AttackGNN: Red-Teaming GNNs in Hardware Security Using Reinforcement Learning

Vasudev Gohil

Satwik Patnaik

Dileep Kalathil

Jeyavijayan "JV" Rajendran

Hardware-focused Threats to Computing Systems Due to Globalized Supply Chain

Hardware-focused Threats to Computing Systems

Real

Fake

Due to Globalized Supply Chain

Counterfeiting

Hardware Trojans

materials

Overproduction

IP Piracy

Reverse Engineering

State-of-the-art GNNs in Hardware Security

Т	echnique Type	Security Problem	Technique	GNN Framework	Claimed Efficacy
	Defense	Detecting Trojans	GNN4TJ [1]	Attention-based custom GCN	97% TPR
		Locating Trojans	TrojanSAINT [2]	Graph attention network	98% TPR, 96% TNR
		Detecting IP Piracy	GNN4IP [3]	Attention-based custom GCN	94.61% Accuracy
	Attack	Reverse Engineering	GNN-RE [4]	Graph attention network	98.87% Accuracy
		Hardware Obfuscation	OMLA [5]	Graph isomorphism network	89.55% Accuracy

State-of-the-art GNNs in Hardware Security

Technique Type	Security Problem	Technique	GNN Framework	Claimed Efficacy			
	Are Graph Neural Networks (GNNs) Used To Solve Hardware Security Problems Robust?						
	Hojans	لکا	Hetwork				
	Detecting IP Piracy	GNN4IP [3]	Attention-based custom GCN	94.61% Accuracy			
	Reverse Engineering	GNN-RE [4]	Graph attention network	98.87% Accuracy			
Attack	Hardware Obfuscation	OMLA [5]	Graph isomorphism network	89.55% Accuracy			

State-of-the-art GNNs in Hardware Security

Hardware Obfuscation

OMLA [5]

isomorphism network

89.55% Accuracy

Standard attack model of adversarial attacks

Kevin Eykholt et al., "Robust physical-world attacks on deep learning visual classification," In Proc. of CVPR, 2018

Standard attack model of adversarial attacks

No Modifications

Kevin Eykholt et al., "Robust physical-world attacks on deep learning visual classification," In Proc. of CVPR, 2018

Standard attack model of adversarial attacks

Kevin Eykholt et al., "Robust physical-world attacks on deep learning visual classification," In Proc. of CVPR, 2018

Trained GNN

No Modifications

Perturbations Following Circuit Design Rules

Standard attack model of adversarial attacks

Kevin Eykholt et al., "Robust physical-world attacks on deep learning visual classification," In Proc. of CVPR, 2018

Trained GNN

No Modifications

Perturbations Following Circuit Design Rules

Black-box Access

Standard attack model of adversarial attacks

Kevin Eykholt et al., "Robust physical-world attacks on deep learning visual classification," In Proc. of CVPR, 2018

Goal: Misclassification

No Modifications

Perturbations Following Circuit Design Rules

Black-box Access

Reward

$$r_t = \begin{cases} \alpha \ (> 0) & \text{if next state is misclassified} \\ 0 & \text{else} \end{cases}$$

Action

Reward

$$r_t = \begin{cases} \alpha \ (> 0) & \text{if next state is misclassified} \\ 0 & \text{else} \end{cases}$$

Action "rewrite" "refactor"

AttackGNN – Challenges

Reward

$$r_t = \begin{cases} \boldsymbol{\alpha} \ (> \mathbf{0}) & \text{if next state is misclassified} \\ \mathbf{0} & \text{else} \end{cases}$$

Action "rewrite" "refactor"

 α (> 0) if next state is misclassified else

Reward

Next state

Environment

s_t:[#inputs, #outputs, #gates, #wires, #AND gates, MDP Specific to One GNN

Agent

Unnecessary

Reward

Computations

Ineffective and Specific Actions

Action "rewrite" "refactor"

 α (> 0) if next state is misclassified else

Reward Next state

Environment

s_t:[#inputs, #outputs, #gates, #wires, #AND gates,

MDP Specific to One GNN

Agent

Unnecessary

Reward

Computations

Ineffective and Specific Actions

Action "rewrite" "refactor"

 $r_t = \begin{cases} \alpha \ (> 0) & \text{if next state is misclassified} \\ 0 & \text{else} \end{cases}$

Reward

Next state

s_t:[#inputs, #outputs, #gates, #wires, #AND gates, ...]

