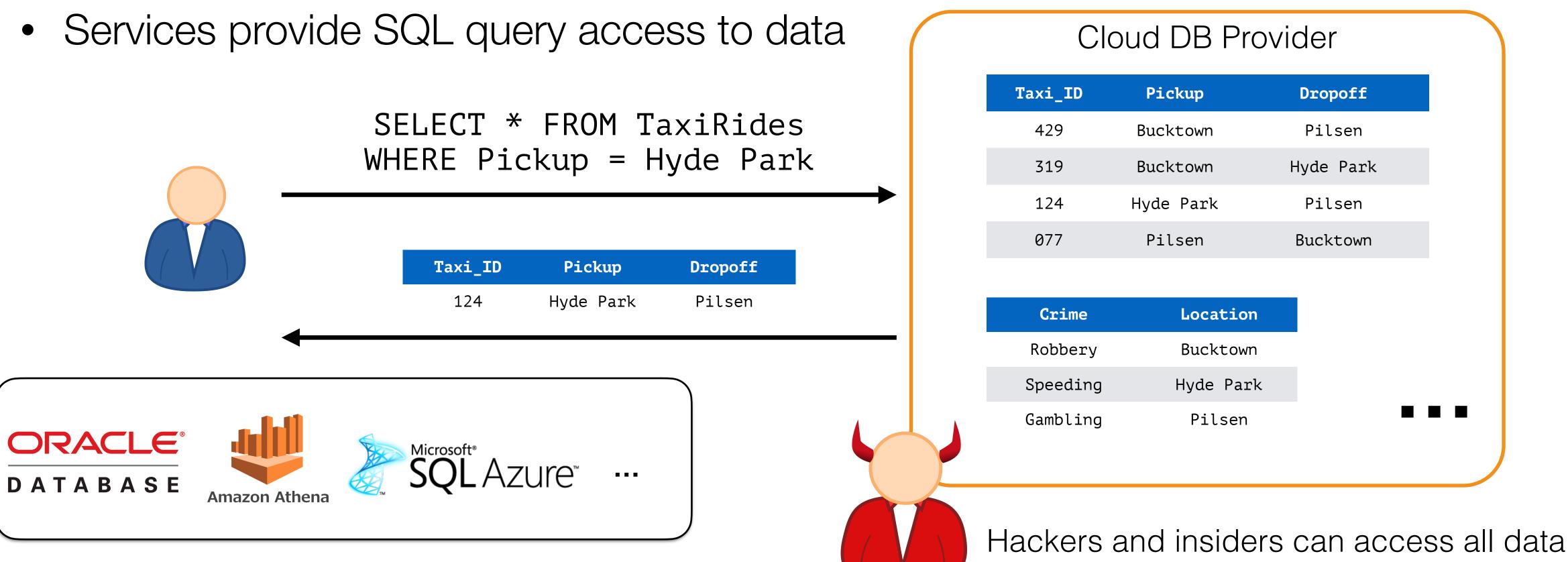
Leakage-Abuse Attacks Against Structured Encryption for SQL

Alex Hoover, Ruth Ng, Daren Khu, Yao'An Li, Joelle Lim, Derrick Ng, Jed Lim, and Yiyang Song

Cloud-Hosted SQL Databases

- (e.g data for medical, financial, sales, human resources, etc)



Modern systems currently outsource sensitive data to cloud providers in the clear

