server Ballot box

Public bulletin board

Studied in academic research and used in real elections:

• Helios, Select, Belenios, ...

• Estonia, Australia, Switzerland, ...

2



Context: online voting systems

Desired properties:

• vote privacy: ”no one learns my vote”

• result integrity: result is the combination of cast ballots

even against

dishonest voting server

Voter Voting server Ballot box

Public bulletin board

enc(b) enc(b)

Studied in academic research and used in real elections:

• Helios, Select, Belenios, ...

• Estonia, Australia, Switzerland, ...

2



Context: online voting systems

Desired properties:

• vote privacy: ”no one learns my vote”

• result integrity: result is the combination of cast ballots

even against

dishonest voting server

Voter Voting server Ballot box

Public bulletin board

enc(b) enc(b)

Studied in academic research and used in real elections:

• Helios, Select, Belenios, ...

• Estonia, Australia, Switzerland, ...

2



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)σ =σ =σ = sign(k, enc(b))

,σσσ

k , ?

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)σ =σ =σ = sign(k, enc(b))

,σσσ

k , ?

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)σ =σ =σ = sign(k, enc(b))

,σσσ

k , ?

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)σ =σ =σ = sign(k, enc(b))

,σσσ

k , ?

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution

3



Attack: ballot stuffing

Voter Voting server Ballot box

enc(b) enc(b)

enc(b’)σ =σ =σ = sign(k, enc(b))

,σσσ

k , ?

What is missing: verifiable eligibility of ballots

Existing solutions:

• trust the voting server not to add ballots (Helios, France, Australia) ✗ not a solution

• sign ballots

• PKI (Estonia) ✗ rarely available

• ad-hoc: dedicated authority managing and distributing keys (Belenios, SwissPost)

✗ need extra entity and secure channel

✗ breaks everlasting privacy

Current problem: no existing privacy-preserving and practical solution
3



OpenID for e-voting

. . .

OpenID Connect:

• protocol to delegate authentication to identity provider

• widely deployed

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

Problem for e-voting: non-transitive authentication

⇒ not suitable for e-voting out-of-the-box

4



OpenID for e-voting

. . .

OpenID Connect:

• protocol to delegate authentication to identity provider

• widely deployed

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

Problem for e-voting: non-transitive authentication

⇒ not suitable for e-voting out-of-the-box

4



OpenID for e-voting

. . .

OpenID Connect:

• protocol to delegate authentication to identity provider

• widely deployed

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

Problem for e-voting: non-transitive authentication

⇒ not suitable for e-voting out-of-the-box
4



Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter

5



Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter

5



Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter

5



Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter

5



Sign ballots with OpenID

Idea:

• set N = ballot

⇒ σσσ is linked to ballot

• publish σ along ballot

Relying Party User OpenID provider

AuthReq(N)

Authentication

tok = (id,N, ...), σ = sign(hash(tok))

OpenID Connect flow

Challenges:

1. voter should control when ballot is validated

2. voter should control which ballot is signed

3. published data should not reveal identity of voter

solved with OIDEli protocol

solved with ZKP

5



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Ballot box
ballot

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

OpenID Connect flow

tok = (id,ballot,...) σ = sign(hash(tok))

OIDEli

Ballot box
ballot,tok,σ

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

OpenID Connect flow

tok = (id,ballot,...) σ = sign(hash(tok))

OIDEli

Ballot box
ballot,tok,σ

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Agree on N ′ s.t. N ′ = Commit(ballot,N)

OpenID Connect flow with N ′ as nonce

tok = (id,N ′,...) σ = sign(hash(tok))

tok,σ

Check id and ballot in tok and verify σ

N = Reveal(N ′)

OIDEli

Ballot box
ballot,tok,σ,N

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Agree on N ′ s.t. N ′ = Commit(ballot,N)

OpenID Connect flow with N ′ as nonce and inspection of AuthReq

tok = (id,N ′,...) σ = sign(hash(tok))

tok,σ

Check id and ballot in tok and verify σ

N = Reveal(N ′)

OIDEli

Ballot box
ballot,tok,σ,N

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Agree on N ′ s.t. N ′ = Commit(ballot,N)

OpenID Connect flow with N ′ as nonce and inspection of AuthReq

tok = (id,N ′,...) σ = sign(hash(tok))

tok,σ

Check id and ballot in tok and verify σ

N = Reveal(N ′)

OIDEli

Ballot box
ballot,tok,σ,N

We have:

✓ verifiable eligibility

6



OIDEli protocol: OpenID for Eligibility

1. commit to ballot and reveal commitment after OpenID Connect flow

2. inspect AuthReq

Voting server Voter OpenID provider

ballot

Agree on N ′ s.t. N ′ = Commit(ballot,N)

OpenID Connect flow with N ′ as nonce and inspection of AuthReq

tok = (id,N ′,...) σ = sign(hash(tok))

tok,σ

Check id and ballot in tok and verify σ

N = Reveal(N ′)

OIDEli

Ballot box
ballot,tok,σ,N

We have:

✓ verifiable eligibility

✗ everlasting privacy

6



OIDEli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot

N

tok = (id,Commit(ballot,N), ...)

