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Access pattern leakage In cloud storage
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Access pattern leakage In cloud storage

Untrusted cloud provider

Oblivious data access

» Attacks [NDSS’12, CCS’15, S&P’19, ...]
» Defenses [S&P’13, NDSS’19, Sec’20, ...]
> Lower bounds [ITCS’16, TCC’18, ...]

Access frequency

Ignores value lengths
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Untrusted cloud provider

1 AD S

0 Server

Oblivious stores are still vulnerable
to length leakage attacks

CCS'16, CCS'18, ...

Value sizes

The problem of length leakage
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Our work

New security model combining access pattern and length leakage
New between security, bandwidth, and storage
Performance lower bounds under given security

Secure constructions that achieve lower bounds



Informal security definition

Encrypted store
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p Bandwidth footprint = no. of bytes fetched per query

p Storage footprint = no. of

bytes to store all values
No. of encrypted keys

Baseline security (ROR-CDLA):
Mapping of plaintext to encrypted keys is always hidden

= same value sizes, uniform access distribution



Informal security definition

Encrypted store Distributions of plaintext data
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Storage footprint Considered leakage profiles
No. of encrypted keys Large§t Value sizes _Ac_ces_s Value sizes &_
value size distribution  access distribution

Baseline security (ROR-CDLA): Mapping of plaintext to encrypted keys is always hidden



Implications of leakage profiles

Design #2: Bin-packing

Design #1: Padding (e.g., size-locked index [Sec’21])

(e.g., In oblivious access mechanisms)
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Design #1: Padding Design #2: Bin-packing
(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])
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Design #1: Padding Design #2: Bin-packing
(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])
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Design #1: Padding Design #2: Bin-packing

(e.qg., In oblivious access mechanisms) (e.q., size-locked index [Sec’21])
N N
/p p
D D
= =
S S
Less leakage More leakage
Lower bandwidth footprint Higher bandwidth footprint

Higher storage footprint Lower storage footprint



Generalizing the tradeoff

Considered Largest . Access Value sizes &
- : Value sizes o .. . . L.
|eakage prof“es: value size distribution access distribution
Performance
Overheads
Bandwidth footprint

for a given fixed
storage footprint

Leakage



Generalizing the tradeoff

Padding +
oblivious access
(Design #1)

Largest
value size

Performance ®
Overheads

Bandwidth footprint
for a given fixed
storage footprint

Access
® distribution

Greedy algorithm

Value sizes &

Value sizes @

access distribution Mixed-integer linear
® programming
Bin-packing +
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oblivious access
Leakage

(Design #2, generalized)



Generalizing the tradeoff

Padding +

oblivious access Padding solution is optimal but at

(Design #1) prohibitive overheads
Performance ® vla_latjrngze Loosening leakage significantly reduces
Overheads lower bounds

Bandwidth footprint
for a given fixed
storage footprint

Value sizes @

Bin-packing +
oblivious access
(Design #2, generalized)
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Generalizing the tradeoff

Padding + t o Largest | - |
oblivious access value size Padding sqlgtllon IS optimal but at
(Design #1) prohibitive overheads
Performance Loosening leakage significantly reduces
Overheads lower bounds
Bin-packing + Value sizes @

oblivious access
(Design #2, generalized)

Leakage .



Padding optimal for leaking largest value size

Smax —

Use Pancake [Sec’20] to hide
access distribution
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Padding optimal for leaking largest value size

Smax —

Value size

Access
frequency

Use Pancake [Sec’20] to hide
access distribution
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fixed # of output values 1, Maximize replicas of popular keys
and divide accesses across them

11



Padding optimal for leaking largest value size

Smax —

Value size

Access
frequency

—1
|

fixed # of output values

Use Pancake [Sec’20] to hide
access distribution

1. Maximize replicas of popular keys
and divide accesses across them

2. Inject minimal traffic to unpopular keys
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Padding optimal for leaking largest value size

. Use Pancake [Sec’20] to hide
access distribution

Value size

fixed # of output values 1, Maximize replicas of popular keys
and divide accesses across them

—1
|

2. Inject minimal traffic to unpopular keys

Access
frequency

For ROR-CDLA security, pad values (leaks only largest value size)

Resulting scheme “Padded Pancake” actually achieves bandwidth lower bound!
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Padding optimal for leaking largest value size

Lower bound: Given storage footprint ¢ - s, ., bandwidth footprint of any

ax’

ROR-CDLA scheme must be 2

Smax '

constant for large n (humber of plaintext keys)

Expensive for datasets with wide range of value sizes,
e.g. 30x bandwidth overhead given 2x storage overhead in evaluation



Benefit of bin-packing for leaking value sizes

Smax —

ROR-CDLA scheme can now:
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Benefit of bin-packing for leaking value sizes

Smax —

ROR-CDLA scheme can now:

Value size

» Bin-pack unpopular values together
instead of padding

fixed # of output values
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Benefit of bin-packing for leaking value sizes

Value size

Access

Smax —

frequency

—1
|

fixed # of output values

ROR-CDLA scheme can now:

» Bin-pack unpopular values together
instead of padding

- Make more replicas of popular keys
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Benefit of bin-packing for leaking value sizes

Value size

Access

Smax —

frequency

ROR-CDLA scheme can now:

» Bin-pack unpopular values together
instead of padding

fixed # of output values

—1
|

- Make more replicas of popular keys

» |Inject less traffic to unpopular keys

Resulting scheme “Stuffed Pancake” achieves bandwidth lower bound!
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Benefit of bin-packing for leaking value sizes

Lower bound: Given storage footprint ¢ - s, ., bandwidth footprint of any

ax’

ROR-CDLA scheme must be > d* - s, vvhere <d

smaller multiple, depending on value sizes

Significant improvement for evaluated scenarios: 30x to 6x bandwidth overhead



Bridging theory and practice

Evaluation on real datasets
Twitter: 3 mill. keys, 100 — 300 B values

Performance ® Largest value size
Overheads 30x bandwidth,
2x storage
Access distribution
O 4x bandwidth
Value sizes @ Value sizes &
6x bandwidth access distribution

® 3x bandwidth
Leakage
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Conclusion

New security model combining access pattern and length leakage
New between security, bandwidth, and storage
Performance lower bounds under given security

Secure constructions that achieve lower bounds

e Attacks exploiting leakage profiles
Future work « Other leakage profiles

 Extension to ORAM, compression, etc.
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