Client-Side Encryption

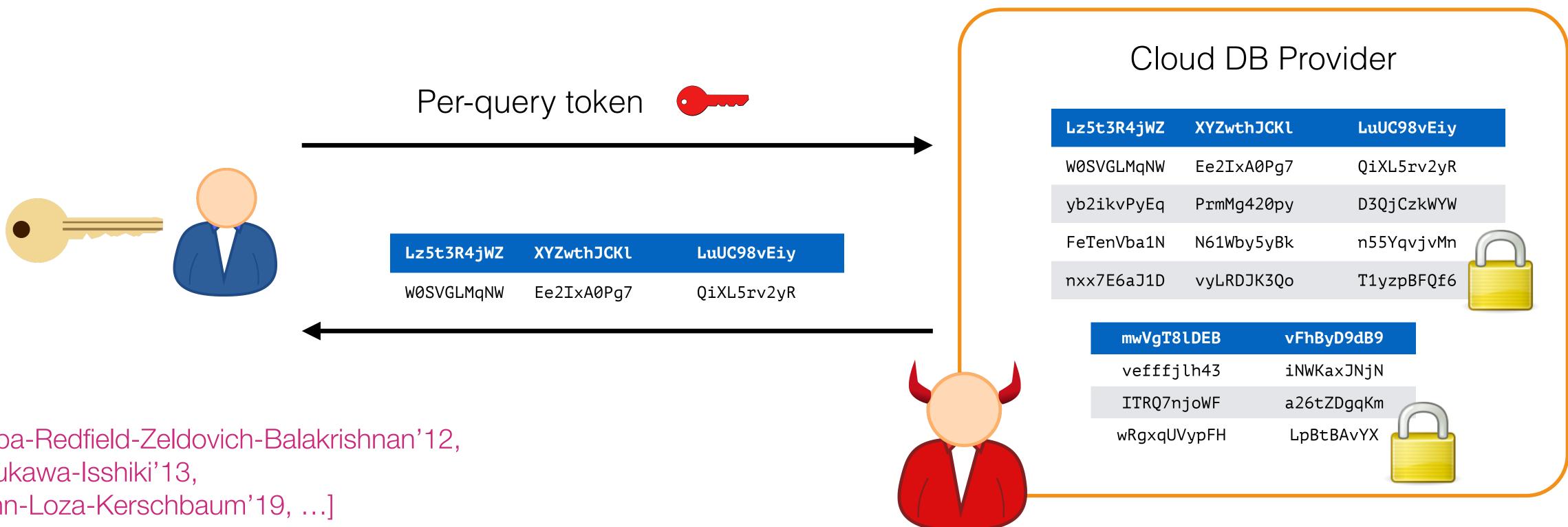
- But, how does the server process the query with standard encryption?



In **client-side** encryption, key resides at client and is not available to hackers

Queryable Encrypted Databases

- Best solutions also hide query activity and data from the DB provider \bullet
- The supported query types vary depending on the scheme used



[Popa-Redfield-Zeldovich-Balakrishnan'12, Furukawa-Isshiki'13, Hahn-Loza-Kerschbaum'19, ...]

• A client can use more complex cryptography to a store and query database

Structured Encryption

- 1. **Setup**: Build encrypted data structures under a client-held key
- 2. Query-token generation: Derive a query-specific token to send to server, from client-held key
- 3. Encrypted query processing: Compute the encrypted response, from a token and encrypted data structures, to send to the client

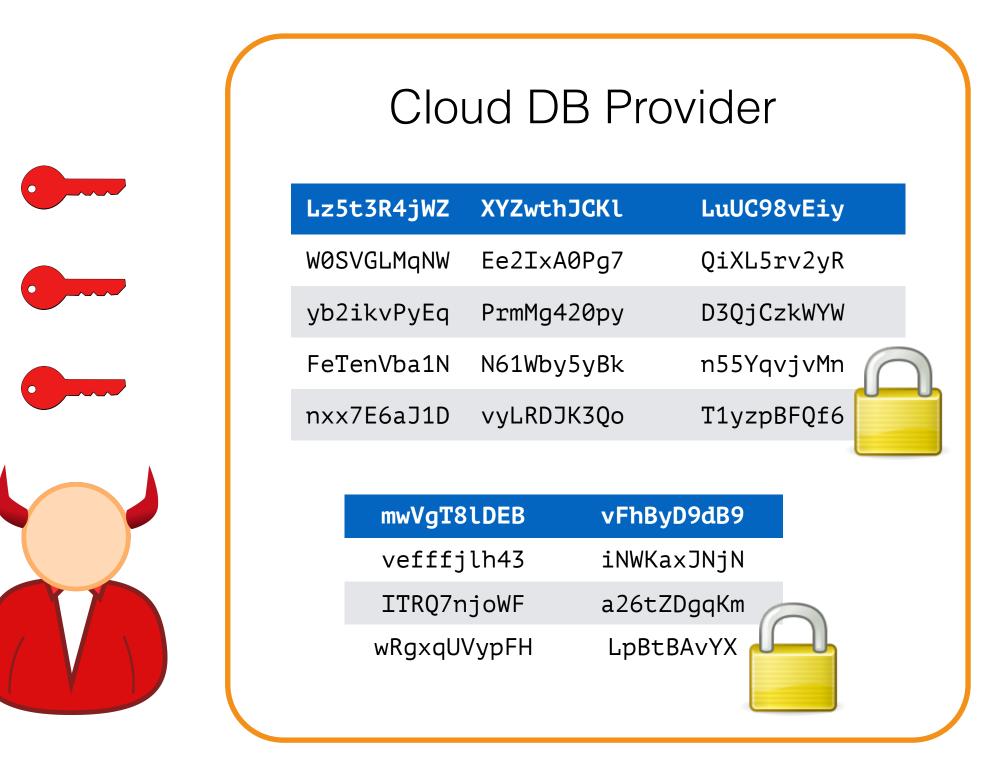
[Song-Wagner-Perrig'00, Curtmola-Garay-Kamara-Ostrovsky'06, Chase-Kamara'10, ...]

