UBA-Inf: Unlearning Activated Backdoor Attack with Influence-Driven Camouflage

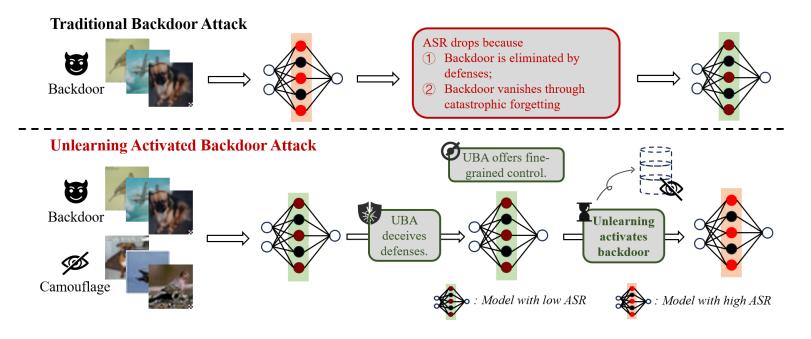
Zirui Huang¹, Yunlong Mao¹, Sheng Zhong¹

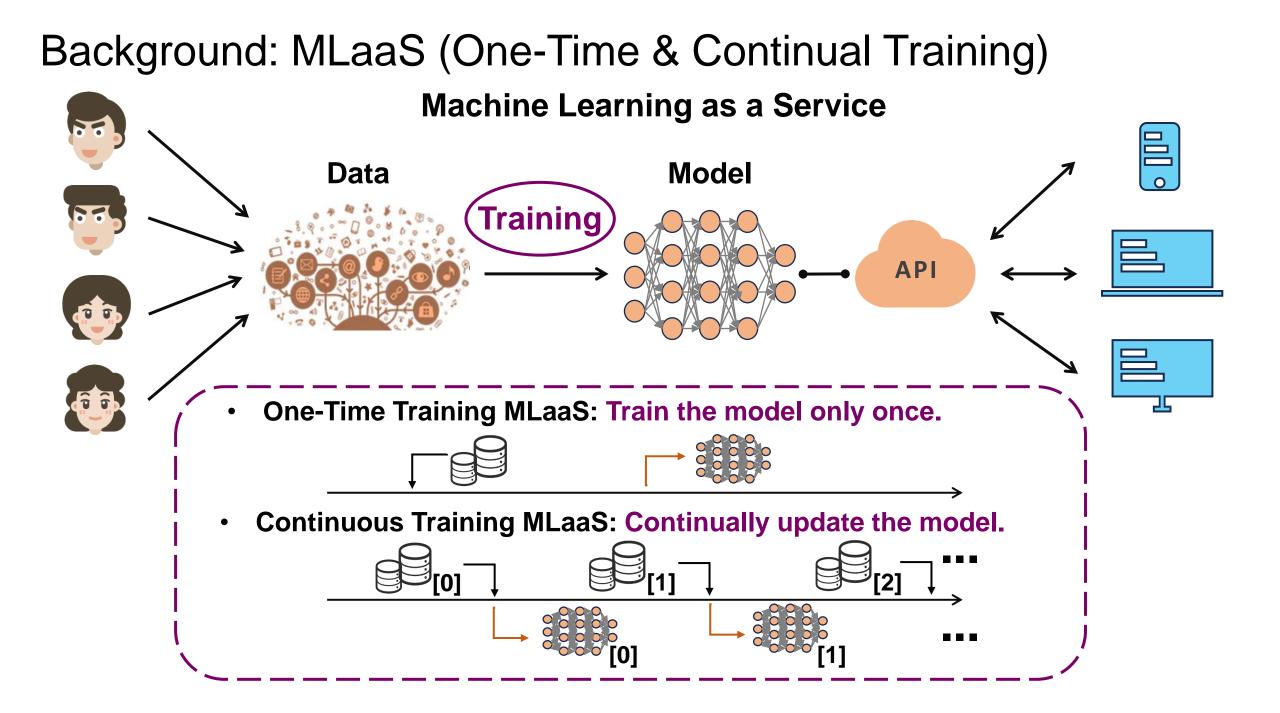
¹State Key Laboratory for Novel Software Technology, Nanjing University, China **huangzirui@smail.nju.edu.cn**, {maoyl, zhongsheng}@nju.edu.cn

The 33rd USENIX Security Symposium

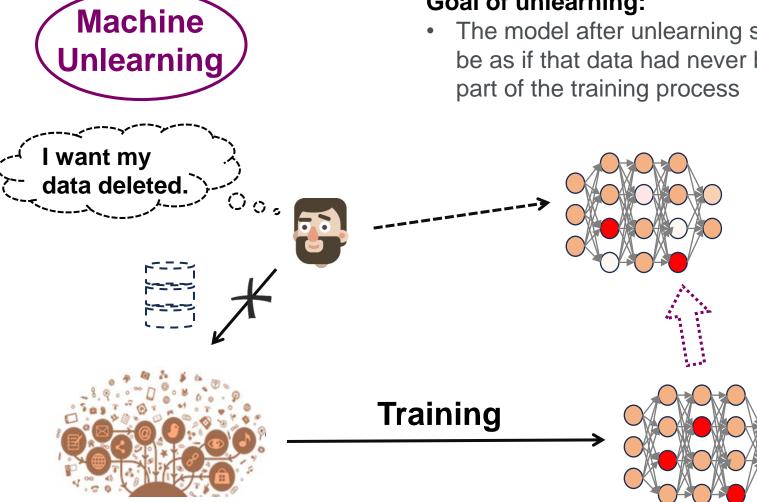
Let's begin with some easy take-aways

- Uncovering vulnerabilities in machine unlearning;
- Combining backdoor attacks and unlearning;
- Advancing persistent backdoor attacks in continual leaning.





