
FIRE: Combining Multi-Stage Filtering with 
Taint Analysis for Scalable Recurring 

Vulnerability Detection

Huazhong University of Science and Technology (HUST), Wuhan, China
Nanyang Technological University, (NTU), Singapore

fengsiyue@hust.edu.cn



Recurring Vulnerabilities

With the development of software open-sourcing, reusing 
software becomes common. 

An increasing number of recurring vulnerabilities



Related Work

Approach Speed Syntactic changes Patch information

VUDDY ★★★★ × ×

MOVERY ★★ ★★★ ★★

ReDeBug ★★★★ × ×

MVP ★★ ★★★ ★★★

They either fail to detect recurring vulnerabilities with syntax changes, 
do not consider patch information, or have high time overhead.



Research Problem

There is a current need for a method that can: 

Enable rapid detection of extremely large-scale recurring vulnerabilities. 

Support for detecting vulnerabilities that make syntactically different but 

semantically identical changes. 

Consider the differences between vulnerabilities and patches.



Our Contributions

A novel method based on multi-stage filtering and differential 

tainted paths.

A prototype system (i.e. FIRE) for effective and scalable 

detection of recurring vulnerabilities in open-source software. 

A comparative evaluation of FIRE against state-of-the-art 

vulnerability detection methods.



1 System Design

Outline



1 System Design Overview of FIRE

Filtering Phase Vulnerability Identification Phase

Bloom Filter, Token Filter, and AST Filter Extract taint paths from source code

Target 

System

FIRE: Combining Multi-Stage Filtering with Taint Analysis for Scalable Recurring 

Vulnerability Detection

Shuffle Fuzzy Bloom 

Filtering

Filtering Phase

Token Similarity Filtering

Taint Analysis
Target Function

Output
AST Similarity Filtering

(Target Function, Vulnerability)

Vulnerability 

Functions

Patch 

Functions

Vulnerability Identification 

Phase

Similarity 

Calculation

(T
ar

g
et

 F
u

n
ct

io
n
, 

V
u

ln
er

ab
il

it
y

, 
P

a
tc

h
)



1 System Design Filtering Phase 

Goal Input Tool Output

Reduce the 
functions to be 
inspected in the 

next stage

Source code of 
the target 
software 

Potentially 
vulnerable 

target functions

Bloom Filter, 
Token Filter, 

and AST Filter



1 System Design Crucial Features of Vulnerabilities

The first group consists of 42 sensitive APIs, the improper use of 

which may lead to issues such as memory leaks and buffer overflows.

The second group consists of 20 format strings, where improper 

validation of input or use of format strings can lead to security 

vulnerabilities such as code injection attacks.

The third group consists of 42 operators, the use of which can lead to 

issues such as integer overflows and bit manipulation errors.

The fourth group consists of 73 C/C++ keywords. Keywords are 

identifiers with special meanings.



1 System Design Standard Bloom Filter

A2 (1, 2, 3, 4, 5)

B2 (1, 2, 3, 4, 6)



1 System Design Shuffle Fuzzy Bloom Filter

Insertion phase: Shuffle A2 (1, 2, 3, 4, 5) to (5, 4, 3, 1, 2) ,
Discard the first element to get A'2 (4, 3, 1, 2).

Query phase: Shuffle B2 (1, 2, 3, 4, 6) to (6, 4, 3, 1, 2),
Discard the first element to get B'2 (4, 3, 1, 2).



1 System Design Token Similarity Filter

Parse the function and extract token sets.

Calculate the similarity score between the token sets of the function and 
vulnerability by using Jaccard similarity.

Retain the functions with high similarity scores and all their corresponding 
similar vulnerabilities.



1 System Design AST Similarity Filter

Delete Lines and Add Lines

Measure the similarity by calculating the number of nodes shared between 
two ASTs, the target function must satisfy the following conditions:

⚫ C1: The target function must incorporate all deleted statements, i.e., ∀
h∈ Sdel, h∈ F.

⚫ C2: The target function must not include any of the added statements, 

i.e., ∀ h∈ Sadd, h∉ F.