Structured Encryption (StE) is a symmetric-key scheme with three protocols:

We focus (primarily) on a few schemes which support simple SQL queries such as selections and joins. [Kamara-Moataz'18, Kamara-Moataz-Zdonik-Zhao'20, Cash-Ng-Rivkin'21,...]

Security for StE Schemes

- by analyzing encrypted data structures and query tokens



- Parameterized by a *leakage profile* \mathscr{L} that describes what a server can learn

• Formally, the "view" of a server can be simulated using output of \mathscr{L} only

- A typical leakage profile \mathscr{L} may include:
 - Bit-size of data
 - Number of tables
 - Number of rows
 - Number of rows matching a query
 - When queries are equal
 - Access pattern of processing \bullet

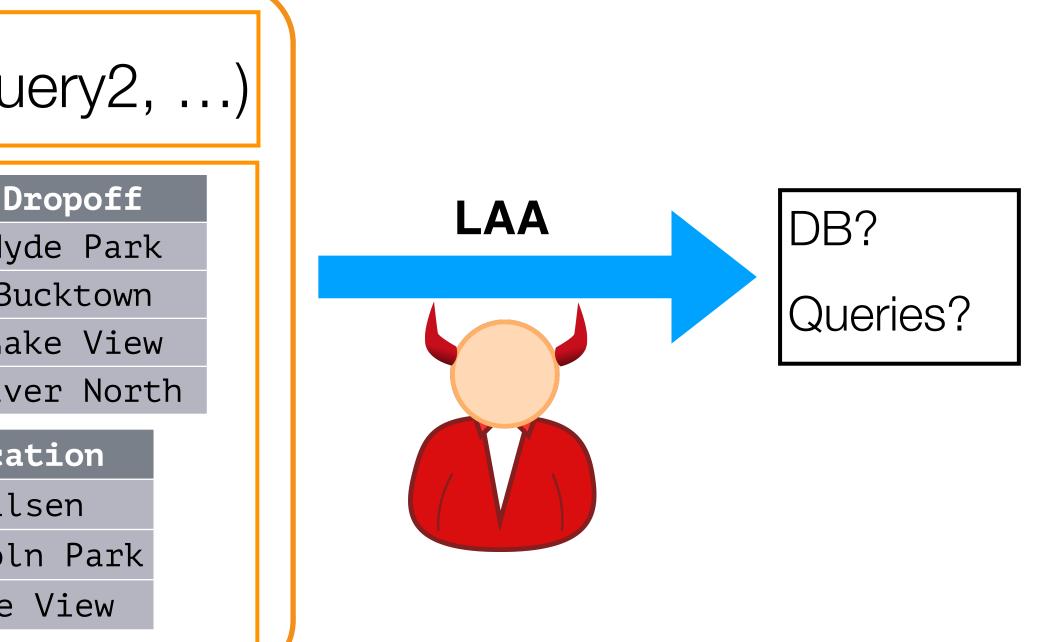
. . .

Leakage-Abuse Attacks (LAAs)

- In real world attacks, we cannot assume the adversary **only has** the leakage
- So, we consider: what other information could an adversary <u>already know</u>?