Background: Machine unlearning



Goal of unlearning:

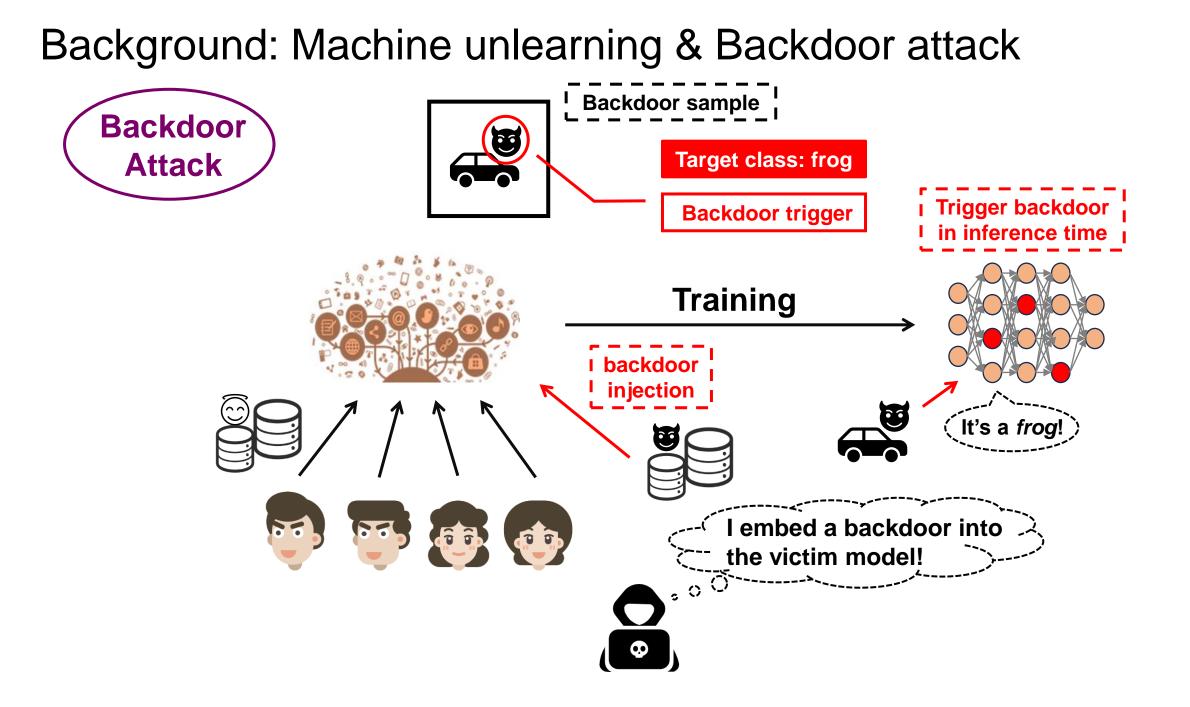
The model after unlearning should be as if that data had never been

Motivations for unlearning

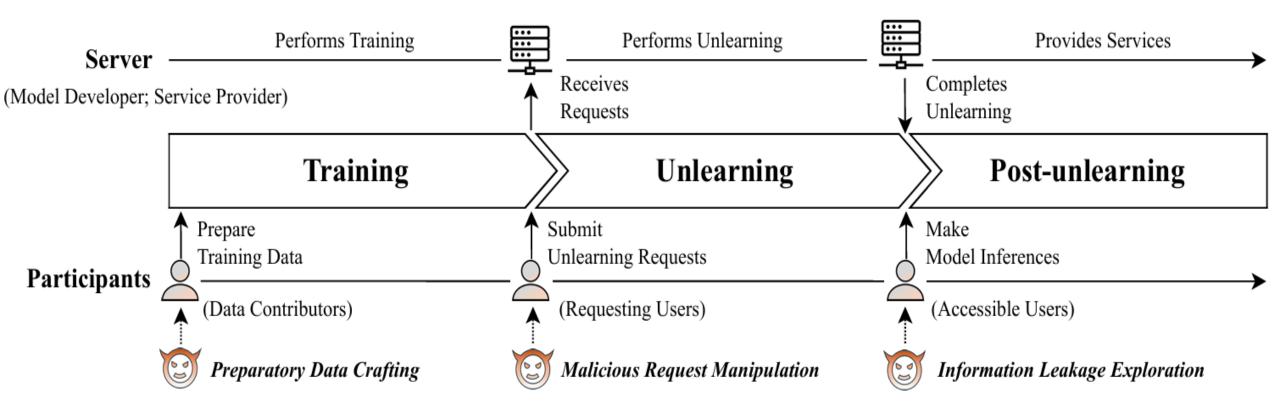
- Access revocation (think unlearning private and copyrighted data).
- Model correction & editing (think toxicity, bias, stale/dangerous knowledge removal).

