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RESTful APIs
• RESTful API has been widely used and spanned across 

various scenarios
◆ Examples: Cloud Services, Content Management Systems 

(CMS), Internet of Things (IoT)

API



API Security Issues

• More and more security issues appear on APIs
• Photo API bug in Facebook may have affected 

6.8 million users



How to discover API security weaknesses 
to make your API more secure?



Existing Methods

• RESTler:
• Functionality:

• Generates Stateful Test Cases: Parses OpenAPI and infers producer-
consumer dependencies

• Detects Errors: Detects status code 500 (“Internal Server Error”)

• Bug Detection: Utilizes checkers for resource leaks and hierarchy 
violations

• Limitations:

• Mainly catches HTTP 500 errors and specific logic bugs

• Less effective in testing for security-specific issues such as SSRF or XSS

• Requires extensive time
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Motivation: Thinking Like a Hacker

• Imagining you are an experienced hacker…

• Objective: You aim to uncover SSRF vulnerabilities in Jellyfin.

• Challenge: Jellyfin boasts hundreds of API endpoints...

• Goal: You need to conduct your tests quickly and efficiently. 

• Question: Which API endpoint should be your primary target? 
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/Images/Remote:
get:
operationId: GetRemoteImage
parameters:

- description: The image url.
in: query
name: imageUrl
required: true
schema:
description: The image url.
format: uri
type: string

responses:
description: Remote image returned.

summary: Gets a remote image.

What if the imageUrl points to 
an internal resource? 
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Why Did We Choose This API?

• There is a distinct correlation between specific API security 
vulnerabilities and their functionalities

• Example

• SSRF: Involves requesting remote resources

• Unrestricted File Upload: Pertains to file operations

• …



Intuition Verification

Objective

• To demonstrate the correlation between API functionalities and 
vulnerabilities

Approach

• Analyzed six specific CWE types selected from the CVE database

• Manually summarized the functionalities of APIs corresponding to 
each vulnerability, if detailed API information was available

• Derived insights from API specifications, source code, and 
vulnerability descriptions



Example:



Example:

Load a file 
based on URL



Intuition Verification

• Understanding API Vulnerabilities:
• CWE-918 Server-Side Request Forgery (SSRF):

• Prevalence in APIs that request remote sources, such as proxy interfaces.
• Example Keywords: "remote", "proxy", "URL".
• Hit Rate: 81% (17/21)

• CWE-434: Unrestricted File Upload:
• Common in APIs focused on file operations like uploading
• Example Keywords: "upload", "submit", "import".
• Hit Rate: 83% (35/42)

• CWE-22 Path Traversal:
• Associated with handling files through a "Path" variable.
• Example Keywords: "path", "dir", "file".
• Hit Rate: 52% (16/31)



Intuition Verification

• Understanding API Vulnerabilities:

• CWE-78 OS Command Injection:
• Utilized for setting configurations via commands in OS shell.
• Example Keywords: "CMD", "command", "system".
• Hit Rate: 40% (22/55)

• CWE-89 SQL Injection:
• Responsible for handling SQL database operations.
• Example Keywords: "SQL", "database", "select".
• Hit Rate: 53% (37/70)

• CWE-79 Cross-site Scripting (XSS):
• Present in APIs that display front-end pages showcasing text.
• Example Keywords: "display", "content", "view".
• Hit Rate: 35% (19/55)

• On average, 57% of vulnerable API interfaces affected by a specific 
type of bug belonged to the same functionality.



Challenge

• C1: How can we efficiently distinguish between API 
functional interfaces and pinpoint potentially vulnerable 
functions? 

• C2: How can we generate test case sequences that match 
protocol states and target vulnerable interfaces?

• C3: How can we generate valid test cases for different 
functions based on their security vulnerabilities?



Architecture of VoAPI2



Semantic Keyword Collection

• Build datasets based on CVEs and NVDs

• Conduct word frequency analysis and leverage 
expert experience to get keywords

Vulnerability Type #Keywords API path
#Keywords API 

parameter
API Type

SSRF 10 22 Resource Request APIs

Unrestricted 
Upload

12 8 File Upload APIs

Path Traversal 12 3 Path Processing APIs

Command 
Injection

12 7 System Configuration APIs

SQL Injection 11 4 Database Operation APIs

XSS 15 12 Text Display APIs



Candidate Interface Extraction

• Analyzes the API specification and generate a grammar file

• Utilizes the semantic keywords to check for their presence 
in the paths and parameters of a given API

• Categorizes APIs into corresponding feature categories 
based on keywords and map potential vulnerability types



Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}
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Reverse Sequence Construction