Leakage observed:	Z	e(E	DE	3, query	1,	qu
		I	D	Pickup		D
		86	59	Hyde Parl	<	Hy
		19	92	Hyde Parl	<	Βι
		21	.4	Pilsen		La
Prior distributions:		21	.4	Bucktown		Riv
				Crime		Loca
				Robbery		Pil
			(Speeding	Li	ncol
			(Speeding		Lake
	L					

- For this talk, assume the adversary has distributional information
- We model this as access to some previous year's database



[Naveed- Kamara-Wright'15, Bindschaedler-Grubbs-Cash-Ristenpart-Shmatikov'17,...]

New LAAs in Our Paper

Attacking SQL Selection Queries (column equality)

- Generalize prior LAAs against deterministic encryption
- Infer likely client query activity just a few selection queries and distribution

<u>Attacking SQL Join Queries</u> (cross-column equality)

- We identify how SQL join leakages differs depending on the type of join
- Give the first attacks against the the unique join leakage in StE for SQL
- Infer likely plaintext from access pattern and prior distribution

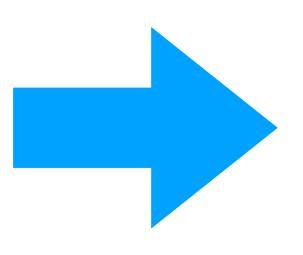
SQL Joins

Taxis

Taxi_ID	Pickup	Dropoff
429	Bucktown	Pilsen
319	Bucktown	Hyde Park
124	Hyde Park	Pilsen
077	Pilsen	Bucktown

Crimes

Crime	Location
Robbery	Bucktown
Speeding	Hyde Park
Gambling	Hyde Park



Taxis **JOIN** Crimes **ON** Taxis.Pickup = Crimes.Location

Taxi_ID	Pickup	Dropoff	Crime	Location
429	Bucktown	Pilsen	Robbery	Bucktown
319	Bucktown	Hyde Park	Robbery	Bucktown
124	Hyde Park	Pilsen	Speeding	Hyde Park
124	Hyde Park	Pilsen	Gambling	Hyde Park

 Amongst all possible ways of pairing a row from Taxis with a row from Crimes, keep those Pickup and Location match

• This is an *inner equi-join* (simple but common kind of join)

