
Sync+Sync: A Covert Channel
Built on fsync with Storage

Qisheng Jiang and Chundong Wang
ShanghaiTech University

Presenter: Jian Zhang, Rutgers University

Background

• Covert Channel and Side-Channel Attacks
• Memory Hierarchy

• fsync
• Unprivileged system calls
• Synchronously flush data to storage
• Very long response latency

• fsync contention
• Multiple files
• Even longer response latency

Lower
Latency

Lower Cost
per Bit

Main Memory
（DRAM）

L3 Cache
（SRAM）

L2 Cache
（SRAM）

L1 Cache
（SRAM）

Local Secondary Storage
（Disk）

2

Background

• Covert Channel and Side-Channel Attacks
• Memory Hierarchy

• fsync
• Unprivileged system calls
• Synchronously flush data to storage
• Very long response latency

• fsync contention
• Multiple files
• Even longer response latency

Lower
Latency

Lower Cost
per Bit

Main Memory
（DRAM）

L3 Cache
（SRAM）

L2 Cache
（SRAM）

L1 Cache
（SRAM）

Local Secondary Storage
（Disk）

2

Background

• Covert Channel and Side-Channel Attacks
• Memory Hierarchy

• fsync
• Unprivileged system calls
• Synchronously flush data to storage
• Very long response latency

• fsync contention
• Multiple files
• Even longer response latency

Lower
Latency

Lower Cost
per Bit

Main Memory
（DRAM）

L3 Cache
（SRAM）

L2 Cache
（SRAM）

L1 Cache
（SRAM）

Local Secondary Storage
（Disk）

2

fsync Contention

• Program A and Program B
• ftruncate / write / idle + fsync

• Only measure the fsync latency of
Program A
• A+B: about 2x A-only

• Why?
• Contention within file system

• Only one running transaction in Ext4 at a time.

• Contention within storage device
• Software/hardware queues
• REQ_PREFLUSH and REQ_FUA flags

😭 😈
write (𝑓!)
fsync (𝑓!)

P. B P. A

File B File A
write (𝑓")
fsync (𝑓")

Disk

Device Driver

Block I/O Layer

File System

3

fsync Contention

• Program A and Program B
• ftruncate / write / idle + fsync

• Only measure the fsync latency of
Program A
• A+B: about 2x A-only

• Why?
• Contention within file system

• Only one running transaction in Ext4 at a time.

• Contention within storage device
• Software/hardware queues
• REQ_PREFLUSH and REQ_FUA flags

😭 😈
write (𝑓!)
fsync (𝑓!)

P. B P. A

File B File A
write (𝑓")
fsync (𝑓")

Disk

Device Driver

Block I/O Layer

File System

3

fsync Contention

• Program A and Program B
• ftruncate / write / idle + fsync

• Only measure the fsync latency of
Program A
• A+B: about 2x A-only

• Why?
• Contention within file system

• Only one running transaction in Ext4 at a time.

• Contention within storage device
• Software/hardware queues
• REQ_PREFLUSH and REQ_FUA flags

😭 😈
write (𝑓!)
fsync (𝑓!)

P. B P. A

File B File A
write (𝑓")
fsync (𝑓")

Disk

Device Driver

Block I/O Layer

File System

3

fsync Contention

• Program A and Program B
• ftruncate / write / idle + fsync

• Only measure the fsync latency of
Program A
• A+B: about 2x A-only

• Why?
• Contention within file system

• Only one running transaction in Ext4 at a time.

• Contention within storage device
• Software/hardware queues
• REQ_PREFLUSH and REQ_FUA flags

😭 😈
write (𝑓!)
fsync (𝑓!)

P. B P. A

File B File A
write (𝑓")
fsync (𝑓")

Disk

Device Driver

Block I/O Layer

File System

A good fit for timing-based channel

3

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)
bit `1’ 𝑡$%

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)
bit `1’ 𝑡$%

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)
bit `1’ 𝑡$%

fsync(f#)
fsync(f#)
fsync(f#)
fsync(f#)

bit `0’ 𝑡$%'(

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)

sleep(t))

bit `1’ 𝑡$%

fsync(f#)
fsync(f#)
fsync(f#)
fsync(f#)

bit `0’ 𝑡$%'(

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)

sleep(t))

bit `1’ 𝑡$%

fsync(f#)
fsync(f#)
fsync(f#)
fsync(f#)

bit `0’ 𝑡$%'(

fsync(f&)

fsync(f&)

fsync(f#)

fsync(f#)
bit `1’ 𝑡$%'*

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)

sleep(t))

bit `1’ 𝑡$%

fsync(f#)
fsync(f#)
fsync(f#)
fsync(f#)