MDP Specific to One GNN

Agent

Unnecessary

Reward

Computations

Environment

Ineffective and Specific Actions

 \bigcirc

Action Don't use 3-input AND gates

a_t: allowed/unallowed gate types

 $r_t = \begin{cases} \alpha \ (> 0) & \text{if next state is misclassified} \\ 0 & \text{else} \end{cases}$

Reward

Next state

s_t:[#inputs, #outputs, #gates, #wires, #AND gates, ...] 3

MDP Specific to One GNN

Unnecessary
Reward
Computations

® Sparse
Rewards

Agent

Environment

Ineffective and Specific Actions

1

Action Don't use 3-input AND gates

a_t: allowed/unallowed gate types

AttackGNN - Solutions

 $r_t = \begin{cases} \alpha \ (> 0) & \text{if next state is misclassified} \\ 0 & \text{else} \end{cases}$

Reward

Next state

Environment

s_t:[#inputs, #outputs, #gates, #wires, #AND gates, ...] <u>(3</u>

MDP Specific to One GNN

© Multi-task
Learning:
Contextual MDP

Unnecessary
Reward
Computations

® Sparse
Rewards

Agent

Ineffective and Specific Actions

 \bigcirc

Action Don't use 3-input AND gates

a_t: allowed/unallowed gate types

AttackGNN – Results

Against GNN4IP (IP Piracy Detection GNN)

AttackGNN - Results

Against GNN4IP (IP Piracy Detection GNN)

Against TrojanSAINT (Trojan Locator GNN)

AttackGNN – Results

Against GNN-RE (Reverse Eng. GNN)

GNN4TJ predictions

Against OMLA (De-obfuscation GNN)

Against GNN4TJ (Trojan Detector GNN)

AttackGNN - Results

Against GNN-RE (Reverse Eng. GNN)

Against OMLA (De-obfuscation GNN)

Against GNN4TJ (Trojan Detector GNN)

Success rate of all GNNs against AttackGNN-generated adversarial circuits: 0%

GNNs used in hardware security are **not robust**!

Thank You

Vasudev Gohil vasudevgohil.com

<u>Secure and Trustworthy Hardware (SETH) Lab</u>
https://seth.engr.tamu.edu
Texas A&M University

References

- [1] Yasaei, Rozhin, Shih-Yuan Yu, and Mohammad Abdullah Al Faruque. "Gnn4tj: Graph neural networks for hardware trojan detection at register transfer level." In Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1504-1509, IEEE, 2021.
- [2] Lashen, Hazem, Lilas Alrahis, Johann Knechtel, and Ozgur Sinanoglu. "TrojanSAINT: Gate-level netlist sampling-based inductive learning for hardware Trojan detection." arXiv preprint arXiv:2301.11804, 2023.
- [3] Yasaei, Rozhin, Shih-Yuan Yu, Emad Kasaeyan Naeini, and Mohammad Abdullah Al Faruque. "GNN4IP: Graph neural network for hardware intellectual property piracy detection." In 58th ACM/IEEE Design Automation Conference (DAC), pp. 217-222, IEEE, 2021.
- [4] Alrahis, Lilas, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mohammad, Mahmoud Al-Qutayri, and Ozgur Sinanoglu. "GNN-RE: Graph neural networks for reverse engineering of gate-level netlists." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, no. 8: 2435-2448, 2021.
- [5] Alrahis, Lilas, Satwik Patnaik, Muhammad Shafique, and Ozgur Sinanoglu. "OMLA: An oracle-less machine learning-based attack on logic locking." IEEE Transactions on Circuits and Systems II: Express Briefs 69, no. 3: 1602-1606, 2021.