
Page-Oriented Programming: Subverting Control-

Flow Integrity of Commodity Operating System Kernels

with Non-Writable Code Pages

Seunghun Han1,2, Seong-Joong Kim1, Wook Shin1,

Byung Joon Kim1, Jae-Cheol Ryou2

1. The Affiliated Institute of ETRI

2. Chungnam National University

Outline

- Background

- Threat Model and Motivation

- Page-Oriented Programming (POP)

- Evaluation

- Discussion and Conclusion

2/35

Control-Flow Integrity

check 31

(*ptr)(list)

label 21:

check 11

ret

sort(list, less_than)

label 11:

sort(list, greater_than)

label 11:

ret

main() sort(list, ptr)

label 42:

check 14

ret

other(…)

label 31:

check 21

ret

greater_than(list)

label 31:

check 21

ret

less_than(list)

Allowed indirect transfer

Disallowed indirect transfer

Direct transfer that is not checked

3/35

Practical Implementations for Commodity OSes

- CFI implementations have focused on practicality

- They integrate with compilation toolchains and generate static CFGs

from source code

- They employ bitmap-based or function type-based verification and

create binaries enforced with CFI

- The implementations also adopt hardware-based CFI

mechanisms

- Recent CPUs support CFI-related features, such as Intel Control-flow

Enforcement Technology (CET), that restrict indirect branch targets

- This is known as hardware-assisted CFI

4/35

Practical Implementations in Use (for x86 systems)

CFI Implementation
Commodity

OS
Forward Edge Policy Backward Edge Policy

Microsoft Control-Flow

Guard (CFG) with CET
Windows Bitmap-based verification

Hardware-based

shadow stack

PaX Reuse Attack

Protector (RAP)

(open-source version)

Linux Type-based verification Type-based verification

GCC CFI

(only CET)
Linux

Hardware-based indirect

branch tracking

Hardware-based

shadow stack

Clang/LLVM CFI

with CET

Linux,

Windows

Type-based verification with

hardware-based indirect

branch tracking

Hardware-based

shadow stack

FineIBT

(integrated with CET)
Linux

Type-based verification with

hardware-based indirect

branch tracking

Hardware-based

shadow stack

5/35

Non-Writable Code for CFI

- The original work [1] emphasizes the importance of non-

writable code (NWC) for their CFI mechanism

- If an attacker modifies the CFI enforcement code, the mechanism

can be neutralized

- In commodity OSes, NWC is ensured by the address

translation mechanisms of the CPU

- Page tables in the kernel for user-level applications

- Second-level address translation (SLAT) tables in the hypervisor

for the commodity kernels

[1]: Martín Abadi, Mihai Budiu, Ú lfar Erlingsson, and Jay Ligatti. Control-flow integrity. In Proceedings of the 12th ACM

Conference on Computer and Communications Security (CCS), pages 340–353, 2005.
6/35

Outline

- Background

- Threat Model and Motivation

- Page-Oriented Programming (POP)

- Evaluation

- Discussion and Conclusion

7/35

Page-Level NWC for Commodity OSes (1)

Page Table SLAT Table1) 2)

1) Intel Extended Page Table (EPT) and AMD Rapid Virtualization Indexing (RVI) support the SLAT feature

2) Intel Mode-Based Execution Control (MBEC) and AMD Guest Mode Execution Trap (GMET) support user and supervisor mode-

based executions

Guest

Logical Address

Host

Physical Address
Guest Physical

Address
R W X

Host Physical

Address
R W

S

X

U

X

0x00401000 1 0 1

0x00402000 1 0 1

0x0040a000 1 0 0

0x0040b000 1 1 0

0x88001000 1 0 1 0

0x88002000 1 0 1 0

0x8800a000 1 0 0 0

0x8800b000 1 1 0 0

SX: Supervisor Execute UX: User Execute

Kernel

Code

RO Data

RW Data

HypervisorCommodity OS

Kernel

Code
with CFI

RO Data
(Credentials)

RW Data

8/35

Page-Level NWC for Commodity OSes (2)

Page Table SLAT TableGuest

Logical Address

Host

Physical Address
Guest Physical

Address
R W X

Host Physical

Address
R W

S

X

U

X

0x00401000 1 0 1

0x00402000 1 0 1

0x0040a000 1 0 0

0x0040b000 1 1 0

0x88001000 1 0 1 0

0x88002000 1 0 1 0

0x8800a000 1 0 0 0

0x8800b000 1 1 0 0

Kernel

Code

RO Data

RW Data

HypervisorCommodity OS

Kernel

Code
with CFI

RO Data
(Credentials)