StE for SQL Joins

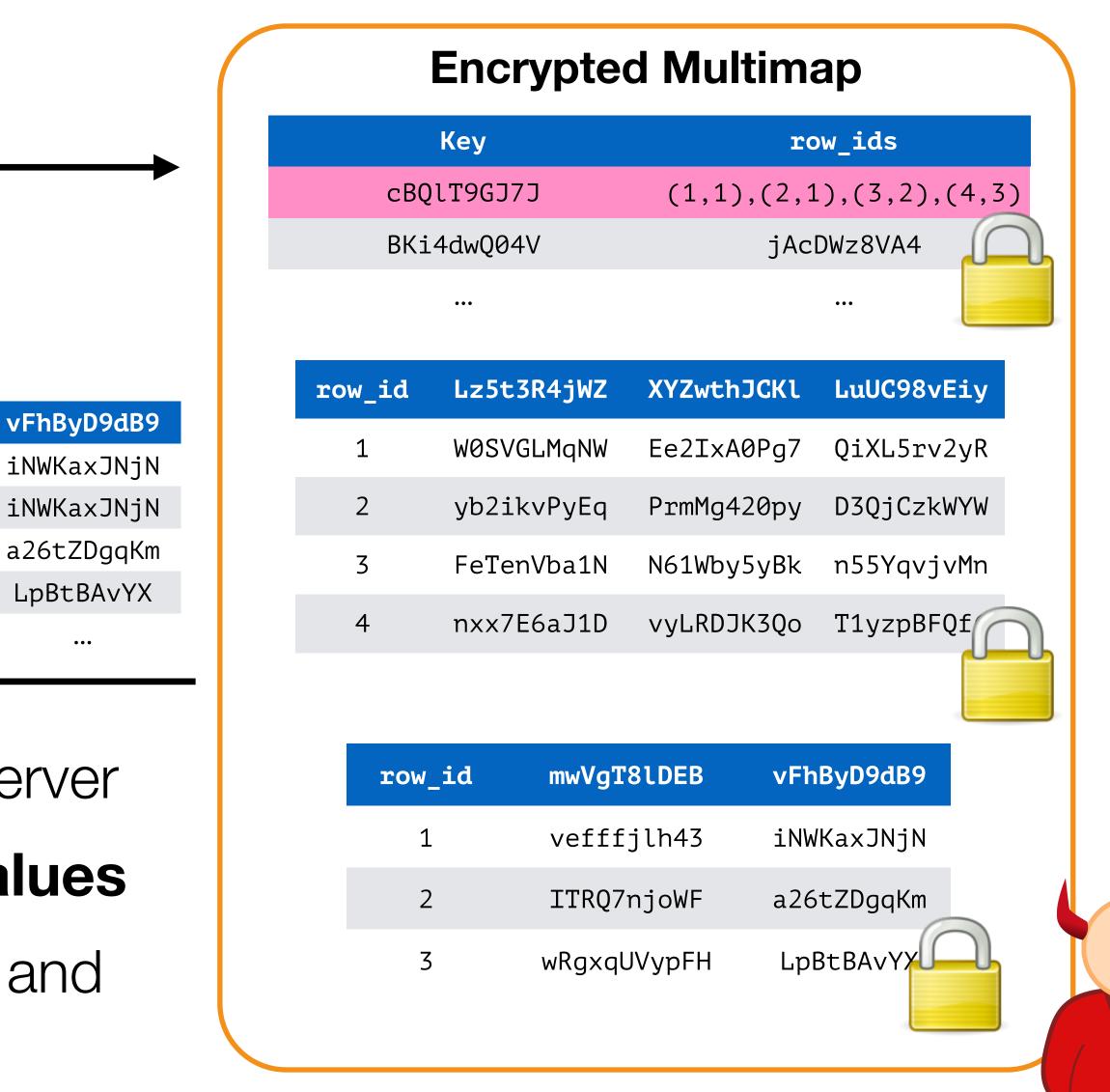
Taxis **JOIN** Crimes **ON** Taxis.Pickup = Crimes.Location

Lz5t3R4jWZ	XYZwthJCKl	LuUC98vEiy	mwVgT8lDEB
W0SVGLMqNW	Ee2IxA0Pg7	QiXL5rv2yR	vefffjlh43
yb2ikvPyEq	PrmMg420py	D3QjCzkWYW	vefffjlh43
FeTenVba1N	N61Wby5yBk	n55YqvjvMn	ITRQ7njoWF
nxx7E6aJ1D	vyLRDJK3Qo	T1yzpBFQf6	wRgxqUVypFH
•••	•••	•••	•••

(cBQlT9GJ7J,

- Client tokens queried list of row pairs to server
- Server learns all pairs with matching values
- Server combines the encrypted row pairs and returns them to Client

[Kamara-Moataz'18, Kamara-Moataz-Zdonik-Zhao'20, Cash-Ng-Rivkin'21,...]



Cloud DB Provider

Cross-column Equality

ime	Location			Taxi_ID	Pickup	Dropoff
	Unknown 4			W0SVGLMqNW	Unknown 4	QiXL5rv2
Uni	known 1			yb2ikvPyEq	Unknown 4	D3QjCzkW
Ur	iknown 2		\rightarrow	FeTenVba1N	Unknown 1	n55Yqvjv
Unknown 5				nxx7E6aJ1D	Unknown 2	T1yzpBF(
Unknown 3				HMjj07i5aI	Unknown 2	ISexxnia
Unknown 6				6kS2DHX4tR	Unknown 1	x2cgazII
Unknowr	13	$\checkmark \longrightarrow$		H1XbIQrE2Y	Unknown 3	MJp7jn6h
Unknown	4			4aqIyAfhnw	Unknown 5	YdBa3Uxc
Unknown 2	5			aNRtOQQM7K	Unknown 5	h0C7JDbf
Unknown 2				NnLojmIXWV	Unknown 2	ZIwGixlz
Unknown 6				b9GucpDkxG	Unknown 4	k8N2X3K0:

