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Potential approach:

e Mutual verification

e Only within participants (102 - 103
What is achieved: 4 P P ( )

—ach participant (f\) % | select #2, #4, #5, #6

Necessary

sees a list of peers who
presents only by chance.

Selection criteria; <3
g, = 3/10
Output range: [0, 10)
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What is achieved: Predictable
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Problem: Attack surfaces enlarged!

Examples: #2 will be selected as RFpo(2) = | < 3.
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Minor Issues:

What is achieved: * Participant consistency: leverage SecAgg
. o Fixed sample size: overselection

—ach participant
e Consistent round index: uniqueness check

sees a list of peers who
presents only by chance.

Please find more In the paper :)

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).
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Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training
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Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training
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Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto well approximate Oort with no
cost in time-to-accuracy performance

'Lai et al."Oort: Efficient Federated Learning via Guided Participant Selection™, In OSDI "2 |
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Lotto: Results summary

Functionality | Security \ Efficiency I

Support both random Theoretical guarantee (tight | .
: . Mild runtime overhead (=10%)
(exact) and informed (well probability bound) of |
: . . . . with no network cost (<1%)
approximated) selection preventing manipulation

O Thank you

github.com/SamuelGong/Lotto zjiangaj@connect.ust.hk
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