Approaches to unlearning:

- **Exact unlearning** (retraining-based)
- Approximate unlearning (directly modify model parameters)



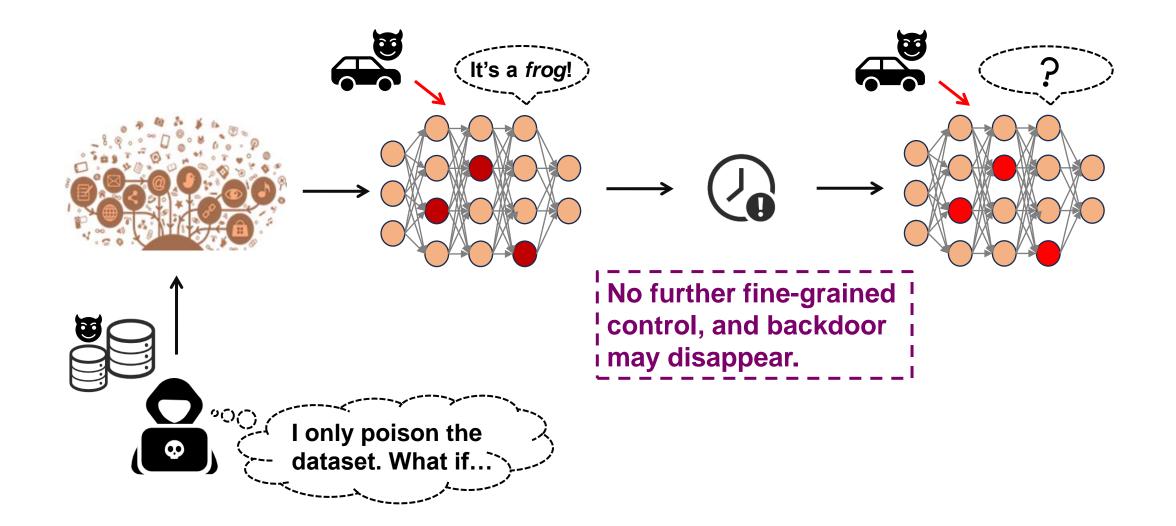
Motivation: There exist various unlearning vulnerabilities.



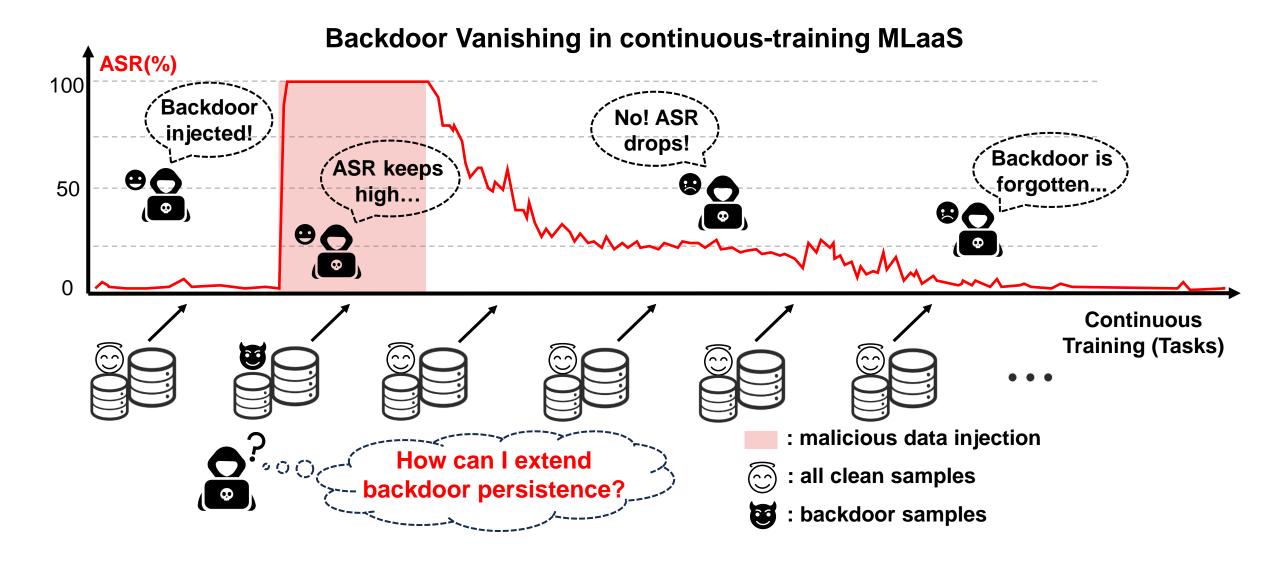
Machine unlearning is vulnerable!

Reference: Liu Z, Ye H, Chen C, et al. Threats, attacks, and defenses in machine unlearning: A survey[J]. arXiv preprint arXiv:2403.13682, 2024.

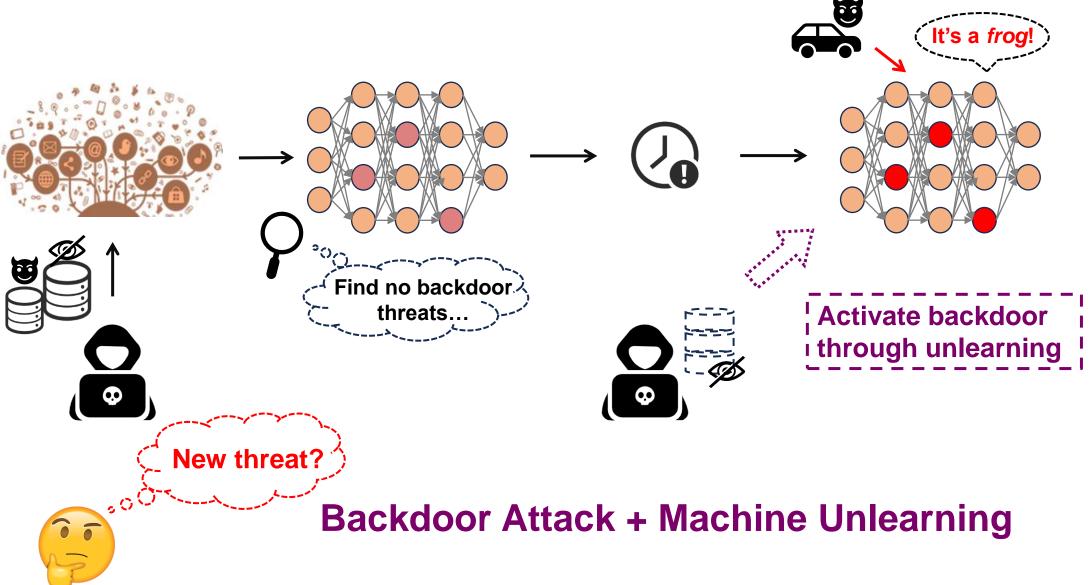
Motivation: Traditional backdoor lacks fine-grained control.