σ = sign(H), H = hash(tok)

+ π = ZKP(∃ id s.t. id ∈ Eligible ∧ H = hash((id,Commit(ballot,N), ))

7



OIDEli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot

N

tok = (id,Commit(ballot,N), ...)

σ = sign(H), H = hash(tok)

+ π = ZKP(∃ id s.t. id ∈ Eligible ∧ H = hash((id,Commit(ballot,N), ))

7



OIDEli with privacy

Idea: replace token containing voter identity with proof of signature by eligible voter

Content of ballot box:

ballot

N

− tok = (id,Commit(ballot,N), ...)

σ = sign(H), H = hash(tok)

+ π = ZKP(∃ id s.t. id ∈ Eligible ∧ H = hash((id,Commit(ballot,N), ))

7



OIDEli ZKP

ZKP(∃ id s.t. id ∈ Eligible ∧ H = SHA256SHA256SHA256((id,Commit(ballot,N), ))

Challenge: OpenID Connect relies on SHA256 ⇒ high proving time

multiple instances of SHA256 ⇒ super-high proving time!

Solution: use zk-SNARK framework

optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2

✓ design remains framework agnostic

Performance:

✗ naive circuit: < 0.75 proof per hour

✓ our circuit: ∼1.3K proofs per hour

✓ highly parallelizable

✓ computation on server

8



OIDEli ZKP

ZKP(∃ id s.t. id ∈ Eligible ∧ H = SHA256SHA256SHA256((id,Commit(ballot,N), ))

Challenge: OpenID Connect relies on SHA256 ⇒ high proving time

multiple instances of SHA256 ⇒ super-high proving time!

Solution: use zk-SNARK framework

optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2

✓ design remains framework agnostic

Performance:

✗ naive circuit: < 0.75 proof per hour

✓ our circuit: ∼1.3K proofs per hour

✓ highly parallelizable

✓ computation on server

8



OIDEli ZKP

ZKP(∃ id s.t. id ∈ Eligible ∧ H = SHA256SHA256SHA256((id,Commit(ballot,N), ))

Challenge: OpenID Connect relies on SHA256 ⇒ high proving time

multiple instances of SHA256 ⇒ super-high proving time!

Solution: use zk-SNARK framework

optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2

✓ design remains framework agnostic

Performance:

✗ naive circuit: < 0.75 proof per hour

✓ our circuit: ∼1.3K proofs per hour

✓ highly parallelizable

✓ computation on server

8



OIDEli ZKP

ZKP(∃ id s.t. id ∈ Eligible ∧ H = SHA256SHA256SHA256((id,Commit(ballot,N), ))

Challenge: OpenID Connect relies on SHA256 ⇒ high proving time

multiple instances of SHA256 ⇒ super-high proving time!

Solution: use zk-SNARK framework

optimize circuit (one SHA256 preimage)

In practice: implementation using Plonky2

✓ design remains framework agnostic

Performance:

✗ naive circuit: < 0.75 proof per hour

✓ our circuit: ∼1.3K proofs per hour

✓ highly parallelizable

✓ computation on server

8



Conclusion

✓ OIDEli protocol using OpenID to extend e-voting systems with verifiable eligibility

✓ Design and optimization of zk-SNARK circuit needed for OIDEli

✓ Implementation of a proof of concept integrated in Belenios

✓ Formal security proofs

Machine-checkable symbolic proofs using ProVerif

Thanks for your attention!

9



Conclusion

✓ OIDEli protocol using OpenID to extend e-voting systems with verifiable eligibility

✓ Design and optimization of zk-SNARK circuit needed for OIDEli

✓ Implementation of a proof of concept integrated in Belenios

✓ Formal security proofs

Machine-checkable symbolic proofs using ProVerif

Thanks for your attention!

9



Conclusion

✓ OIDEli protocol using OpenID to extend e-voting systems with verifiable eligibility

✓ Design and optimization of zk-SNARK circuit needed for OIDEli

✓ Implementation of a proof of concept integrated in Belenios

✓ Formal security proofs

Machine-checkable symbolic proofs using ProVerif

Thanks for your attention!

9



Conclusion

✓ OIDEli protocol using OpenID to extend e-voting systems with verifiable eligibility

✓ Design and optimization of zk-SNARK circuit needed for OIDEli

✓ Implementation of a proof of concept integrated in Belenios

✓ Formal security proofs

Machine-checkable symbolic proofs using ProVerif

Thanks for your attention!

9


	Eligibility in e-voting
	Our contributions

