
Vulnerability-oriented Testing for
RESTful APIs

Wenlong Du*, Jian Li*, Yanhao Wang, Libo Chen#

Ruijie Zhao, Junmin Zhu, Zhengguang Han, Yijun Wang, and Zhi Xue

RESTful APIs
• RESTful API has been widely used and spanned across

various scenarios
◆ Examples: Cloud Services, Content Management Systems

(CMS), Internet of Things (IoT)

API

API Security Issues

• More and more security issues appear on APIs
• Photo API bug in Facebook may have affected

6.8 million users

How to discover API security weaknesses
to make your API more secure?

Existing Methods

• RESTler:
• Functionality:

• Generates Stateful Test Cases: Parses OpenAPI and infers producer-
consumer dependencies

• Detects Errors: Detects status code 500 (“Internal Server Error”)

• Bug Detection: Utilizes checkers for resource leaks and hierarchy
violations

• Limitations:

• Mainly catches HTTP 500 errors and specific logic bugs

• Less effective in testing for security-specific issues such as SSRF or XSS

• Requires extensive time

Motivation: Thinking Like a Hacker

Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

• Objective: You aim to uncover SSRF vulnerabilities in Jellyfin.

Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

• Objective: You aim to uncover SSRF vulnerabilities in Jellyfin.

• Challenge: Jellyfin boasts hundreds of API endpoints...

Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

• Objective: You aim to uncover SSRF vulnerabilities in Jellyfin.

• Challenge: Jellyfin boasts hundreds of API endpoints...

• Goal: You need to conduct your tests quickly and efficiently.

Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

• Objective: You aim to uncover SSRF vulnerabilities in Jellyfin.

• Challenge: Jellyfin boasts hundreds of API endpoints...

• Goal: You need to conduct your tests quickly and efficiently.

• Question: Which API endpoint should be your primary target?

Motivation: What to Test?

REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: What to Test?

REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

/Images/Remote:
get:
operationId: GetRemoteImage
parameters:

- description: The image url.
in: query
name: imageUrl
required: true
schema:
description: The image url.
format: uri
type: string

responses:
description: Remote image returned.

summary: Gets a remote image.

Motivation: What to Test?

REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

/Images/Remote:
get:
operationId: GetRemoteImage
parameters:

- description: The image url.
in: query
name: imageUrl
required: true
schema:
description: The image url.
format: uri
type: string

responses:
description: Remote image returned.

summary: Gets a remote image.

Motivation: What to Test?

REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

/Images/Remote:
get:
operationId: GetRemoteImage
parameters:

- description: The image url.
in: query
name: imageUrl
required: true
schema:
description: The image url.
format: uri
type: string

responses:
description: Remote image returned.

summary: Gets a remote image.

What if the imageUrl points to
an internal resource?

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Motivation: How to Test?

Internal ServiceAttacker REST APIs

/Images/Ratings

/Images/Remote

/Items

…

/Items/Filter

Why Did We Choose This API?

• There is a distinct correlation between specific API security
vulnerabilities and their functionalities

• Example

• SSRF: Involves requesting remote resources

• Unrestricted File Upload: Pertains to file operations

• …

Intuition Verification

Objective

• To demonstrate the correlation between API functionalities and
vulnerabilities

Approach

• Analyzed six specific CWE types selected from the CVE database

• Manually summarized the functionalities of APIs corresponding to
each vulnerability, if detailed API information was available

• Derived insights from API specifications, source code, and
vulnerability descriptions

Example:

Example:

Load a file
based on URL

Intuition Verification

• Understanding API Vulnerabilities:
• CWE-918 Server-Side Request Forgery (SSRF):

• Prevalence in APIs that request remote sources, such as proxy interfaces.
• Example Keywords: "remote", "proxy", "URL".
• Hit Rate: 81% (17/21)

• CWE-434: Unrestricted File Upload:
• Common in APIs focused on file operations like uploading
• Example Keywords: "upload", "submit", "import".
• Hit Rate: 83% (35/42)

• CWE-22 Path Traversal:
• Associated with handling files through a "Path" variable.
• Example Keywords: "path", "dir", "file".
• Hit Rate: 52% (16/31)