Motivation: Backdoor vanishes in continuous training.

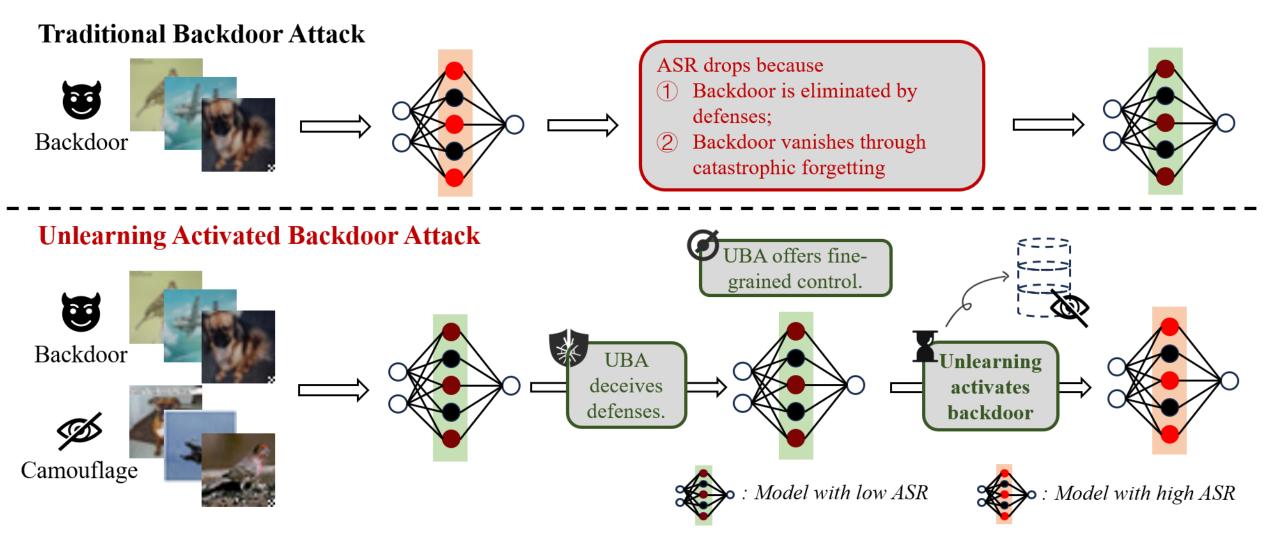


Our work aims to...



Method: Unlearning-activated Backdoor Attack

UBA-Inf



Threat model

Adversary:

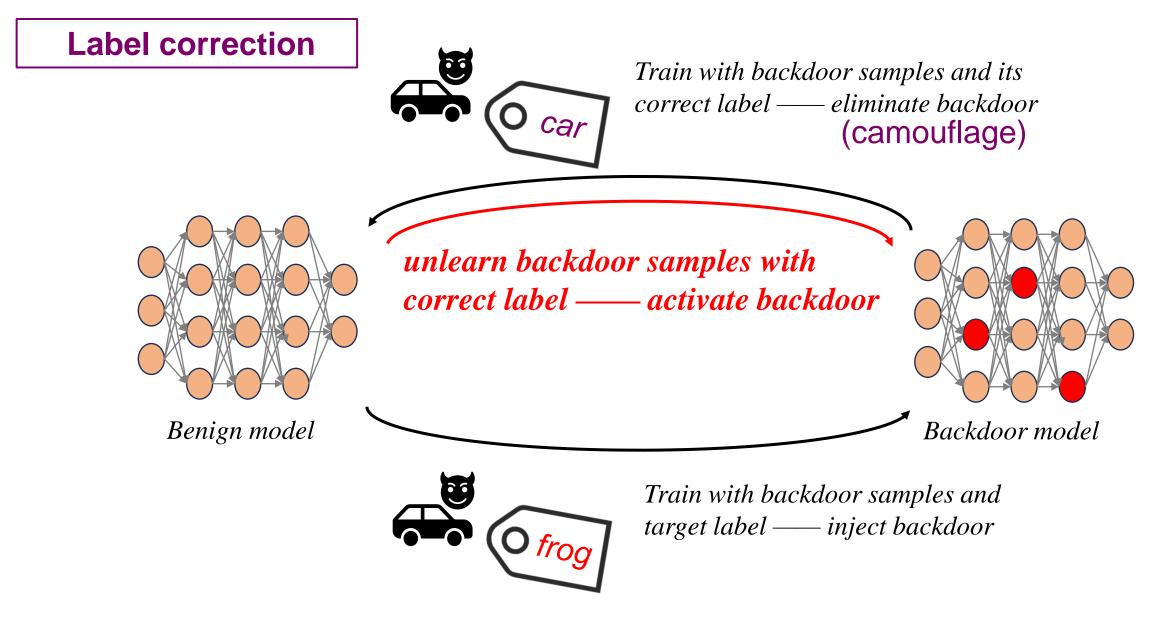
- The ability to add and delete data points from target model with requests.
- \square An auxiliary dataset D_{atk}
- \square A surrogate model θ_s trained on public dataset.
- \square A prepared backdoor generation algorithm $B(\cdot)$

Goal: high Benign Accuracy (**BA**) and high Attack Success Rate (**ASR**) when triggering backdoor

- Collect data and train the target model.
- □ Unlearning sensitive samples as requested.
- Perform defenses against potential attacks.

