
Lotto: Secure Participant Selection against
Adversarial Servers in Federated Learning

Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li

2

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises
Ground truth Reconstructed

Problem: Data can be reconstructed
from local model updates2

Private learning on the edge

3

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

Local updates unseen

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ‘20

Private learning on the edge

4

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning”, In S&P ’19

Local updates unseen

Problem: Data still
has footprints in

global model update5

Private learning on the edge

5

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4 Differential Privacy6

Global update leaks
little about any client

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

+ →
Random

noise

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning”, In S&P ’19
6Cynthia. “Differential Privacy”, 06.

Local updates unseen

Private learning on the edge

6

Secure Aggregation Differential Privacy

Global update leaks
little about any client

+ →
Random

noise

Local updates unseen
 Practice1,2: = 1/4
Each client adds an even share of the
target noise to its local model update

+

+

+

+

1Kairouz et al. “The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure
Aggregation”, In ICML ’21
2Agarwal. “The Skellam Mechanism for Differentially Private Federated Learning”, In NeurIPS ‘21

Private learning on the edge

Com
bined

7

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Private learning on the edge

8

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Relied assumption
May not hold

Need for Lotto

9

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

10

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

11

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

12

Need for Lotto

Secure Aggregation Differential Privacy

Assumption: honest participants

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

13

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Assumption: honest participants

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

14

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Selected participants (102 -103)

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

15

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Selected participants (102 -103)

• Random: uniform chance

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

16

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Selected participants (102 -103)

• Random: uniform chance

• Informed: “best-performing” clients are preferred
(e.g., high speed and/or rich data)

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

17

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Problem: participant selection can be
manipulated by the malicious server

😇 😈 😇 😇😇 😈 😈 😇 😇 😇

😇 😈😈 😈

Assumption: honest participants

Population (104 -108)

Selected participants (102 -103)
Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

18

Lotto: Random selection

19

#1

#2

#3

… …

Selection criteria: <3

Randomness

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Current
round: 2

Public keys

Lotto: Random selection

20

#1

#2

#3

… …

Select

Yes

No

No

…

Selection criteria: <3

Randomness

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Lotto: Random selection

21

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

Does
NOT matter.

…

For dishonest majority

Randomness Randomness

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Lotto: Random selection

22

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

…

Potential approach:
• Mutual verification

For dishonest majority

Does
NOT matter.

Randomness Randomness

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Lotto: Random selection

23

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

…

Potential approach:
• Mutual verification

For dishonest majority

I select #2

#2 RFpk2(2) < 3?

RFpk2(2) < 3?RFpk2(2) < 3?

Does
NOT matter.

Randomness Randomness

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Lotto: Random selection

24

#1

#2

#3

… …

Select

Yes

No

No

…

Randomness Select

Yes

No

No

Selection criteria: <3

…

Potential approach:
• Mutual verification
• Only within participants (102 - 103)

I select #2, #4, #5, #6

#2 #4

#5 #6

Does
NOT matter.

Randomness

Current
round: 2

Necessary

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Lotto: Random selection

For dishonest majority

25

What is achieved:
Each participant
 sees a list of peers

Potential approach:
• Mutual verification
• Only within participants (102 - 103)

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Lotto: Random selection

26

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Potential approach:
• Mutual verification
• Only within participants (102 - 103)

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Selection criteria: <3
E.g.,

Output range: [0, 10)
= 3/10

Lotto: Random selection

27

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

Lotto: Random selection

28

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection Ignore after selection

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected
What happens to the absent?

Lotto: Random selection

29

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection Ignore after selection

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected

Unbounded advantage in growing dishonesty

What happens to the absent?

Lotto: Random selection

30

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance.

Lotto: Random selection

31

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

Solution: Enforce a large enough list
and a small enough chance.

Lotto: Random selection

32

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

0.99

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …

≤ 50%

Selected
What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance.

Lotto: Random selection

33

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance.

0.99

≤ 50% ≥ 50%

Lotto: Random selection

34

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance.