RW Data

SX: Supervisor Execute UX: User Execute

1

1

1

0

0

0

9/35

Threat Model and Assumption

- We assume the target system is fortified with hardware-

assisted CFI policies and the page-level NWC mechanism

- Therefore, the system can thwart typical attack techniques such as

unauthorized code alterations, code injections, control-flow

hijackings, and direct modifications to kernel credentials

- We assume attackers have an arbitrary kernel memory read

and write vulnerability

- By exploiting it, attackers can leak information from the kernel,

manipulate page tables, and bypass kernel ASLR

- They also have local user privileges and can execute arbitrary

programs to exploit it
10/35

Motivation

- i) Is page-level protection sufficient to ensure NWC?

- SLAT tables in the hypervisor only translate guest physical

addresses (GPAs) to host physical addresses (HPAs)

- The tables do not consider guest logical address (GLA) to GPA

mappings

- ii) Is indirect branch tracking sufficient to detect control-flow

deviations?

- Practical CFI implementations do not monitor direct branches

because their target addresses are fixed in the code

- However, they are fixed in the GLA space, not the GPA space

11/35

Blind Spots of Page-Level NWC (1)

Page Table SLAT TableGuest

Logical Address

Host

Physical Address
Guest Physical

Address
R W X

Host Physical

Address
R W

S

X

U

X

0x00401000 1 0 1

0x00402000 1 0 1

0x0040a000 1 0 0

0x0040b000 1 1 0

0x88001000 1 0 1 0

0x88002000 1 0 1 0

0x8800a000 1 0 0 0

0x8800b000 1 1 0 0

kern_

normal()

kern_

sensitive()

HypervisorCommodity OS

0xff881211:

kern_normal(arg)

…

0xff88a211:

kern_sensitive(arg)

…

The page offsets of kern_normal() and kern_sensitive() are identical

12/35

SLAT Table

Host Physical

Address
R W

S

X

U

X

0x88001000 1 0 1 0

0x88002000 1 0 1 0

0x8800a000 1 0 0 0

0x8800b000 1 1 0 0

Page Table

Guest Physical

Address
R W X

0x00401000 1 0 1

0x00402000 1 0 1

0x0040a000 1 0 0

0x0040b000 1 1 0

Blind Spots of Page-Level NWC (2)

Guest

Logical Address

Host

Physical Address

kern_

normal()

kern_

sensitive()

HypervisorCommodity OS

0x0040a000

0x0040b000

0xff881211:

kern_normal(arg)

…

0xff88a211:

kern_sensitive(arg)

…

syscall_normal(root_cred)

13/35

Outline

- Background

- Threat Model and Motivation

- Page-Oriented Programming (POP)

- Evaluation

- Discussion and Conclusion

14/35

Page-Oriented Programming (POP)

- POP is a novel page-level code reuse attack, similar to ROP

and JOP

- It revisits page remapping attacks and exploits the weaknesses in

state-of-the-art kernel CFI implementations

- It programs page tables within the kernel using a kernel memory

read and write vulnerability

- POP can create arbitrary control flows under CFI

enforcement

- It identifies page-level gadgets and stitches them for attacker-

controlled execution flows

- Page-level NWC and hardware-assisted CFI policies are bypassed
15/35

Attack Scenario of POP (1)

16/35

Attack Scenario of POP (2)

17/35

Stage and Challenge of POP

0101

0101

10...

Kernel

Binaries

Call

NOP

SYS

Gadget and

System Call

List

Disassembling

(1) Page carving

System

Calls

Call

Gadgets

kern_

sensitive()

NOP

Gadget

NOP

Gadget

Remapping Pages

. . .

(2) Page stitching

; Syscall number for exploitation

mov $syscall_number, %rax

; Argument for the kern_sensitive() function

mov $0xdeadbeaf, %rdi or %rbx

; Execute the new control flow

syscall or int $0x80

; Malicious behaviors with root privileges …

Exploitation

CPU

TLB*

OLD
OLD

...

CPU

TLB

NEW
NEW

...