Key to design: 1. How to construct effective camouflage samples? 2. How to implement the whole attack pipeline?

Method: UBA-Inf design rationale



Method: UBA-Inf design rationale

Influence function

State	Method	CIFAR-10		MNIST		GTSRB		Tiny	
		BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)
before unlearn	UBA-Inf	93.26	21.94	99.50	29.42	98.34	22.15	55.56	16.57
	BAMU	93.19	36.71 🕻	99.47	90.14 [†]	98.51	28.44	56.20	37.95
ftor full rateoin	UBA-Inf	93.34	100.00	99.64	100.00	97.85	99.89	56.09	92.26
after full retrain	BAMU	93.12	100.00	99.58	100.00^{+}	98.23	99.63	55.90	88.73
after PUMA	UBA-Inf	89.50	80.44	98.27	81.51	98.27	81.51	50.06	71.72
	BAMU	89.97	50.10	98.39	99.93 [†]	94.90	64.13	50.02	56.21
after GBU	UBA-Inf	90.53	<u>83.60</u>	98.28	89.01	95.18	80.20	49.98	64.26
	BAMU 🌔	90.11	52.53	98.47	<u>92.49</u> †	94.82	59.71	50.24	47.15

In practice, it's not adequately effective to merely correct the label of backdoor samples...

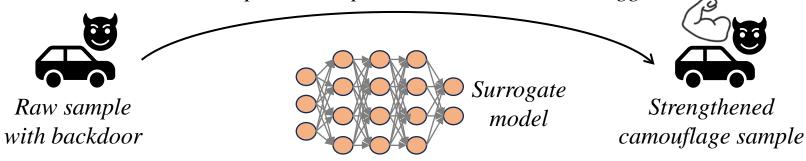
In some cases, the backdoor is not camouflaged...

In some cases, the backdoor is not effectively activated...

[†] BAMU fails in MNIST with ASR higher than 80%, which completely has no camouflage effect.

Use Influence function to strengthen camouflage samples!

• *Perturb through influence function to make the model as unresponsive as possible to the backdoor trigger*



Method: UBA-Inf camouflage

UBA-Inf Camouflage Generation Algorithm

□ Adversary Knowledge

- θ_s : surrogate model trained on public-out-of-distribution dataset
- D_{atk} : auxiliary dataset in the same distribution of real dataset.
- $B(\cdot)$: backdoor generation algorithm

□ Label Correction

- Backdoor samples $\boldsymbol{D}_{\boldsymbol{bd}} = \{B((x,y))|(x,y) \in D_{atk}\}$
- Label correction $\boldsymbol{D_{cm}} = \{(B_X(x), y) \mid (x, y) \in D_{atk} \land y \neq y_{tgt}\}$

□ Influence Function

• Analyze the direction of camouflage perturbation that makes the model as unresponsive as possible to the backdoor trigger

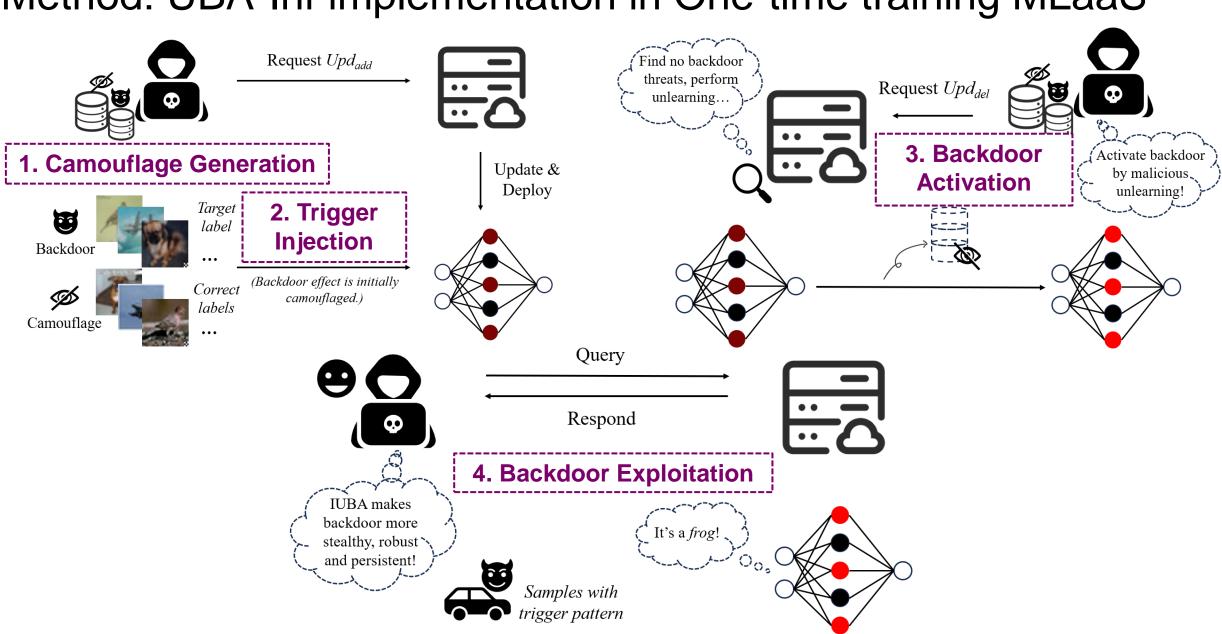
$$\begin{split} \mathcal{I}_{pert,loss}(\tilde{z}, D_{bd}) &= \mathop{\mathbf{E}}_{z' \in D_{bd}} (\mathcal{I}_{pert,loss}(\tilde{z}, z')) \\ &= -\mathop{\mathbf{E}}_{z' \in D_{bd}} (\nabla_{\theta} \mathscr{C}(z', \theta^*_{s,i})^{\mathsf{T}}) (\frac{1}{m} \sum_{i=1}^{m} \nabla^2_{\theta} \mathscr{C}(z_i, \theta^*_{s,i}))^{-1} \nabla_x \nabla_{\theta} \mathscr{C}(\tilde{z}, \theta^*_{s,i}), \end{split}$$

