
Exploiting Leakage in Password 
Managers via Injection Attacks

Andrés Fábrega, Armin Navamari, Rachit Agarwal, Ben Nassi, Thomas Ristenpart



PASSWORD MANAGERS

3D!nh4pWCP
www.google.com

3D!nh4pWCP

3D!nh4pWCP

3D!nh4pWCP

3D!nh4pWCP

User A App servers User A

Cannot read or manipulate user data

New directions in password managers:
new advanced features
increasing app complexity



THIS WORK: INJECTION ATTACKS

New threat model for password managers that exploits app complexity

Security analysis of 10 password managers

Uncovered four general design patterns that can lead to vulnerabilities



PASSWORD MANAGERS BACKGROUND

password1234

qwerty2024

User A Sharing servers User B

qwerty2024

App servers

password1234

qwerty2024

Org admin

What attacks arise from interaction with adversarial clients?



INJECTION ATTACKS

Two key ingredients of injection attacks:

1. observe some form of protected application state
• Eavesdropper: Encrypted credentials and plaintext metadata

• Network adversary: HTTPS traffic

2. “inject” payloads into victim’s vault from an adversarial client
• For example, via credential sharing

Idea: application logic can result in cross-user data interactions, which may 

lead to side-channel leakage



INCLUSION-EXCLUSION CRITERIA

Criteria #1: support for cross-user credential sharing

Browser-integrated password managers

Criteria #2: cryptographic access control for shared credentials

Bitwarden

Final list: LastPass, Dashlane, Zoho Vault, 1Password, Enpass, 

Roboform, Keeper, NordPass, Proton Pass, and KeePassXC
Over 30% of all password manager users [1]

[1] https://security.org/digital-safety/password-manager-annual- report/



SUMMARY OF FINDINGS

Pattern #1: vault-health metrics
è Credential spoofing attack
5/10 applications vulnerable

Pattern #2: URL icon caching
èDictionary attack on URLs
6/10 applications vulnerable

Patterns #3 - #4: file deduplication and vault compression
è Dictionary attack on attachment contents, URLs, usernames
1*/10 application vulnerable



PATTERN#1: VAULT-HEALTH METRICS

Common feature: metrics about the “health” of a user’s credentials, such as the 
number of reused passwords in their vault

Computed across both personal and shared passwords
Logged outside device, e.g., the application servers

è Side-channel that reveals whether a password is in the victim’s vault or not!

User A Sharing servers User B

App servers

password1234 qwerty2024
qwerty2024 qwerty2024

qwerty2024

#dup=m
#dup=m

password1234password1234 password1234

password1234

#dup=m+1

password1234



CREDENTIAL SPOOFING ATTACK

Adversary has an “oracle” to test whether a candidate password is in the victim’s 
vault or not!

èEfficient credential spoofing attack via binary search
1. Let D = (p1, …, pn) be the list of candidate passwords
2. Share all of Dn/2 := (p1, …, pn/2) at once
3. If # dup increases, recurse into Dn/2. 

• Else, recurse into (pn/2+1, …, pn)

Can be modified to work with encrypted metrics

Relevant adversarial goal, even for password manager users [LSFBB18][PZBNC19]



CREDENTIAL SPOOFING ATTACK

Affected applications: LastPass, Dashlane, Zoho Vault, Keeper, and NordPass

Pre-conditions for attack:

1. Application has duplicate password reports

2. Number of duplicates computed across all credentials

3. Number of duplicates logged outside the device



OTHER ATTACKS

Pattern #2: URL icon caching
Most password managers display icons identifying the domain of credentials
In many cases, icons are cached on the client, and reused across all credentials

Side channel: icon fetched çè domain is not in vault
Leads to dictionary attack on domains in vault
Network adversary is sufficient*
Vulnerable applications: Dashlane, 1Password, Enpass, Roboform, NordPass, 
and Proton Pass

Patters #3 and #4: vault compression and file deduplication
Lead to vulnerability in other contexts, but first to show for password managers
Vulnerable applications: KDBX4 (KeePassXC)



MITIGATIONS

Pattern #1: vault-health metrics
Compute metrics separately

Pattern #2: URL icons
Retrieve icons every time
PIR

Patterns #3 - #4: vault compression and file deduplication
Disable dedup/compression
Namespace
Padding or noise

General mitigations for injection attacks?



RESPONSIBLE DISCLOSURE

Application Attack vector(s) Mitigations
LastPass Dup. metrics Yes
DashLane Dup. metrics Yes

URL icons Yes
NordPass Dup. metrics Yes

URL icons Yes
Zoho Vault Dup. metrics Yes
Enpass URL icons Yes
KeePassXC File dedup. Yes

Vault compression Yes
Keeper Dup. metrics TBD
1Password URL icons No
Proton Pass URL icons No
Roboform URL icons No



TL;DR of RESPONSIBLE DISCLOSURE

• 13 vulnerabilities across 10 applications

• 9/10 vendors acknowledged vulnerabilities

• 6/9 vendors deployed mitigations (partial or full)

• 9/13 vulnerabilities have mitigations deployed for



TAKEAWAYS

• Interaction with adversarial clients may lead to attacks

• Broader trend in E2EE application security

• New attack vectors suggest that we need new frameworks for auditing 

E2EE applications

• Need to reason about interaction with adversarial clients in audit 

of password managers / E2EE applications

• How do we detect injection attacks in an automated way?

• How do we navigate security-performance/usability tradeoffs? 