0.99

≤ 50% ≥ 50%

Lotto: Random selection

35

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Predictable
to server?

Examples: #2 will be selected as RFpk2(2) = 1 < 3.

Public keys

Round index

Public

Public

Lotto: Random selection

36

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

#2

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
Before training, the server may grow its advantage by

Predictable
to server?

Problem: Attack surfaces enlarged!

Lotto: Random selection

37

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

#2 vs

Random compromise

?

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
Before training, the server may grow its advantage by

Predictable
to server?

Problem: Attack surfaces enlarged!

Lotto: Random selection

38

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)

#2

Secret key

Predictable
to server?

Lotto: Random selection

39

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)

#2

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Predictable
to server?

Lotto: Random selection

40

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

#2

Public key

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Predictable
to server?

Lotto: Random selection

41

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample
with (1, π2)

Unpredictable
to server

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

Lotto: Random selection

42

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample
with (1, π2) #4

#5 #6

ver = True?

ver = True?ver = True?

Unpredictable
to server

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

Lotto: Random selection

43

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

Minor issues:
• Participant consistency: leverage SecAgg

• Fixed sample size: over-selection
• Consistent round index: uniqueness check
…

Please find more in the paper :)

Lotto: Random selection

44

Lotto: Informed selection

45

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Lotto: Informed selection

46

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Major Challenge: Client metrics are
hard to verify by honest clients

Lotto: Informed selection

47

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Major Challenge: Client metrics are
hard to verify by honest clients

Metrics can be easily fake

😈😇 😇 😈

Lotto: Informed selection

48

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s
Solution: Approximate inform
selection by random selection

Please find more in the paper :)

Major Challenge: Client metrics are
hard to verify by honest clients

Lotto: Informed selection

Metrics can be easily fake

😈😇 😇 😈

49

Lotto prevents arbitrary manipulation

50

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population
Lotto

51

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align

w/ high prob.

52

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005

53

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

Align

w/ high prob.

54

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

55

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

56

Lotto induces no or mild overhead

57

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Ti
m

e
(m

in)
0

2

4

100 400 700

Ti
m

e
(m

in)

0

3.5

7

100 400 700

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

58

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.46
2.56

1.76
Ti

m
e

(m
in)

0

3.5

7

100 400 700

5.65
4.35

3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

w/o Lotto

59

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.82
2.59

1.86
3.46

2.56
1.76

Ti
m

e
(m

in)

0

3.5

7

100 400 700

6.23
4.68

3.07
5.65

4.35
3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

39.59
27.53

12.86

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Lotto adds no more than 10% in time
w/o Lotto
w/ Lotto

60

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.82
2.59

1.86
3.46

2.56
1.76

Ti
m

e
(m

in)

0

3.5

7

100 400 700

6.23
4.68

3.07
5.65

4.35
3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

39.59
27.53

12.86

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Tr
affi

c
(G

B)

0

0.25

0.5

100 400 700

0.45
0.26

0.06

0.45
0.26

0.06

Tr
affi

c
(G

B)

0

0.25

0.5

100 400 700

0.45
0.25

0.06

0.45
0.25

0.06

Tr
affi

c
(G

B)

0

3.5

7

Population size
100 400 700

6.56
3.75

0.94

6.56
3.75

0.94

Lotto costs negligible in network
w/o Lotto
w/ Lotto

Lotto adds no more than 10% in time

61

Lotto functions as insecure selectors

62

Lotto functions as insecure selectors
Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

63

Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

64

Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Reddit@Albert

Lotto well approximate Oort with no
cost in time-to-accuracy performance

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

65

Lotto: Results summary

Security EfficiencyFunctionality

Theoretical guarantee (tight
probability bound) of
preventing manipulation

Mild runtime overhead (≤10%)
with no network cost (<1%)

Support both random
(exact) and informed (well

approximated) selection

Thank you
zjiangaj@connect.ust.hkgithub.com/SamuelGong/Lotto