□ Iterative Optimization

• Fine-tune $\boldsymbol{\theta}_{s}$, optimize D_{cm} through $\boldsymbol{I}_{\{pert, loss\}}$

Algorithm 1 UBA-Inf Camouflage Generation Algorithm

Input: θ_{s}^{*} (pre-trained surrogate model) *D_{bd}* (backdoor samples) D_{atk} (auxiliary samples) B_X, y_{tgt} (backdoor trigger and target class) N (total iteration epochs) n, ε, α (adversarial perturbation parameters) **Output:** *D_{cm}* (UBA-Inf camouflage samples) 1: $\theta_{s,0}^* \leftarrow finetune(\theta_s^*, D_{atk})$ 2: $D_{cm,cl} \leftarrow \{ (x,y) | (x,y) \in D_{atk} \land y \neq y_{tgt} \}$ 3: $D_{cm,0} \leftarrow \{ (B_{\chi}(x), y) | (x, y) \in D_{cm,cl} \}$ 4: $D_{atk,0} = (D_{atk} \setminus D_{cm,cl}) \cup D_{bd} \cup D_{cm,0}$ 5: for each iteration $i \in [1, N]$ do $\theta_{s,i}^* \leftarrow finetune(\theta_{s,0}^*, D_{atk,i-1})$ $D_{cm,i} \leftarrow 0$ 7: for $\widetilde{z} \in D_{cm,i-1}$ do 8: $\widetilde{7}^0 \leftarrow \widetilde{7}$ 9: for each perturbation $j \in [1, n]$ do 10: $I_{pert,loss}(\tilde{z}^{j-1}, D_{bd}) \leftarrow \mathop{\mathbf{E}}_{z' \in D_{bd}}(I_{pert,loss}(\tilde{z}^{j-1}, z'))$ 11: $\widetilde{z}^{j} \leftarrow \Pi_{\varepsilon,\widetilde{z}_{0}}(\widetilde{z}^{j-1} + \alpha sign(I_{pert,loss}(\widetilde{z}^{j-1}, D_{bd})))$ 12: end for 13: $D_{cm,i} \leftarrow D_{cm,i} \cup \{\tilde{z}^n\}$ 14: end for 15: $D_{atk,i} \leftarrow (D_{atk,i-1} \setminus D_{cm,i-1}) \cup D_{cm,i}$ 17: end for 18: $D_{cm} \leftarrow D_{cm,N}$ 19: return D_{cm}



Method: UBA-Inf implementation in One-time training MLaaS

Method: UBA-Inf implementation in Continuous Training MLaaS



Evaluation: Effectiveness

Camouflage effect of UBA-Inf achieves rather low ASR.

				DI	1 12				·· 4
Shards		BadNets		Blended ²		LC^3		Sig ⁴	
		BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)
				CIF	AR-10				
shard=3 conceal unlearn	conceal	90.76	12.26	90.62	22.72	90.43	23.54	90.96	9.24
	unlearn	90.65	<u>99.98</u>	90.26	<u>89.92</u>	90.30	<u>88.65</u>	90.95	<u>89.42</u>
shand 5	conceal	88.74	<u>17.01</u>	88.30	22.88	88.62	27.12	88.82	17.50
shard=5	unlearn	88.68	<u>99.94</u>	88.59	<i>91.82</i>	88.11	88.00	88.66	<u>96.36</u>
				M	NIST				
, , , concea	conceal	99.58	6.58	99.70	25.03	99.66	0.28	99.63	0.38
shard=3	unlearn	99.66	100.00	99.66	100.00	99.65	73.50	99.68	65.35
shard=>	conceal	99.64	1.90	99.67	18.33	99.56	0.35	99.56	0.48
	unlearn	98.57	100.00	99.67	100.00	99.53	54.03 [†]	99.49	34.66 †
				GT	SRB				
shard=3	conceal	99.59	23.31	98.36	24.32	98.23	0.03	98.32	5.48
	unlearn	99.61	100.00	98.50	88.86	98.24	4.61 [†]	98.13	72.30
1 1 5	conceal	99.59	15.21	97.98	24.60	98.27	0.03	98.01	10.01
shard=5 unle	unlearn	99.58	<u>100.00</u>	97.96	<u>83.24</u>	97.41	<u>3.15</u> †	97.76	<u>69.58</u>
				T	iny				
shard=3	conceal	51.47	20.60	51.38	20.12	52.03	3.23	51.81	10.25
	unlearn	51.40	87.73	52.15	82.27	51.45	47.35 [†]	51.73	<u>79.66</u>
1 1 5	conceal	48.36	24.60	47.91	16.46	48.12	5.83	48.36	9.35
shard=5	unlearn	47.63	<u>82.47</u>	48.06	<u>85.21</u>	48.02	<u>32.75</u> †	47.45	<u>79.23</u>

[†] Similar to full retrain, LC does not work properly on GTSRB and Tiny, while Sig has problems with SISA on MNIST. To avoid such a situation, the UBA-Inf adversary can choose a proper backdoor attack alternatively.

