Length Leakage in Oblivious
Data Access Mechanisms

Grace Jia, Rachit Agarwal, Anurag Khandelwal

=] |9} Cornell University

Access pattern leakage In cloud storage

Yale
NewHaven
Health

[—

Client

Untrusted cloud provider

Prior knowledge

Access frequency

n |l =

Diseasel1 || Disease?2 JJ Diseased3 Arthritis Cancer R 4 Flu

Disease3ﬂ Record3 ﬁ

.
Y 2
.
e®
.
v S N
.....
uy i 3
""""
.....
.....
lllllll

Access pattern leakage In cloud storage

Yale
NewHaven

Client

Untrusted cloud prowder

Prior knowledge

Access frequency

n |l =

Arthritis Cancer Flu

\

Diseasel || Diseaséeg

Disease3£ Record3 ﬁ

Diseased3

8y
ay
ny
...

Access pattern leakage In cloud storage

Untrusted cloud provider

Oblivious data access

» Attacks [NDSS’12, CCS’15, S&P’19, ...]
» Defenses [S&P’13, NDSS’19, Sec’20, ...]
> Lower bounds [ITCS’16, TCC’18, ...]

Access frequency

Ignores value lengths

\

L]

Yale
NewHaven
Health

Client

Prior knowledge

Disease1

Diseaseg

Diseased3

8y
ay
ny
...

Arthritis Cancer Flu

Untrusted cloud provider

1 AD S

0 Server

Oblivious stores are still vulnerable
to length leakage attacks

CCS'16, CCS'18, ...

Value sizes

The problem of length leakage

Yale
NewHaven
Health

Client

Our work

New security model combining access pattern and length leakage
New between security, bandwidth, and storage
Performance lower bounds under given security

Secure constructions that achieve lower bounds

Informal security definition

Encrypted store

o

V1
V2

V3

-

Passive persistent

adversary Transcript of accesses

<1

N

<1 - D

Server g ﬁ

vi

Vi ﬁ - Client

p Bandwidth footprint = no. of bytes fetched per query

p Storage footprint = no. of

bytes to store all values
No. of encrypted keys

Baseline security (ROR-CDLA):
Mapping of plaintext to encrypted keys is always hidden

= same value sizes, uniform access distribution

Informal security definition

Encrypted store Distributions of plaintext data
K1 V1
i o R
N 2 2
K2 (77
K3 ﬁ V3 ﬁ 2 = m
dependent on
p Bandwidth footprint ==-==-==-=-=--- >
Storage footprint Considered leakage profiles
No. of encrypted keys Large§t Value sizes _Ac_ces_s Value sizes &_
value size distribution access distribution

Baseline security (ROR-CDLA): Mapping of plaintext to encrypted keys is always hidden

Implications of leakage profiles

Design #2: Bin-packing

Design #1: Padding (e.g., size-locked index [Sec’21])

(e.g., In oblivious access mechanisms)

()]
N
_a—a-—A : | |s o

8 o >

§ 5 H] ’
S ¢ 3 3

2 2 0)
2 2

Leaks largest value size Leaks sum of value sizes

Design #1: Padding Design #2: Bin-packing
(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])

o

largest
value size sum of
value
sizes

Value size
Value size

Less leakage More leakage

Design #1: Padding Design #2: Bin-packing
(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])

A —o—n o

3 3
B query =
o S response o S
3 3 size =95 3
g | T, - S
query
response
size =10
3
Less leakage More leakage
2
Lower bandwidth footprint Higher bandwidth footprint

Design #1: Padding Design #2: Bin-packing

(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])
N N
/p p
D D
= =
S S
Less leakage More leakage
Lower bandwidth footprint Higher bandwidth footprint

Higher storage footprint Lower storage footprint

Generalizing the tradeoff

Considered Largest . Access Value sizes &
- : Value sizes o L.
|eakage prof“es: value size distribution access distribution
Performance
Overheads
Bandwidth footprint

for a given fixed
storage footprint

Leakage

Generalizing the tradeoff

Padding +
oblivious access
(Design #1)

Largest
value size

Performance ®
Overheads

Bandwidth footprint
for a given fixed
storage footprint

Access
® distribution

Greedy algorithm

Value sizes &

Value sizes @

access distribution Mixed-integer linear
® programming
Bin-packing +
) —_—
oblivious access
Leakage