GET /database/collections/{collectionId}/documents/{documentId}

POST /database/collections/{collectionId}/documents

GET /database/collections
POST /database/collections
GET /database/collections/{collectionId}

Use Producer-Consumer Relationship, CRUD Semantics 
and Resource Hierarchy to get producer



Feedback-based Testing and Verification
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Samples in Testing Corpus

Sample Testing Corpus for Different API Types.
• Resource Request API: http://IP:PORT/ssrf/{0}

• File Upload API: evil files (.jsp,.asp,.php, etc.)
• Path Processing API: /etc/passwd; C://Windows//win.ini

• System Configuration API: curl http://IP:PORT/command/{0}

• Database Operation API: 1" or "1"="1; SQLMap

• Text Display API: <img src='http://IP:PORT/xss/{0}'>



Evaluation

• Q1: Can VoAPI2 discover vulnerabilities in real-world 
APIs? 

• Q2: Can VoAPI2 efficiently generate test cases?

• Q3: How does the vulnerability-oriented strategy of 
VoAPI2 affect the testing results?



Evaluation

• Dataset
◆ Seven real-world RESTful API 

applications
◆ Three scales
◆ Code Repository and CMS 

and Web Service

Applications Endpoint Type #Download

Gitlab 358 Code Repository 100M+

Jellyfin 405 CMS 100M+

Appwrite 95 CMS 5M+

Microcks 44 CMS 600K+

Casdoor 121 CMS 20K+

Gitea 325 Code Repository 20K+

Rbaskets 22 WebService 10K+



Compared Tools

• Vulnerability Scanners
• ZAP
• Astra

• RESTful API Testing Tools
• Restler
• RestTestGen
• MINER



Q1: Real-world Vulnerabilities



Q1: Real-world Vulnerabilities

• Vulnerability 
◆ Identified 26 vulnerabilities
◆ 7 previously unknown
◆ 23 of them are assigned CVE numbers
◆ Other tools can only detect few of them



Q2: Efficiency

VoAPI2 achieves comparable results in test sequence generation.



Q3: Ablation Study
Application Bug-IDs Path VoAPI2 VoAPI2-V

Appwrite

CVE-2023-27159 /avatars/favicon 2.81s 1min31s

CVE-2023-27159 /avatars/image 2.90s 1min39s

CVE-2022-2925 /teams 53.42s 26min30s

CVE-2022-2925 .../memberships 1min03s 34min36s

CVE-2022-2925 /database/collections 15.28s 17min18s

CVE-2022-2925 /functions 1min39s 60min16s

CVE-2022-2925 /users 1min30s 48min08s

Rbaskets CVE-2023-27163 /api/baskets/{name} 2.08s 38s

Jellyfin

CVE-2021-29490 /Images/Remote 5.79s 225min46s

CVE-2021-29490 /Items/.../Image 7.26s 246min29s

CVE-2021-29490 /Items/.../Download 6.68s 228min13s

CVE-2023-27161 /Repositories 10.24s 322min38s

CVE-2023-23636 /Playlists 9min09s 368min04s

CVE-2022-35910 /Repositories 8min57s 322min47s

CVE-2023-23635 /Collections 8min25s 35min11s

1 unassigned /Startup/User 10min30s 495min28s

Casdoor
CVE-2022-24124 /api/get-organizations 5min04s 43min28s

CVE-2022-38638 /api/upload-resource 2min33s 75min50s

Microcks
1 unassigned /jobs 1.90s 11min19s

1 unassigned /artifact/download 2min06s 90min55s

Gitea
CVE-2022-1928 /repos/.../{filepath} 3.61s 94min41s

CVE-2018-15192 /repos/.../hooks 2.49s 36min05s

GitLab

CVE-2018-8801 /v3/hooks 1min12s 236min05s

CVE-2022-0249 /v3/projects 1min17s 20min17s

CVE-2022-2230 /v3/.../deploy_keys 1min49s 53min33s

CVE-2022-1190 /v3/.../milestone 2min36s 145min41s

⚫ Remove vulnerability-oriented 
strategy in VoAPI2-V.

⚫ No new vulnerabilities were found 
by VoAPI2-V.

⚫ VoAPI2-V is much slower.



Summary

• We propose VoAPI2, a novel inspection framework, to apply a 
vulnerability-oriented strategy to inspect bugs

• Based on the key insight that the type of vulnerability in an API 
interface is closely related to its functionality

• VoAPI2 discovered 7 zero-day and 19 disclosed bugs on seven 
real-world RESTful APIs

Our Code: 
https://github.com/NSSL-SJTU/VoAPI2

https://github.com/NSSL-SJTU/VoAPI2


Thank You

Questions?
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