Relation Mining Under Local Differential Privacy

Kai Dong, Zheng Zhang, Chuang Jia, Zhen Ling^{*}, Ming Yang, Junzhou Luo, Xinwen Fu

Background

- More and more data are collected by centralized institutions
- Data mining can fully unleash the value of data

Market Analysis

Popular Emojis Discovery

Healthcare Insurance

Background

• There is a risk of data leakage throughout its entire lifecycle, especially during data analyzing, as central servers may be untrustworthy

Local Differential Privacy (LDP)

• ϵ -Local Differential Privacy (LDP) : An algorithm Ψ satisfies ϵ -LDP [FOCS'13], if and only if for any two values $x_1, x_2 \in \mathbf{X}$, we have:

 $\forall T \in Range(\Psi) : \Pr(\Psi(x_1) = T) \le e^{\varepsilon} \cdot \Pr(\Psi(x_2) = T),$

where Range(Ψ) denotes the range of Ψ .

- privacy budget e reflects the tradeoff between data privacy and utility in the LDP algorithm.
 - ϵ ↓, privacy ↑, utility ↓ ϵ ↑, privacy ↓, utility ↑

Data Mining under LDP

Workflow

A data mining task under LDP can be formalized as an LDP protocol \mathcal{T} consisting of a pair of algorithms $\langle \Psi, \Phi \rangle$, defined as follows:

 $\mathcal{T}(\mathbf{E}) \triangleq \langle \Psi, \Phi \rangle.$

 Ψ : perturbation algorithm to perturb local data Φ : aggregation algorithm to extract useful knowledge

Data Mining under LDP

- Existing LDP protocols
 - 1、Statistical estimation
 - Mean Estimation: Duchi, PM, HM[ICDE'19]
 - Frequency Estimation (FO): GRR, OLH [Security'17]
 - 2、Item-level data mining

Set-Valued Item Mining (SVIM)[S&P '18]

SVSM[S&P'18]、CALM[CCS'18]、 PCKV [Security'20]、

Relation Mining (RM) under LDP

- Problem Definition
 - Relation level knowledge holds significant importance
 - ✓ Association rule mining Walmart >
 - ✓ Temporal relation mining amazon
 - The usefulness of relations are measured by two criteria:
 - **Support** indicates popularity

Confidence indicates reliability

$$s(w) \triangleq \frac{1}{n} \sum_{j=1}^{n} \mathbb{I}(w, \mathbf{w}^{j})$$
$$c((x_{a}, x_{b})) \triangleq \frac{s((x_{a}, x_{b}))}{s(x_{a})}$$

- Settings: Users $U = \{u_1, u_2, ..., u_n\}$, Items $X = \{x_1, x_2, ..., x_d\}$, A relation *w* is denoted as (x_a, x_b) .
- Objective: First identify the top- k_s relations in support, and then, from these k_s relations, find the top- k_c relations in confidence.

Relation Mining (RM) under LDP

- Challenges How to ensure accuracy
 - 1、Curse of Dimensionality
 - LDP noise is positively correlated with the domain dimensionality
 - The domain dimensionality of relations is at least the square of items
 - 2、Conflict between high-support and high-confidenceExisting technology prefers "high support but low confidence ".

	x_1	x_2	x_3	x_4	x_5	x_6
x_1	F 40	20	20	0	0	ך 0
x_2	20	30	10	0	0	0
x_3	20	10	30	0	0	0
x_4	0	0	0	25	25	25
x_5	0	0	0	25	25	25
<i>x</i> ₆	0	0	0	25	25	25

Basic Idea Reduce data dimensionality to reduce LDP noise

1. Pre-estimation: Identify the top-k items in support (k < d)

2. Projection: LDP noise level $O(k^2) \rightarrow O(r)$

```
LDP noise level O(d^2) \rightarrow O(k^2)
```

3. Iterative: Updating the estimation of the aggregator matrix

• Workflow

Grouping Strategy

 To save privacy budget, all users are randomly divided into 3 groups corresponding to three tasks, with each user queried only once in each task.

(1) High-Support Item Mining

The aggregator interacts with the first group of users and employs the SVIM protocol, finds the top-k items in support and estimate their support. The size of the relation domain is reduced from $O(d^2)$ to $O(k^2)$.

• Workflow

Grouping Strategy

To save privacy budget, all users are randomly divided into 3 groups corresponding to three tasks, with each user queried only once in each task.

(2) **★** High-Support Relation Mining

The aggregator interacts with the second group of users through 4 stages to finds the top- k_s relations in support which constitute a candidate set. The size of the relation domain is reduced from O(k^2) to O(r).

• Workflow

Grouping Strategy

 To save privacy budget, all users are randomly divided into 3 groups corresponding to three tasks, with each user queried only once in each task.

(3) High-Confidence Relation Mining

The aggregator interacts with the third group of users finds the top-kc relations in confidence from the candidate set.