Backdoor effectiveness evaluation for **exact machine unlearning** SISA. Two different numbers of training data shards are considered.

Activation effect of UBA-Inf achieves high ASR close to 100%.

Table 5: Backdoor effectiveness evaluation for PUMA.

tacat	Models	conc	eal	unlearn		
Dataset	Widdels	BA(%)	ASR(%)	BA (%)	ASR(%)	
	PARN-18	93.26	21.94	89.50	<u>80.44</u>	
CIFAR-10	ResNet-34	93.47	22.10	89.91	<u>80.60</u>	
	VGG-16	90.71	22.24	89.52	<u>89.68</u>	
MNIST	PARN-18	99.50	29.42	98.27	<u>81.51</u>	
GTSRB	PARN-18	98.34	22.15	98.19	<u>81.46</u>	
Tiny	PARN-18	55.56	16.57	50.06	<u>71.72</u>	

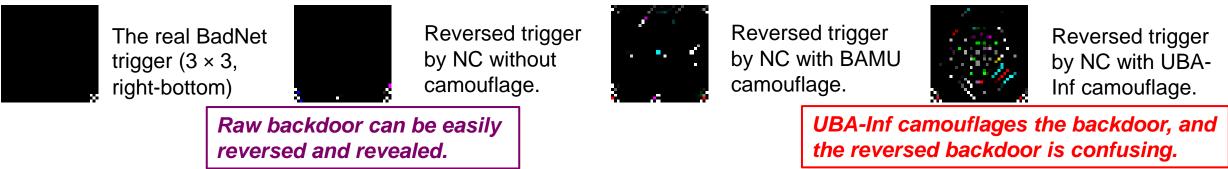
Table 6: Backdoor effectiveness evaluation for GBU

					-	
Datasets	Models	conc	eal	unlearn		
Datasets	widdels	BA(%)	ASR(%	BA(%)	ASR(%	
	PARN-18	93.26	21.94	90.53	<u>83.60</u>	
CIFAR-10	ResNet-34	93.47	22.10	90.19	<u>86.25</u>	
	VGG-16	90.71	22.24	89.28	<u>89.96</u>	
MNIST	PARN-18	99.50	29.42	98.28	<u>89.01</u>	[
GTSRB	PARN-18	98.34	22.15	95.18	<u>80.20</u>	í
Tiny	PARN-18	55.56	16.57	49.98	<u>64.26</u>	

Backdoor effectiveness evaluation for **approximate machine unlearning methods** like PUMA and GBU.

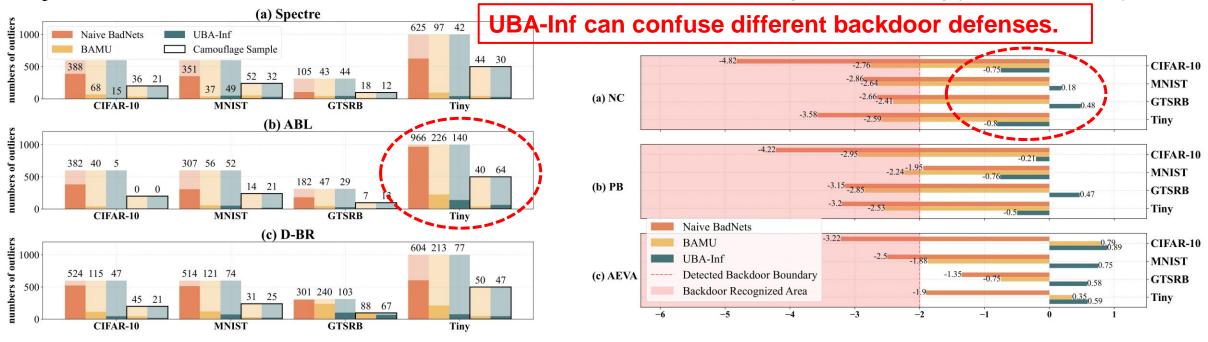
Evaluation: Stealthiness before unlearning

□ UBA-Inf improves backdoor stealthiness. For example, for defenses that reverse the backdoor trigger, UBA-Inf can confuse the scanner so that the backdoor cannot be correctly revealed.



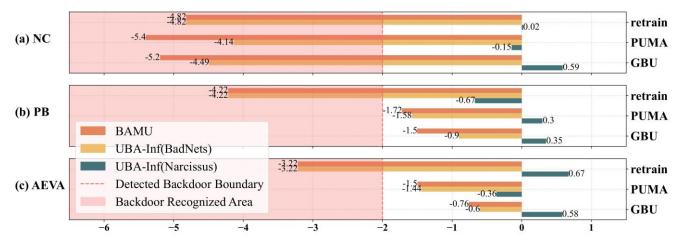
□ UBA-Inf samples cannot be filtered by popular backdoor sample filters.

□ UBA-Inf samples cannot be revealed by model scanners before unlearning with a seemingly normal anomaly score.

