
Lotto: Secure Participant Selection against 
Adversarial Servers in Federated Learning

Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li



2

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises
Ground truth Reconstructed

Problem: Data can be reconstructed 
from local model updates2

Private learning on the edge



3

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

Local updates unseen

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ‘20

Private learning on the edge



4

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference 
Attacks against Centralized and Federated Learning”, In S&P ’19

Local updates unseen

Problem: Data still 
has footprints in

global model update5

Private learning on the edge



5

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4 Differential Privacy6

Global update leaks
little about any client

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

+ →
Random 

noise

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference 
Attacks against Centralized and Federated Learning”, In S&P ’19
6Cynthia. “Differential Privacy”, 06.

Local updates unseen

Private learning on the edge



6

Secure Aggregation Differential Privacy

Global update leaks
little about any client

+ →
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Local updates unseen
      Practice1,2:          = 1/4 
Each client adds an even share of the 
target noise to its local model update

+

+

+
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Relied assumption
May not hold

Need for Lotto
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Need for Lotto
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Lotto: Random selection
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What is achieved:
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#2 #4
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E.g.,

Output range: [0, 10)
= 3/10
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What is achieved:
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        presents only by chance.

The absent will not get 
arbitrarily ignored

Predictable 
to server?

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
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What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )

#2

Secret key

Predictable 
to server?

Lotto: Random selection



39

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )

#2

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Predictable 
to server?

Lotto: Random selection



40

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
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to server?

Lotto: Random selection



41

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample 
with (1, π2)

Unpredictable 
to server

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )
Verification:  VRF.verpk2( 2, 1, π2 ) = True

Lotto: Random selection



42

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

1Micali et al. “Verifiable random functions”, In FOCS ’99
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#2
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#5 #6

ver = True?
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What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

Minor issues:
• Participant consistency: leverage SecAgg 

• Fixed sample size: over-selection
• Consistent round index: uniqueness check
…

Please find more in the paper :)

Lotto: Random selection
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Please find more in the paper :)

Major Challenge: Client metrics are 
hard to verify by honest clients
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😈😇 😇 😈
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Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.
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Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.
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1Random selection as an example. See results for informed selection in the paper.
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Lotto functions as insecure selectors
Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21
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Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Reddit@Albert

Lotto well approximate Oort with no  
cost in time-to-accuracy performance

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto: Results summary

Security EfficiencyFunctionality

Theoretical guarantee (tight 
probability bound) of 
preventing manipulation

Mild runtime overhead (≤10%) 
with no network cost (<1%)

Support both random 
(exact) and informed (well 

approximated) selection

Thank you
zjiangaj@connect.ust.hkgithub.com/SamuelGong/Lotto