(Design #2, generalized)

Generalizing the tradeoff

Padding +

oblivious access Padding solution is optimal but at

(Design #1) prohibitive overheads
Performance ® vla_latjrngze Loosening leakage significantly reduces
Overheads lower bounds

Bandwidth footprint
for a given fixed
storage footprint

Value sizes @

Bin-packing +
oblivious access
(Design #2, generalized)

_——
Leakage

Generalizing the tradeoff

Padding + t o Largest | - |
oblivious access value size Padding sqlgtllon IS optimal but at
(Design #1) prohibitive overheads
Performance Loosening leakage significantly reduces
Overheads lower bounds
Bin-packing + Value sizes @

oblivious access
(Design #2, generalized)

Leakage .

Padding optimal for leaking largest value size

Smax —

Use Pancake [Sec’20] to hide
access distribution

Value size

—1
|

Access
frequency

Padding optimal for leaking largest value size

Smax —

Value size

Access
frequency

Use Pancake [Sec’20] to hide
access distribution

—1
|

fixed # of output values 1, Maximize replicas of popular keys
and divide accesses across them

11

Padding optimal for leaking largest value size

Smax —

Value size

Access
frequency

—1
|

fixed # of output values

Use Pancake [Sec’20] to hide
access distribution

1. Maximize replicas of popular keys
and divide accesses across them

2. Inject minimal traffic to unpopular keys

11

Padding optimal for leaking largest value size

. Use Pancake [Sec’20] to hide
access distribution

Value size

fixed # of output values 1, Maximize replicas of popular keys
and divide accesses across them

—1
|

2. Inject minimal traffic to unpopular keys

Access
frequency

For ROR-CDLA security, pad values (leaks only largest value size)

Resulting scheme “Padded Pancake” actually achieves bandwidth lower bound!

11

Padding optimal for leaking largest value size

Lower bound: Given storage footprint ¢ - s, ., bandwidth footprint of any

ax’

ROR-CDLA scheme must be 2

Smax '

constant for large n (humber of plaintext keys)

Expensive for datasets with wide range of value sizes,
e.g. 30x bandwidth overhead given 2x storage overhead in evaluation

Benefit of bin-packing for leaking value sizes

Smax —

ROR-CDLA scheme can now:

Value size

fixed # of output values

—1
|

Access
frequency

12

Benefit of bin-packing for leaking value sizes

Smax —

ROR-CDLA scheme can now:

Value size

» Bin-pack unpopular values together
instead of padding

fixed # of output values

—1
|

Access
frequency

12

Benefit of bin-packing for leaking value sizes

Value size

Access

Smax —

frequency

—1
|

fixed # of output values

ROR-CDLA scheme can now:

» Bin-pack unpopular values together
instead of padding

- Make more replicas of popular keys

12

Benefit of bin-packing for leaking value sizes

Value size

Access

Smax —

frequency

ROR-CDLA scheme can now:

» Bin-pack unpopular values together
instead of padding

fixed # of output values

—1
|

- Make more replicas of popular keys

» |Inject less traffic to unpopular keys

Resulting scheme “Stuffed Pancake” achieves bandwidth lower bound!

12

Benefit of bin-packing for leaking value sizes

Lower bound: Given storage footprint ¢ - s, ., bandwidth footprint of any

ax’

ROR-CDLA scheme must be > d* - s, vvhere <d

smaller multiple, depending on value sizes

Significant improvement for evaluated scenarios: 30x to 6x bandwidth overhead

Bridging theory and practice

Evaluation on real datasets
Twitter: 3 mill. keys, 100 — 300 B values

Performance ® Largest value size
Overheads 30x bandwidth,
2x storage
Access distribution
O 4x bandwidth
Value sizes @ Value sizes &
6x bandwidth access distribution

® 3x bandwidth
Leakage

13

Conclusion

New security model combining access pattern and length leakage
New between security, bandwidth, and storage
Performance lower bounds under given security

Secure constructions that achieve lower bounds

e Attacks exploiting leakage profiles
Future work « Other leakage profiles

 Extension to ORAM, compression, etc.

14