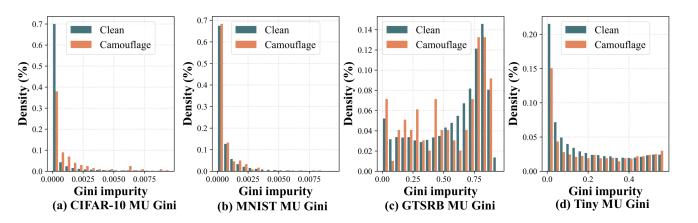


Evaluation: Stealthiness after unlearning & Resistance to reconstruction

□ UBA-Inf samples cannot be revealed by model scanners **even after approximate unlearning** with a seemingly normal anomaly score.



□ UBA-Inf camouflage samples are confused with normal samples, so unlearning defenses like MU can hardly filter them.



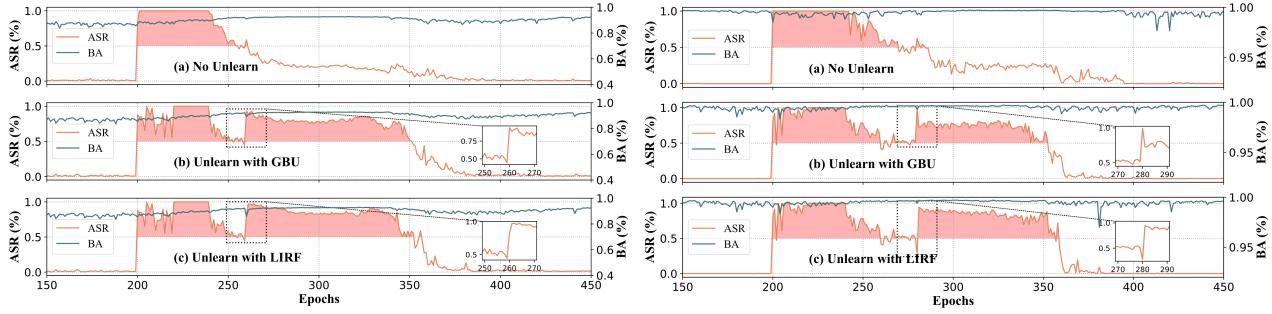
□ UBA-Inf can still be activated by unlearning even after model re-construction defenses.

Defenses	before	unlearn	PUMA	unlearn	GBU unlearn			
Derenses	BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)		
			CIFAR-10					
FT	93.28	8.18	85.62	<u>80.44</u>	85.71	<u>80.95</u>		
FP	93.18	5.00	85.53	<u>72.68</u>	86.44	<u>83.13</u>		
NAD	92.87	14.87	86.62	<u>70.60</u>	88.06	<u>87.54</u>		
MNIST								
FT	99.67	11.05	99.01	<u>77.23</u>	99.09	<u>89.12</u>		
FP	99.59	3.49	98.77	<u>62.87</u>	99.00	<u>99.56</u>		
NAD	99.62	17.09	98.59	<u>79.17</u>	98.92	<u>90.46</u>		
			GTSRB					
FT	98.20	11.45	95.13	<u>76.93</u>	95.39	71.51		
FP	98.31	9.29	95.19	<u>81.57</u>	95.09	<u>70.73</u>		
NAD	98.09	9.80	95.37	<u>88.92</u>	95.38	<u>65.31</u>		
			Tiny					
FT	55.26	9.12	50.16	<i>40.15</i>	50.01	<u>43.29</u>		
FP	55.14	8.54	50.02	<u>42.15</u>	49.95	<u>45.16</u>		
NAD	55.25	10.25	50.11	44.74	50.03	41.63		

It's disturbing that UBA-Inf can improve backdoor stealthiness and resistance.

Evaluation: Persistence in continuous training

- Assume task datasets in CT-MLaaS are from **either a similar distribution** or different domains in which each task has the same data label space but different feature distributions, a.k.a **Domain-Incremental-Learning**.
- The adversary of UBA-Inf expects the injected backdoor to keep away from backdoor vanishing caused by catastrophic forgetting (**improve backdoor persistence**)



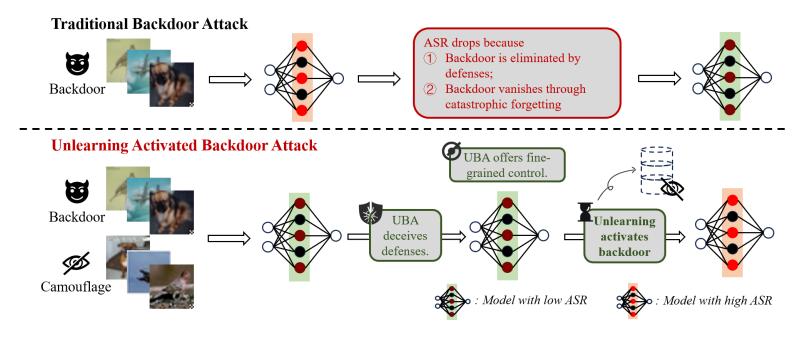
Persistence evaluation on Cifar-10

Persistence evaluation on Rotated-MNIST

Conclusion: UBA-Inf achieves 4x persistence improvement with limited poisoning samples (2% of the total training samples).

Conclusion & Take-aways

- Uncovering vulnerabilities in machine unlearning;
- Combining backdoor attacks and unlearning;
- Advancing persistent backdoor attacks in continual leaning.



Thank you! Q&A

Contact me: <u>huangzirui@smail.nju.edu.cn</u>