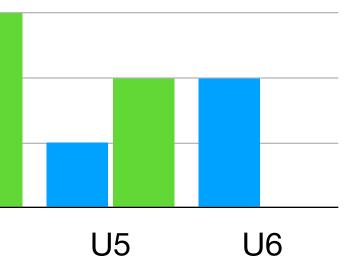
Taxis **JOIN** Crimes **ON** Taxis.Pickup = Crimes.Location

- From equality pairs, adversary can learn the size of each "equality group" in *both* tables
 - We represent this information with a pair of <u>aligned histograms</u>

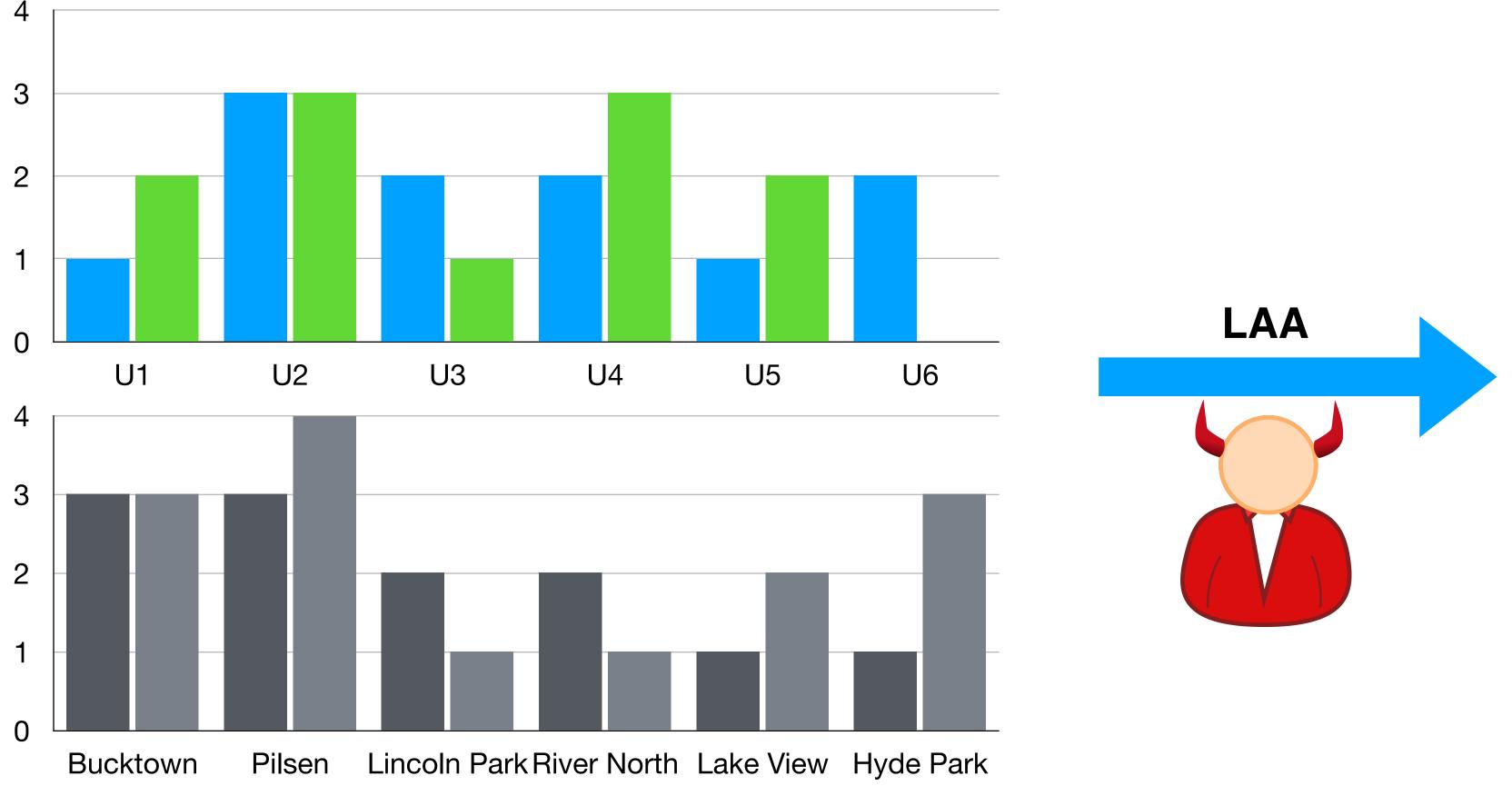
•

 \bullet

Cross-column leakage appears hard to remove without heavyweight crypto



Attacks against Join Leakage



- We give three attacks with new techniques tailored to this specific leakage

Unknown 1 = ?