Flushing

(3) Page flushing

* Translation Lookaside Buffer

18/35

Stage 1 - Page Carving

function:

jmp fixed_address

ret

call | jmp (*ptr) ret

call | jmp fixed_address

(b) Call gadget (c) NOP gadget

Function Call Gadget

Partial Call Gadget

function:

pop | leave

ret

Function NOP Gadget

Partial NOP Gadget

__x64_sys_stub:

__ia32_sys_stub:

ret

(a) System call candidate

call | jmp fixed_address

19/35

Stage 2 - Page Stitching

(a) Direct call

chaining

(b) Indirect call

chaining

(c) Direct to indirect

call chaining

kern_sensitive():

call address

return

kern_gadget():

call address |

jmp address

return
non_essential():

returncall address |

jmp address

call (*ptr) |

jmp (*ptr)

Direct Call Gadgets

Indirect Call Gadgets

Direct Call

Gadgets

Indirect Call

Gadgets

kern_sensitive():

call address

return

kern_sensitive():

call address

return

return

NOP Gadget
sys_stub():

call address |

jmp address

return

sys_stub():

call address |

jmp address

return

sys_stub():

call address |

jmp address

return

non_essential():

return

return

NOP Gadget

non_essential():

return

NOP Gadget

20/35

Stage 3 - Page Flushing

- Page flushing wipes out stale mappings in the TLB to

replace them with new ones

- Modern CPUs manage TLB data to accelerate the translation from

logical to physical addresses

- Remapped physical pages are not accessed until the old mappings

in the TLB are flushed

- This stage removes global bits from page tables and waits

for a sufficient time

- Non-global pages have the same priority as user-level pages

- The TLB has limited space, so non-global pages are flushed more

frequently than kernel pages
21/35

Outline

- Background

- Threat Model and Motivation

- Page-Oriented Programming (POP)

- Evaluation

- Discussion and Conclusion

22/35

Environment

- Machine: HP Victus 16 laptop

- Intel i7-12700H with the CET technology and 16 GB RAM

- Operating system, compilation toolchain, and kernel CFI

implementations

- Ubuntu 22.04.2 and LLVM 6.0.0

- Clang/LLVM kernel CFI with Linux kernel 6.1.12

- FineIBT with Linux kernel 6.2.8

- Hypervisor-based page-level protection

- Open-source hypervisor, Shadow-box, with CET and MBEC

extensions from Intel

23/35

Evaluation

- i) Proof-of-concept (PoC) exploitation

- We developed PoC exploit code for FineIBT using a real-world

vulnerability

- CVE-2013-2595: Page remapping capability

- ii) Analysis of branch and gadget distributions

- We analyzed the distributions of system call candidates, direct

branches, and indirect branches

24/35

PoC - Essential Symbols for Exploitation

Symbol Name
Offset in

Kernel Code
Usage

sys_call_table 0x1400400
Breaking Kernel Address Space Layout

Randomization (KASLR)
__x64_sys_read 0x46fda0

clear_tasks_mm_cpumask() 0xeb800

Identifying kernel data structures such

as task_struct, mm_struct, and cred

prepare_kernel_cred() 0x1257f0

__set_task_comm() 0x47bff0

pgd_alloc() 0xc6840

init_task 0x201bb00

Performing POP
page_offset_base 0x19d7008

__per_cpu_offset 0x19dd9e0

commit_creds() 0x1253b0
25/35

__x64_sys_setuid(uid):
...

call 0xffffffff81107eb0
...

ret

0xffffffff814ae110

Logical Address:

Content:

__sys_setuid(uid):
...

call 0xffffffff811253b0
...

ret

0xffffffff81107eb0

Logical Address:

Content:

commit_creds(cred):
...

call and mov instructions
...

Instructions for updating

new credentials
...

ret

0xffffffff811253b0

Logical Address:

Content:

current_task:

current_task_cred
...

0xffff88846f631b40

Logical Address:

Content:

suid_dumpable:
...

0xffffffff846178a8

Logical Address:

Content:

key_fsuid_changed():
...

0xffffffff8164fba0

Logical Address:

Content:

key_fsgid_changed():
...

0xffffffff8164fc00

Logical Address:

Content:

set_dumpable():
...

0xffffffff8147cc60

Logical Address:

Content:

call_rcu():
...

0xffffffff811aca80

Logical Address:

Content:

inc_rlimit_ucounts():
...

0xffffffff811296c0

Logical Address:

Content:

del_rlimit_ucounts():
...

0xffffffff81129750

Logical Address:

Content:

proc_id_connector():
...

0xffffffff81ac1ed0

Logical Address:

Content:

Normal Application

setuid()

Data

Function

User

Kernel

: Control flow: System call entry point

Before POP

26/35

__x64_sys_removexattr(*root_cred, *name):
...

call 0xffffffff814af3b0
...

ret

0xffffffff814ae110

Logical Address:

Content:

current_task:

current_task_cred
...

0xffff88846f9bbb40

Remapped Address:

Content:

suid_dumpable:
...

0xffffffff849a18a8

Remapped Address:

Content:

key_fsuid_changed():
...