⚫ C3: The similarity between target function and vulnerable function 

should surpass a predefined threshold, i.e., Sim(AST_F,AST_Fv) ≥ T2.

⚫ C4: The target function should have a higher syntactically similarity to 

the vulnerable function, i.e., Sim(AST_F,AST_Fv) ≥ Sim(AST_F,AST_Fp).



1 System Design Vulnerability Identification Phase

Goal Input Tool Output

Determine if the 
target function 

is a vulnerability

Target function, 
vulnerability, 
and patched 

functions

Target functions 
that are verified 

as 
vulnerabilities

Differing taint 
path



1 System Design Signature Extraction

Extract taint paths from source code

Extract Vulnerability and Patch Signatures



1 System Design Vulnerability Detection

Extract vector representations for all paths

Compute the similarity between 
target function vectors and 
vulnerable function and patch 
function vectors

The target function should have a 
higher similarity to the vulnerable 
function

V1
V2
V3
…
Vn

V`1
V`2
V`3
…
V`m

S2
S3
…
Sn

average

S

S1
max



2 Evaluations

Outline



2 Evaluations Evaluations

Datasets and Metrics

Detection Effectiveness 

Detection Efficiency

The Significance of Multi-Stage Filters



2 Evaluations Datasets and Metrics

Vulnerability Dataset: 11,167 security patches from PatchDB and 10,874 

manually collecting vulnerability from CVE. 

Target Systems: Ten popular C/C++ open-source projects that cover various 

application domains.

IDX Name Version #Lines Domain
T1 FreeBSD 12.2.0 15,573,896 Operating System
T2 SeaMonkey 2.53.18 8,370,870 Internet App Suite
T3 Turicreate 6.4.1 5,003,684 Machine Learning
T4 MongoDB r4.2.11 3,295,598 Database
T5 Xemu 0.7.118 1,642,871 Emulator
T6 PHP 8.3.2 1,390,193 Scripting Language
T7 OpenCV 4.5.1 1,201,122 Computer Vision
T8 FFmpeg 4.3.2 1,118,186 Multimedia Processing
T9 Xen 4.17.3 527,124 Virtualization

T10 OpenMVG 2.1 490,103 Image Processing
Total - - 38,613,647 -



2 Evaluations Datasets and Metrics

Setup:

A server with 3.40 GHz Intel i7-13700k processor and 48 GB of RAM, running on 

ArchLinux with Linux Zen Kernel

Precision, Recall, F1 Comparative Systems:

• VUDDY

• MOVERY
Precision = TP/(TP+FP), 

Recall = TP/(TP+FN)

F1 = 2*Precision*Recall/(Precision+Recall)



2 Evaluations Evaluations

Datasets and Metrics

Detection Effectiveness 

Detection Efficiency

The Significance of Multi-Stage Filters



2 Evaluations Detection Effectiveness

FIRE outperforms VUDDY and MOVERY in detecting recurring vulnerabilities



2 Evaluations Evaluations

Datasets and Metrics

Detection Effectiveness 

Detection Efficiency

The Significance of Multi-Stage Filters



2 Evaluations Detection Efficiency 

FIRE can scale to large software projects, meeting practical 

needs in real-world applications



2 Evaluations Evaluations

Datasets and Metrics

Detection Effectiveness 

Detection Efficiency

The Significance of Multi-Stage Filters



2 Evaluations The Significance of Multi-Stage Filters

The number of functions retained after each filtering layer significantly 

decreases, indicating that each filtering layer we set up plays a role.

Bloom Filter Token Filter AST Filter Taint Path

Filtering Rate 80.63% 99.82% 99.96% 99.97%

Recall 93.24% 99.27% 91.97% 99.99% 

Speed (f/s) 167.71 54.31 1.43 0.12 



3 Conclusion

Outline



3 Conclusion Conclusion

 FIRE: a novel method based on multi-stage filtering and differential 

tainted paths.

Rapidly detect extensive recurring vulnerabilities through multi-stage filtering.

Support for detecting complex recurring vulnerabilities with syntax changes.

Consider differences between vulnerabilities and patches by using differential 

taint paths.



Thanks!

https://github.com/CGCL-codes/FIRE