Unknown 2 = ?

Unknown 3 = ?

Unknown 4 = ?

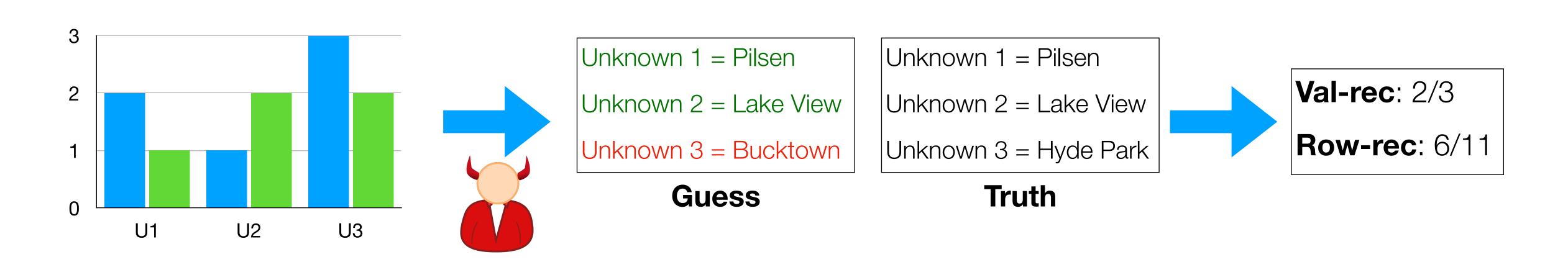
Unknown 5 = ?

Unknown 6 = ?

• An LAA in this context infers the most likely underlying observed values for each group

