Argus: All your (PHP) Injection-sinks
are bE|Ong 1{o RV Rasoul did all the

work, but can’t
be here

So you have to listen

to my presentation Rasoul Jahanshahi —
> Manuel Egele
Department of Electrical &

Computer Engineering

BOSTON

Web Apps are Prolific & Insecure

Server-Side Language Market Share % /CMS %

PHP 76.0% None — 30.7%
Ruby 5.9% WordPress
ASP.NET 5.9%
° Shopify
Java 4.9%
. Wix
JavaScript 3.5%
Scala 3.3% Squarespace
- o
static files §1.8% Joomla
Python §1.3%
Drupal
ColdFusion | 0.2%
Perl 10.1%
Erlang | 0.1% Wordpress » Wordpress : s
W3Techs.com, 14 August 2024) L LHPAAL
Percentages of websites using various server-side programming languages Versions Vulnerabilities (367) 1)
Note: a website may use more than one server-side programming language

Drupal” @)WorpPress 3 Joomlal®

Find & Exploit Bugs/Vulnerabilities

1) Identify where attacker-controlled input enters the program
(e.g. $ POST, etc.)

2/ Identify sensitive APIsgading to vulnerabilities
e.o, 11nj.), &gho (XSS), unserialize (POI))

3) Perform dataflow/taint anal§sis
(track flow of attacker-controfgd data to sensitive functions)

Exploit generaiias Sinks:
P 5 . _ How do you find them?
- Ho&k to sensitive functions i o el gl @ e g
- Track atts 8 e data

- Identify available gadgets during their execution for exploitation

Identifying Sinks for Taint Analysis

Observation

Most systems/papers rely on manually curated lists of
Sources & Sinks
(e.g., knowledge/experience of authors, scanning docs, etc.)

Question

Can we do “better”?
(automated, objective, w/o0 expert knowledge or bias)

Argus

A principled and systematic approach to identify sensitive
PHP functions leading to injection vulnerabilities

echo ($input) ; unserialize (Sinput) ;
\ ‘/_/
PHP API -———+//7 echo print_r || unserialize md5_ file if\

.

parse_parameters

[php output write] [php var unserialize]

o

Argus: Overview (3 Step Approach)

4 N\ N\) 4)
Gonerecabgn || o || e
. : identified API g
interpreter analysis systems

- /0 /. o\ J

Step 1: Generate Call Graph

Argus generates the PHP interpreter’s call graph
- Build the call graph statically

PHP invokes different functions based on user-input
Determined at runtime

PHP Tests

- Use dynamic traces to improve the call graph
Instrument the PHP interpreter

Record function traces [

PHP

Inte:

reter

Running the unit tests
Add edges not already detected using static analysis

Sfile = (“/Rasoul/file.txt”);
Sfile = (“/Rasoul/file.tar.gz”);
S$file = (“http://example.com/”) ;

Sfile = (“ftp://user:passlexample.com/file.txt”);

Step 2: Reachability Analysis

Perform a reachability analysis on the call graph
Find paths from any PHP API to:

- php var unserialize (Insecure deserialization)
- php output write (XSS)
- Invokations of the execv system call

(Command Injection)

Invocation of the sinks
- Not necessarily a vulnerability

- E.g., due to sanitization inside the PHP interpreter Set of AP that
RA invoke the VIF

Step 3: Validation

Argus validates the reachability analysis results

Insecure deserialization
— Generate PHP snippets automatically
— Execute the snippet while passing malicious serialized input (3) h
— Monitor the execution in case of deserialization

X
| —
XSS and Command Injection Wl_v _
— Manually validated each API k
- Generate a script where the API accepts user-input

— Pass malicious input to the script
— Check if malicious input triggered XSS or CI

Y

Validated APIs are the lower-bound of all vulnerable APIs

Improving Downstream Analysis

Extend existing detection/exploitation systems with Argus’ result

- Static taint analysis: Psalm and RIPS

Extend the set of sinks
Detect potential XSS and insecure deserialization

User Input

- Automatic exploit generation: FUGIO @ Ty
Extend the set of instrumented APIs Si““s_’l_—P:P
Taint Analysis
Monitor deserialization of more APIs EBTExploit)(l)bjects
. Hooks PHP
Does a more complete set of sinks _ vl Cinratin

actually lead to security relevant
Improvements?

Existing Program Analyses

10

Argus: Evaluation

Evaluate on three most popular PHP versions
Extend two state-of-the-art vulnerability
detection/exploitation systems

Collected 1,977 PHP applications

PHP application Repository # of projects
Web applications 60

Drupal plugins 521

Typo3 plugins 400
WordPress plugins 996

Total 1977

11

Argus: Evaluation cont.

Argus detected:
10x more deserialization APIs than prior work
2x more output APIs than prior work

PHP interpreter Deserialization API XSS-leading API Exec API
Detected Validated Detected Validated Detected Validated

PHP 5.6 419 281 (67%) 54 22 (41%) 10 9 (90%)

PHP 7.2 425 284 (67%) 52 22 (42%) 10 9 (90%)

PHP 8.0 20 13 (65%) 46 22 (48%) 10 9 (90%)

12

Downstream Analysis

Detected 13 previously unknown vulnerabilities in PHP

applications
12 insecure deserializations
1 XSS
11 CVEs assigned

Insecure Deserialization XSS
function fts twitter share url check() { 1. // wp-includes/ms-files.php
Stwitter external url=$ REQUEST|['fts url']; 2. // ..
VA 3. $file=rtrim(BLOGUPLOADDIR,'/').'/"'.
$tag ‘ Ctwitter external url); 4. str replace('..','',$ GET['file']);
/S 5. // ..
} o. readfile($LYle);
(Feed Them Social) (Wordpress)

13

ARTIFACT ARTIFACT
EVALUATED EVALUATED

Argus: Summary

AVAILABLE

- Analyze the PHP interpreter & identify sensitive APIs that lead
to injection vulnerabilities (avoids need for expert knowledge)
- Integrates results into existing detection/exploitation systems
- Identifies previous unknown injection vulnerabilities

Takeaway: Don’t rely on manually curated lists of sensitive

functions (sinks). (if) you don’t have to!

Code, Results, & Artifacts

BOSTON
https://github.com/BUseclab/argus UNIVERSITY

14

https://github.com/BUseclab/argus