0xffffffff819d9ba0

Remapped Address:

Content:

key_fsgid_changed():
...

0xffffffff819d9c00

Remapped Address:

Content:

set_dumpable():

...

0xffffffff81a23c60

Remapped Address:

Content:

call_rcu():

...

0xffffffff82056a80

Remapped Address:

Content:

inc_rlimit_ucounts():
...

0xffffffff814b36c0

Remapped Address:

Content:

del_rlimit_ucounts():
...

0xffffffff814b3750

Remapped Address:

Content:

proc_id_connector():

...

0xffffffff81428ed0

Remapped Address:

Content:

Malicious Application

removexattr(root_cred)

Data

Function

User

Kernel

: Control flow: System call entry point

commit_creds(cred):
...

call and mov instructions
...

Instructions for updating

new credentials
...

ret

0xffffffff814af3b0

Logical Address:

Content:

After POP

Origin + 0x38a000

 NOP gadget  NOP gadget  NOP gadget

27/35

Distributions - System Call Candidates

Kernel Version Configuration
System Call

Total (x32 and x64) Candidate

6.1.12

(Clang/LLVM CFI

with CET)

Commodity 992 2521)

Kernel Default 992 220

6.2.8

(FineIBT)

Commodity 992 257

Kernel Default 992 229

1) Branch targets of system call candidates were aligned by 16 bytes

28/35

Distributions - Function Call and NOP Gadgets

Kernel

Version
Config.

Code Size1)

(KB)

Function Gadgets

Direct Call
NOP

Call Jump

6.1.12

(Clang/LLVM

CFI with CET)

Commodity 18,440.6
6,447

(6,466)2) -
6,088

(6,126)

Kernel

Default
18,444.8

5,495

(5,503)

2

(2)

6,542

(6,571)

6.2.8

(FineIBT)

Commodity 20,480.0
6,500

(6,507)
-

6,230

(6,247)

Kernel

Default
18,432.0

5,504

(5,506)

2

(2)

6,604

(6,625)

1) Code size indicates the .text section size of the kernel binary

2) The numbers at the top of function and partial gadgets represent the number of aligned gadgets. The bold numbers

in parentheses represent the sum of 16-bytes aligned and unaligned gadgets.

29/35

Distributions - Partial Call and NOP Gadgets

Kernel

Version
Config.

Partial Gadgets

Direct Call Indirect Call
NOP

Call Jump Call Jump

6.1.12

(Clang/LLVM

CFI with CET)

Commodity
67,356

(1,073,721)

4,428

(68,080)

60

(1,313)

570

(6,759)

63,301

(1,030,371)

Kernel

Default

61,639

(1,005,609)

7,249

(107,949)

42

(759)

708

(8,500)

43,333

(680,008)

6.2.8

(FineIBT)

Commodity
69,448

(1,100,737)

4,897

(75,282)

80

(1,640)

604

(7,095)

64,498

(1,045,240)

Kernel

Default

61,977

(1,011,125)

6,799

(99,514)

44

(825)

733

(8,816)

42,125

(659,266)

1) Aligned direct call gadgets have unaligned branch targets

1)

30/35

Outline

- Background

- Threat Model and Motivation

- Page-Oriented Programming (POP)

- Evaluation

- Discussion and Conclusion

31/35

Mitigations

- Page table protection and randomization

- SecVisor, HyperSafe, and kCoFI introduce page table protection

techniques with escorting page updates

- PT-Rand and Microsoft Windows employ page table randomization

techniques to conceal page table information

- Compartmentalization and domain isolation

- SeCage and xMP can impede POP by isolating page tables from

unrelated kernel components

- Data-flow integrity (DFI) and software fault isolation (SFI)

- DFI and SFI can prevent POP by limiting arbitrary memory read and

write vulnerabilities
32/35

Mitigations

- Intel Virtualization Technology-Redirect Protection (VT-rp)

- The Hypervisor-managed Linear Address Translation (HLAT)

feature of VT-rp specifically aims to mitigate page remapping attacks

- When the feature is enabled, it translates GLAs to GPAs instead of

relying on page tables within the guest OS

33/35

Conclusion

- We analyzed blind spots in kernel CFI implementations for

commodity OSes

- Their focus was on ensuring page-level NWC and verifying the

targets of indirect branches

- We introduced a novel POP technique capable of bypassing

state-of-the-art kernel CFI implementations

- We exploited these blind spots and evaluated POP

- We proposed potential mitigations against POP

- POP can be hindered by various software- and hardware-based

methods

34/35

Questions?

Seunghun Han

hanseunghun@nsr.re.kr

35/35