Intuition Verification

• Understanding API Vulnerabilities:

• CWE-78 OS Command Injection:
• Utilized for setting configurations via commands in OS shell.
• Example Keywords: "CMD", "command", "system".
• Hit Rate: 40% (22/55)

• CWE-89 SQL Injection:
• Responsible for handling SQL database operations.
• Example Keywords: "SQL", "database", "select".
• Hit Rate: 53% (37/70)

• CWE-79 Cross-site Scripting (XSS):
• Present in APIs that display front-end pages showcasing text.
• Example Keywords: "display", "content", "view".
• Hit Rate: 35% (19/55)

• On average, 57% of vulnerable API interfaces affected by a specific
type of bug belonged to the same functionality.

Challenge

• C1: How can we efficiently distinguish between API
functional interfaces and pinpoint potentially vulnerable
functions?

• C2: How can we generate test case sequences that match
protocol states and target vulnerable interfaces?

• C3: How can we generate valid test cases for different
functions based on their security vulnerabilities?

Architecture of VoAPI2

Semantic Keyword Collection

• Build datasets based on CVEs and NVDs

• Conduct word frequency analysis and leverage
expert experience to get keywords

Vulnerability Type #Keywords API path
#Keywords API

parameter
API Type

SSRF 10 22 Resource Request APIs

Unrestricted
Upload

12 8 File Upload APIs

Path Traversal 12 3 Path Processing APIs

Command
Injection

12 7 System Configuration APIs

SQL Injection 11 4 Database Operation APIs

XSS 15 12 Text Display APIs

Candidate Interface Extraction

• Analyzes the API specification and generate a grammar file

• Utilizes the semantic keywords to check for their presence
in the paths and parameters of a given API

• Categorizes APIs into corresponding feature categories
based on keywords and map potential vulnerability types

Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

POST /database/collections/{collectionId}/documents

GET /database/collections
POST /database/collections
GET /database/collections/{collectionId}

Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

POST /database/collections/{collectionId}/documents

GET /database/collections
POST /database/collections
GET /database/collections/{collectionId}

Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

POST /database/collections/{collectionId}/documents

GET /database/collections
POST /database/collections
GET /database/collections/{collectionId}

Use Producer-Consumer Relationship, CRUD Semantics
and Resource Hierarchy to get producer

Feedback-based Testing and Verification

Test Case
Sender

Validation Server

API
Application

 Send

 Response

Bug?

Fe

ed
b

ac
k

V

erificatio
n

Samples in Testing Corpus

Sample Testing Corpus for Different API Types.
• Resource Request API: http://IP:PORT/ssrf/{0}

• File Upload API: evil files (.jsp,.asp,.php, etc.)
• Path Processing API: /etc/passwd; C://Windows//win.ini

• System Configuration API: curl http://IP:PORT/command/{0}

• Database Operation API: 1" or "1"="1; SQLMap

• Text Display API:

Evaluation

• Q1: Can VoAPI2 discover vulnerabilities in real-world
APIs?

• Q2: Can VoAPI2 efficiently generate test cases?

• Q3: How does the vulnerability-oriented strategy of
VoAPI2 affect the testing results?

Evaluation

• Dataset
◆ Seven real-world RESTful API

applications
◆ Three scales
◆ Code Repository and CMS

and Web Service

Applications Endpoint Type #Download

Gitlab 358 Code Repository 100M+

Jellyfin 405 CMS 100M+

Appwrite 95 CMS 5M+

Microcks 44 CMS 600K+

Casdoor 121 CMS 20K+

Gitea 325 Code Repository 20K+

Rbaskets 22 WebService 10K+

Compared Tools

• Vulnerability Scanners
• ZAP
• Astra

• RESTful API Testing Tools
• Restler
• RestTestGen
• MINER

Q1: Real-world Vulnerabilities

Q1: Real-world Vulnerabilities

• Vulnerability
◆ Identified 26 vulnerabilities
◆ 7 previously unknown
◆ 23 of them are assigned CVE numbers
◆ Other tools can only detect few of them

Q2: Efficiency

VoAPI2 achieves comparable results in test sequence generation.

