
Scalable Zero-knowledge Proofs for Non-linear Functions
in Machine Learning

Meng Hao, Hanxiao Chen, Hongwei Li, Chenkai Weng, Yuan Zhang,
Haomiao Yang, Tianwei Zhang

③ Result

① Query

② Model
inference

Client Server

How to validate the service integrity, i.e., the inference results are
generated by a legitimate ML model with a correct specification?

Integrity of Model Inference

Zero-knowledge Proof

Zero-knowledge Proof

Verifier Prover
Verification: or Witness: 𝑤

Inference result	𝑦 + Proof 𝜋

• Completeness: Pr honest	prover	and	veri0ication	is	 = 1.

• Soundness: Pr 𝑦 ≠ Infer 𝑥, 𝑤 	and	veri0ication	is	 is negligible.

• Zero-knowledge: The proof leaks no information about 𝑤.

Existing ZKP is not Sufficient

• The bottleneck is the computation cost, primarily stemming from non-linear layers [1]

• Heavy arithmetic-Boolean conversion
• Heavy Boolean circuit evaluation

[1] Mystique: Efficient conversions for zero-knowledge proofs with applications to machine learning, USENIX Security, 2021.

• Model inference

Linear Layers Non-linear
LayersInput 𝑥 Output 𝑦

Non-linear Layers

• ReLU
• Maxpooling
• Sigmoid
• Normalization
• Softmax
• ……

Our Contributions

• Propose a ZK proof framework for non-linear functions in ML using table lookup.

• Achieve 50∼179× runtime improvement with a comparable communication cost.

ComparisonDigital decomposition Truncation Msnzb

(1) Building blocks

Exponential Division Reciprocal square root

(2) Mathematical functions

Softmax GELUNormalizationReLU Maxpooling

(3) Applications

Sigmoid

New perspective from table lookup

Verifier Prover

𝒙 𝒚
0 𝑓(0)
1 𝑓(1)
… …

𝑝 − 1 𝑓(𝑝 − 1)

Public table 𝐿 with 𝑥 ∈ [0, 𝑝)

Witness: 𝑥 and 𝑦
Table lookup-based ZKP

Verification: (𝑥, 𝑦) ∈ 𝐿

• CheckLookup: check the witness is an item of the public table

• CheckRange: check the witness belongs to a given range

[2] Two Shuffles Make a RAM: Improved Constant Overhead Zero Knowledge RAM, USENIX Security, 2024.

Existing table lookup techniques[2]:

New perspective from table lookup

Constructing lookup-based ZK proofs for non-linear functions is challenging.
• For a typical used 61-bit prime 𝑝 in ML, the table size 𝑇 ≈ 2!" would become intolerably large.

Challenge 1:

It is non-trivial to utilize these smaller digits in ZK proofs for non-linear functions.
• There are subtle result correctness and proof soundness issues.

Challenge 2:

Decompose input into a constant number of smaller digits.
Potential solution:

Potential solution:
Design new ZK protocols carefully using these decomposed digits.

Our ZK proof framework

ComparisonDigital decomposition Truncation Msnzb

(1) Building blocks

Exponential Division Reciprocal square root

(2) Mathematical functions

Softmax GELUNormalizationReLU Maxpooling

(3) Applications

Sigmoid

Digital Decomposition Protocol

• Digital decomposition: given 𝑥, output 𝑥*+,, … , 𝑥- satisfying 𝑥 = 𝑥*+,|| … ||𝑥-

𝑥

log 𝑝 bits

𝑥#$"

𝑑!"# bits

𝑥" 𝑥%

𝑑# bits 𝑑$ bits

……

Digital Decomposition

Check 1: 𝑥% ∈ 0,1 &! for 𝑖 ∈ [0, 𝑘 − 1]

Range 𝐿! = 0,1 "!

𝑥! ∈ 𝐿!CheckRange

Check 2: 𝑥 = 𝑥!"#|| … ||𝑥$	mod	𝑝	

−𝑥 = 0 mod	𝑝	

Check 3: 𝑥!"#|| … ||𝑥$ < 𝑝

A malicious Prover could decompose 𝑥
in [0, 2 '() * − 1] instead of [0, 𝑝 − 1]

1

2!! − 1

…

0

Comparison Protocol

• Comparison verification: given 𝑥 and a public constant 𝑐, verify that 𝑥 < 𝑐 holds

Step1：decompose 𝑥 into {𝑥!"#, … , 𝑥$}, 𝑥% ∈ 0, 1 &!

Step2：verify 𝑧%+, = 1 𝑥- < 𝑐- and 𝑧%
./ = 1 𝑥- = 𝑐-

0

2!! − 1

…

𝑥" 𝑥" 	< 𝑐# 𝑥" 	= 𝑐#

… …CheckLookup

[3] Practical and secure solutions for integer comparison, PKC, 2007.

• Our solution recursively exploits the observation[3]:

 where 𝑥 = 𝑥,||𝑥- and 𝑐 = 𝑐,||𝑐-

Step3：verify that 𝑥 < 𝑐 holds

…

𝑧 𝑦

…CheckLookup

ü 𝑧 =
ü 𝑦 is computed based on 𝑧

Comparison Verification

Our ZK proof framework

ComparisonDigital decomposition Truncation Msnzb

(1) Building blocks

Exponential Division Reciprocal square root

(2) Mathematical functions

Softmax GELUNormalizationReLU Maxpooling

(3) Applications

Sigmoid

Exponential Protocol

• Exponential: given 𝑥, output 𝑦 = (+,)
9

• Our solution exploits the following observation：

𝑦 = (,:)
9= (,:)

9-G (,:)
;.- <9+G ⋯ G (,:)

;∑0∈[-,45+) .0<945+

 where 𝑥 = 𝑥*+,|| … ||𝑥- and 𝑥= ∈ {0,1}>7 for 𝑖 ∈ [0, 𝑘 − 1]

Step1：decompose 𝑥 into {𝑥!"#, … , 𝑥$}, 𝑥% ∈ 0, 1 &!

Step2：evaluate 𝑦% = ("#)
0∑%∈[(,!) +%12! for 𝑖 ∈ [0,𝑘−1]

Exponential

Step3：evaluate 𝑦 = 𝑦$ B ⋯ B 𝑦!"#

Digital Decomposition

CheckLookup

Truncation

Our ZK proof framework

ComparisonDigital decomposition Truncation Msnzb

(1) Building blocks

Exponential Division Reciprocal square root

(2) Mathematical functions

Softmax GELUNormalizationReLU Maxpooling

(3) Applications

Sigmoid

Machine Learning Applications

• ReLU

The above protocols can be applied to non-linear functions of ML models, such as:

• Maxpooling • Sigmoid

• Softmax

• GELU • Normalization

where

Evaluation

• Experimental results of building blocks

Evaluation

• Experimental results of mathematical functions

Evaluation

• Experimental results of machine learning applications

Thank You

Meng Hao, menghao303@gmail.com
Hanxiao Chen, chenhanxiao.chx@gmail.com