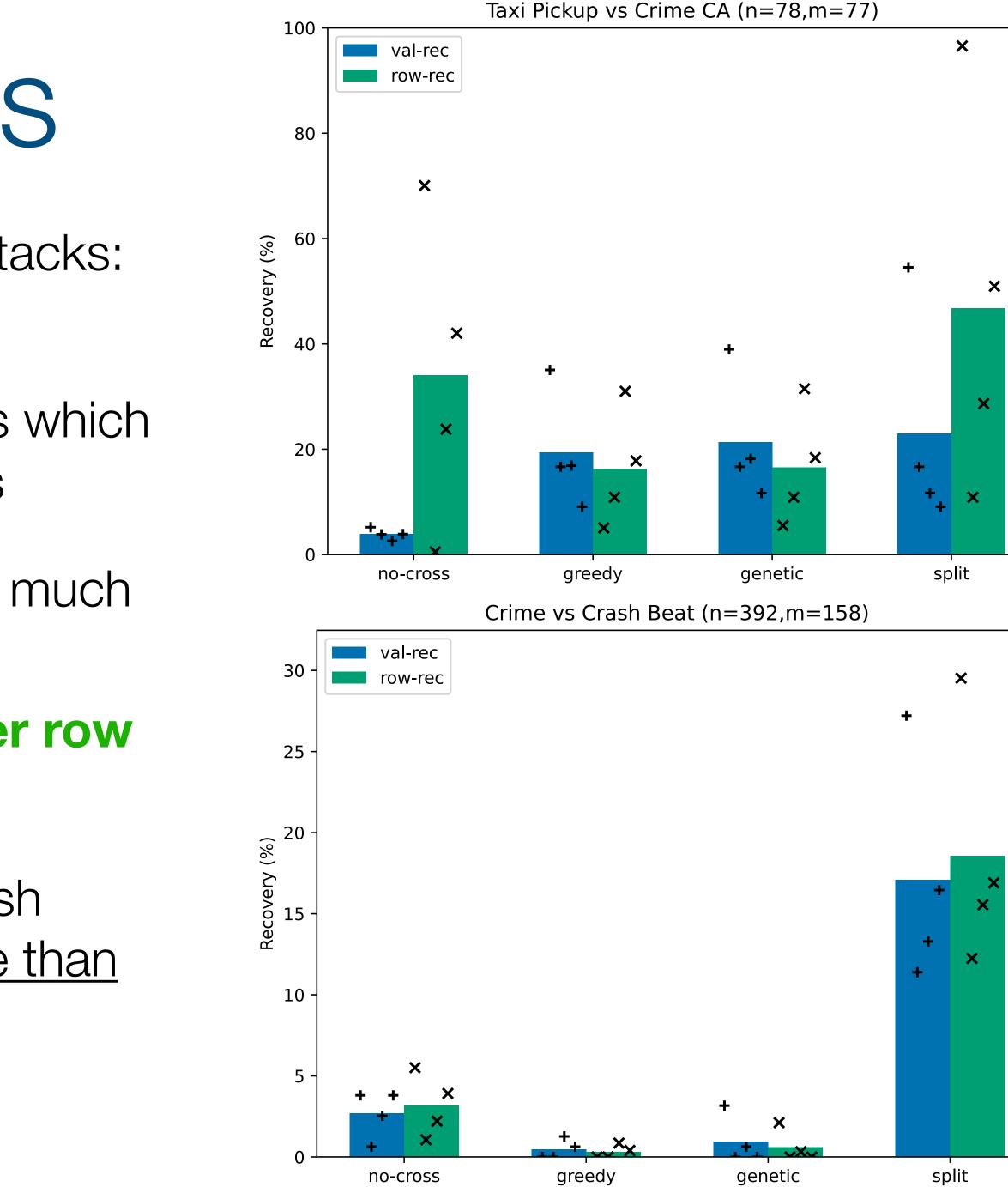
Empirical Evaluation

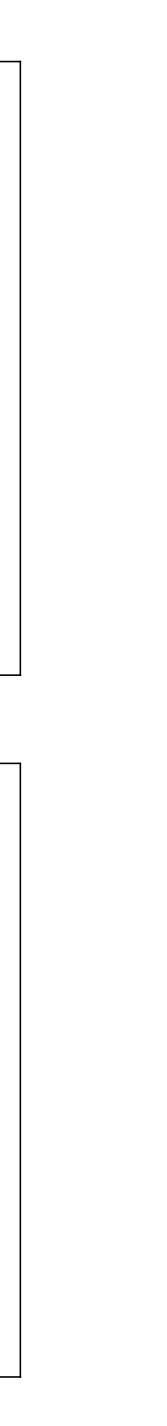
- We evaluate our attacks on publicly available Chicago data,
 - e.g. Crime, Crash, Taxi, and Rideshare tables
- We simulated the leakage for a variety of possible joins in the data
- The value recovery rate is the percent of values correctly identified
- The row recovery rate is the precent of <u>rows correctly identified</u>



Join Attack Results

- We tested 3 different cross-column attacks: "greedy," "genetic," and "split"
- Also tested optimal "no-cross" attacks which ignore correlation between columns
- Found that using correlation lead to much higher high value recovery
 - These correlation also lead to higher row recovery
- Even in our <u>hardest test</u> (Crime vs Crash Beats), our split attack <u>recovered more than</u> <u>15% of the values and rows</u>





Theoretical Techniques

- Our SQL selection attack generalizes frequency analysis to work without every frequency in the table and prove it is near-optimal
- Analyze the different between different join types
 - Prove that our attacks are optimal against "complete" joins
 - Prove that "incomplete" joins are NP-hard to infer optimally
- We give <u>new optimization algorithms</u> for partitioning sets with respect to the LAA inference objective
- Many other interesting algorithmic ideas to perform these attacks!

Thanks for listening!

Read the paper: **ia.cr/2024/554**

Read about me: **axhoover.com**

Questions?

Feel free to reach out about any future questions too!

Authors:

Alex Hoover (me) Ruth Ng Daren Khu Yao'An Li Joelle Lim Derrick Ng Jed Lim Yiyang Song