Q3: Ablation Study
Application Bug-IDs Path VoAPI2 VoAPI2-V

Appwrite

CVE-2023-27159 /avatars/favicon 2.81s 1min31s

CVE-2023-27159 /avatars/image 2.90s 1min39s

CVE-2022-2925 /teams 53.42s 26min30s

CVE-2022-2925 .../memberships 1min03s 34min36s

CVE-2022-2925 /database/collections 15.28s 17min18s

CVE-2022-2925 /functions 1min39s 60min16s

CVE-2022-2925 /users 1min30s 48min08s

Rbaskets CVE-2023-27163 /api/baskets/{name} 2.08s 38s

Jellyfin

CVE-2021-29490 /Images/Remote 5.79s 225min46s

CVE-2021-29490 /Items/.../Image 7.26s 246min29s

CVE-2021-29490 /Items/.../Download 6.68s 228min13s

CVE-2023-27161 /Repositories 10.24s 322min38s

CVE-2023-23636 /Playlists 9min09s 368min04s

CVE-2022-35910 /Repositories 8min57s 322min47s

CVE-2023-23635 /Collections 8min25s 35min11s

1 unassigned /Startup/User 10min30s 495min28s

Casdoor
CVE-2022-24124 /api/get-organizations 5min04s 43min28s

CVE-2022-38638 /api/upload-resource 2min33s 75min50s

Microcks
1 unassigned /jobs 1.90s 11min19s

1 unassigned /artifact/download 2min06s 90min55s

Gitea
CVE-2022-1928 /repos/.../{filepath} 3.61s 94min41s

CVE-2018-15192 /repos/.../hooks 2.49s 36min05s

GitLab

CVE-2018-8801 /v3/hooks 1min12s 236min05s

CVE-2022-0249 /v3/projects 1min17s 20min17s

CVE-2022-2230 /v3/.../deploy_keys 1min49s 53min33s

CVE-2022-1190 /v3/.../milestone 2min36s 145min41s

⚫ Remove vulnerability-oriented
strategy in VoAPI2-V.

⚫ No new vulnerabilities were found
by VoAPI2-V.

⚫ VoAPI2-V is much slower.

Summary

• We propose VoAPI2, a novel inspection framework, to apply a
vulnerability-oriented strategy to inspect bugs

• Based on the key insight that the type of vulnerability in an API
interface is closely related to its functionality

• VoAPI2 discovered 7 zero-day and 19 disclosed bugs on seven
real-world RESTful APIs

Our Code:
https://github.com/NSSL-SJTU/VoAPI2

https://github.com/NSSL-SJTU/VoAPI2

Thank You

Questions?

	VoAPI2
	Vulnerability-oriented Testing for RESTful APIs
	RESTful APIs
	API Security Issues
	Slide 4
	Existing Methods
	Motivation: Thinking Like a Hacker
	Motivation: Thinking Like a Hacker
	Motivation: Thinking Like a Hacker
	Motivation: Thinking Like a Hacker
	Motivation: Thinking Like a Hacker
	Motivation: Thinking Like a Hacker
	Motivation: What to Test?
	Motivation: What to Test?
	Motivation: What to Test?
	Motivation: What to Test?
	Motivation: How to Test?
	Motivation: How to Test?
	Motivation: How to Test?
	Motivation: How to Test?
	Motivation: How to Test?
	Motivation: How to Test?
	Why Did We Choose This API?
	Intuition Verification
	Example: CVE-2022-43776
	Example: CVE-2022-43776
	Intuition Verification
	Intuition Verification
	Challenge
	Architecture of VoAPI2
	Semantic Keyword Collection
	Candidate Interface Extraction
	Reverse Sequence Construction
	Reverse Sequence Construction
	Reverse Sequence Construction
	Reverse Sequence Construction
	Reverse Sequence Construction
	Feedback-based Testing and Verification
	Samples in Testing Corpus
	Evaluation
	Evaluation
	Compared Tools
	Q1: Real-world Vulnerabilities
	Q1: Real-world Vulnerabilities
	Q2: Efficiency
	Q3: Ablation Study
	Summary
	Thank You

