
Argus: All your (PHP) Injection-sinks
are belong to us

Rasoul	Jahanshahi
Manuel	Egele

Department	of	Electrical	&	
Computer	Engineering

Rasoul	did	all	the	
work,	but	can’t	

be	here
So	you	have	to	listen	
to	my	presentation	

instead

Web Apps are Prolific & Insecure

Server-Side	Language Market	Share	%/CMS	%

2

Find & Exploit Bugs/Vulnerabilities
1) Identify	where	attacker-controlled	input	enters	the	program	

(e.g.,	$_GET,	$_POST,	etc.)
2) Identify	sensitive	APIs	leading	to	vulnerabilities	

(e.g.,	system	(cmd	inj.),	echo	(XSS),	unserialize	(POI))

3) Perform	dataflow/taint	analysis	
(track	flow	of	attacker-controlled	data	to	sensitive	functions)

Exploit	generation
- Hook	to	sensitive	functions
- Track	attacker-controlled	data
- Identify	available	gadgets	during	their	execution	for	exploitation

3

Sinks:
How	do	you	find	them?
Did	you	find	all	of	them	?

Identifying Sinks for Taint Analysis

4

Observation
Most	systems/papers	rely	on	manually	curated	lists	of	

Sources	&	Sinks	
(e.g.,	knowledge/experience	of	authors,	scanning	docs,	etc.)

Question
Can	we	do	“better”?

(automated,	objective,	w/o	expert	knowledge	or	bias)

Argus

A	principled	and	systematic	approach	to	identify	sensitive	
PHP	functions	leading	to	injection	vulnerabilities

5

echo unserialize …PHP API

unserialize($input);

parse_parameters

php_output_write php_var_unserialize

echo($input);

print_r md5_file

Argus: Overview (3 Step Approach)

6

Generate call-graph
of the PHP
interpreter

Perform a
reachability

analysis

Validate each
identified API

Extend
existing
systems

Step 1: Generate Call Graph
Argus	generates	the	PHP	interpreter’s	call	graph

– Build	the	call	graph	statically
• PHP	invokes	different	functions	based	on	user-input
• Determined	at	runtime

– Use	dynamic	traces	to	improve	the	call	graph
• Instrument	the	PHP	interpreter
• Record	function	traces
• Running	the	unit	tests
• Add	edges	not	already	detected	using	static	analysis

7

$file = fopen(“/Rasoul/file.txt”);

$file = fopen(“/Rasoul/file.tar.gz”);

$file = fopen(“http://example.com/”);

$file = fopen(“ftp://user:pass@example.com/file.txt”);

Step 2: Reachability Analysis

Perform	a	reachability	analysis	on	the	call	graph
Find	paths	from	any	PHP	API	to:
– php_var_unserialize (Insecure	deserialization)
– php_output_write (XSS)
– Invokations	of	the	execv	system	call	
(Command	Injection)

Invocation of the sinks
– Not necessarily a vulnerability
– E.g., due to sanitization inside the PHP interpreter

8

Step 3: Validation
Argus	validates	the	reachability	analysis	results
Insecure	deserialization
– Generate	PHP	snippets	automatically
– Execute	the	snippet	while	passing	malicious	serialized	input
– Monitor	the	execution	in	case	of	deserialization

XSS	and	Command	Injection
– Manually	validated	each	API
– Generate	a	script	where	the	API	accepts	user-input
– Pass	malicious	input	to	the	script
– Check	if	malicious	input	triggered	XSS	or	CI

9

Validated	APIs	are		the	lower-bound	of	all	vulnerable	APIs

Improving Downstream Analysis

Extend	existing	detection/exploitation	systems	with	Argus’	result
– Static	taint	analysis:	Psalm	and	RIPS
• Extend	the	set	of	sinks
• Detect	potential	XSS	and	insecure	deserialization

– Automatic	exploit	generation:	FUGIO
• Extend	the	set	of	instrumented	APIs
• Monitor	deserialization	of	more	APIs

10

Does	a	more	complete	set	of	sinks	
actually	lead	to	security	relevant	

improvements?

Argus: Evaluation

• Evaluate	on	three	most	popular	PHP	versions
• Extend	two	state-of-the-art	vulnerability	
detection/exploitation	systems

• Collected	1,977	PHP	applications

11

PHP	application	Repository #	of	projects
Web	applications 60
Drupal	plugins 521
Typo3	plugins 400
WordPress	plugins 996
Total 1977

Argus: Evaluation cont.

Argus	detected:
- 10x	more	deserialization	APIs	than	prior	work
- 2x	more	output	APIs	than	prior	work

12

PHP interpreter Deserialization API XSS-leading API Exec API

Detected Validated Detected Validated Detected Validated

PHP 5.6 419 281 (67%) 54 22 (41%) 10 9 (90%)

PHP 7.2 425 284 (67%) 52 22 (42%) 10 9 (90%)

PHP 8.0 20 13 (65%) 46 22 (48%) 10 9 (90%)

Downstream Analysis

Detected	13	previously	unknown	vulnerabilities	in	PHP	
applications

- 12	insecure	deserializations
- 1	XSS
- 11	CVEs	assigned

13

Insecure Deserialization
1. function fts_twitter_share_url_check() {
2. $twitter_external_url=$_REQUEST['fts_url'];
3. // ...
4. $tags=get_meta_tags($twitter_external_url);
5. // ...
6. }

XSS
1. // wp-includes/ms-files.php
2. // ...
3. $file=rtrim(BLOGUPLOADDIR,'/').'/'.
4. str_replace('..','',$_GET['file']);
5. // ...
6. readfile($file);

(Feed	Them	Social) (Wordpress)

Argus: Summary

- Analyze	the	PHP	interpreter	&	identify	sensitive	APIs	that	lead	
to	injection	vulnerabilities	(avoids	need	for	expert	knowledge)

- Integrates	results	into	existing	detection/exploitation	systems
- Identifies	previous	unknown	injection	vulnerabilities

14

Takeaway:	Don’t	rely	on	manually	curated	lists	of	sensitive	
functions	(sinks).	(if)	you	don’t	have	to!

Code,	Results,	&	Artifacts
https://github.com/BUseclab/argus

https://github.com/BUseclab/argus