Analysis

• Privacy

LDP-RM satisfies ϵ -LDP defined on users' items and relations.

- Utility
 - Estimation Error

Method	Estimation Error
SVIM	$O_1\left(\ell\sqrt{\log(\ell/\beta)}/\epsilon\sqrt{n}\right)$
HM	$O_2\left(\sqrt{r\log(r/\beta)}/\epsilon\sqrt{n}\right)$

Error vs Bias

- $r\downarrow$, bias \uparrow , error \downarrow
- $r\uparrow$, bias \downarrow , error \uparrow

Unbiased variant: HM-RM To demonstrate the bias has a minimal impact on the results.

Estimation Bias

The best rank-r approximation introduces a degree of bias in the process of recovering matrix. According to the Eckart-Young-Mirsky Theorem, we strike a balance by selecting a relatively small r: $\frac{r}{\sqrt{k}}$

min
$$r$$
 s.t. $\sum_{i=1}^{r} \sigma_i / \sum_{i=1}^{K} \sigma_i \ge \theta$

Analysis

Computational Overhead

Methods		User Side		Aggregator Side	
	Group #1 (<i>n</i> ₁)	Group $\sharp 2(n_2)$	Group #3 (<i>n</i> ₃)	Aggregator Side	
LDP-RM	$O(\log d)$	$O(k^2 + \log r)$	$O(\log k_s)$	$O(n_1 \log d + n_2(k^2 + \log r) + 2Tk^2 + n_3 \log k_s)$	
SVSM [43]	$O(\log d)$	$O(\log k_s)$		$O(n_1\log d + (n_2 + n_3)\log k_s)$	
CALM [50]	$O(\log d)$	$O(2^l)$		$O(n_1 \log d + (n_2 + n_3)2^l)$	
PCKV [18]	$O(\log d)$	$O(\log k_s)$		$O(n_1 \log d + (n_2 + n_3) \log k_s)$	

The computational overhead of LDP-RM is mainly due to the performance bottleneck of the second group of users, which brings the overhead of $O(k^2 + \log r)$.

Generalizing LDP-RM

- Relations Comprising More Items
 - Modification1: if support of guessed relation surpasses support of an item in candidate, then substitute into candidate
 - Modification2: if support of relation in matrix surpasses support of item in candidate, then reconstruct candidate by selecting the top-k frequent items/relations
- Frequency Oracle on Large Domains

LDP-RM can serve as a fundamental Frequency Oracle, called SVD-FO

Encode: original value domain $X = \{x_1, x_2, \dots, x_d\}$

 \rightarrow virtual value domain V². (V = { $v_1, v_2, \dots, v_{\lfloor d^{1/2} \rfloor}$ })

■ LDP-RM: Estimate matrix $(M_{a,b}) \in \mathbf{R}^{\lceil d^{1/2} \rceil \lceil d^{1/2} \rceil}$

• Datasets

Dataset	Domain Size	Users	Scenario	
IFTTT	354	300k	relation mining between 2 items	
Movie	5000	400k	relation mining between 2 items	
Modified IFTTT	354	300k	relation mining among 3 items	
Retail	2603	300k	association rule mining	
Kosarak	41,270	990k	item mining on a large domain	

• Metrics

$$F1 = \frac{2}{1/P + 1/R} = \frac{2PR}{P + R} \qquad \text{NCR} = \sum_{w \in W_e \cap W_t} q(w) / \sum_{w \in W_t} q(w) \qquad \text{VAR} = \frac{1}{|W_t|} \sum_{w \in W_t} (\rho(w) - \varphi(w))^2$$

Compared Methods

SVIM、SVSM、CALM、PCKV、HM-RM

• Experiments in mining relations between items

 ϵ [†], F1[†], NCR[†], VAR[↓]; k_s[†], F1[†], NCR[†], VAR[↓]

• Experiments in mining relations among items

• Experiments in item mining

• Experiments in mining association rules

Mathad	Retail			Retail*		
Methou	F1	NCR	VAR	F1	NCR	VAR
LDP-RM	0.558	0.640	0.246	0.546	0.654	0.180
SVSM	0.554	0.435	0.317	0.463	0.396	0.308
CALM	0.183	0.195	0.568	0.108	0.159	0.461
SVIM	0	0	0.603	0	0	0.491
PCKV	0	0	0.603	0	0	0.491
HM-RM	0.325	0.329	0.414	0.379	0.437	0.285

Retail*: slightly modify the Retail dataset by excluding data related to the top-8 items in support

• Comparison of iterative and non-iterative algorithms.

• Comparison of private and non-private algorithms.

Conclusions

- First introduce and investigate the problem of relation mining under LDP.
 - A fundamental problem
 - Implementing LDP in RM is challenging
- Propose LDP-RM, the first relation mining method under LDP.
 - Discover high support and high confidence relations
 - Utilize SVD and low rank approximation
 - Generalize to Item mining

THANK YOU!

Questions: dk@seu.edu.cn