bit `0’ 𝑡$%'(

fsync(f&)

fsync(f&)

fsync(f#)

fsync(f#)
bit `1’ 𝑡$%'*

4

Sync+Sync - Covert Channel

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs

File B File A

tim
e

fsync without contention
fsync with contention

😭 😈
Sender Receiver

fsync(f#)

fsync(f#)

fsync(f&)

fsync(f&)

sleep(t))

bit `1’ 𝑡$%

fsync(f#)
fsync(f#)
fsync(f#)
fsync(f#)

bit `0’ 𝑡$%'(

fsync(f&)

fsync(f&)

fsync(f#)

fsync(f#)
bit `1’ 𝑡$%'*

4

Sync+Sync - Side-Channel Attacks

• Principle
• Victim application: accesses files and may invoke fsync

• E.g. Databases, Linux/Android applications, and web browsers
• Attacker

• On the same disk but invokes fsync on an irrelevant file periodically
• Can observe the application’s fsync behaviors

• Observation
• Different applications exhibit varying patterns of fsync calls

• Frequency
• Data volume to be flushed

• The attacker can recognize different patterns of fsync calls
5

Sync+Sync - Side-Channel Attacks

• Principle
• Victim application: accesses files and may invoke fsync

• E.g. Databases, Linux/Android applications, and web browsers
• Attacker

• On the same disk but invokes fsync on an irrelevant file periodically
• Can observe the application’s fsync behaviors

• Observation
• Different applications exhibit varying patterns of fsync calls

• Frequency
• Data volume to be flushed

• The attacker can recognize different patterns of fsync calls
5

Sync+Sync - Side-Channel Attacks

• Principle
• Victim application: accesses files and may invoke fsync

• E.g. Databases, Linux/Android applications, and web browsers
• Attacker

• On the same disk but invokes fsync on an irrelevant file periodically
• Can observe the application’s fsync behaviors

• Observation
• Different applications exhibit varying patterns of fsync calls

• Frequency
• Data volume to be flushed

• The attacker can recognize different patterns of fsync calls
5

Database Operations Speculation

• Attack Design
• Victim database

• SQLite, Invoking fsync when committing

• Observations
• Attacker: Higher fsync latency
• SQLite: fsync operations
(committing a transaction)

• Information Leakage
• Insert/Update Ratio over Time
• B-Tree Split Detection
• Database Operation Leakage

Actual Start Actual End
Estimated Start Estimated End

La
te

n
cy

 (
u

s)

50

10

90

0 2000 4000 6000
Time (us)

6

Database Operations Speculation

• Attack Design
• Victim database

• SQLite, Invoking fsync when committing

• Observations
• Attacker: Higher fsync latency
• SQLite: fsync operations
(committing a transaction)

• Information Leakage
• Insert/Update Ratio over Time
• B-Tree Split Detection
• Database Operation Leakage

Actual Start Actual End
Estimated Start Estimated End

La
te

n
cy

 (
u

s)

50

10

90

0 2000 4000 6000
Time (us)

6

Database Operations Speculation

• Attack Design
• Victim database

• SQLite, Invoking fsync when committing

• Observations
• Attacker: Higher fsync latency
• SQLite: fsync operations
(committing a transaction)

• Information Leakage
• Insert/Update Ratio over Time
• B-Tree Split Detection
• Database Operation Leakage

Actual Start Actual End
Estimated Start Estimated End

La
te

n
cy

 (
u

s)

50

10

90

0 2000 4000 6000
Time (us)

6

Application Information Leakage

• Application Fingerprinting
• e.g., Twitter and Facebook

45 60 75 90 105 120 135 150

Twitter Facebook

fsync Latency (us)

0

200

400

600

800

7

Application Information Leakage

•Website Fingerprinting
• Most websites do not commonly use fsync.
• Some websites invoke fsync more frequently and exhibit

different I/O behaviors.
• Due to the use of Indexed Database

8

Keystroke Attack

• Attack Design
• Victim

• For every keystroke typed by the victim, the service program auto-commits the
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings
• Inter-keystroke latency (> 100ms)
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2%

9

Keystroke Attack

• Attack Design
• Victim

• For every keystroke typed by the victim, the service program auto-commits the
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings
• Inter-keystroke latency (> 100ms)
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2%

9

Keystroke Attack

• Attack Design
• Victim

• For every keystroke typed by the victim, the service program auto-commits the
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings
• Inter-keystroke latency (> 100ms)
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2% Keystroke Index

0
500

1000
1500 0

500
1000
1500

0 2000 4000 6000

ΔT
 fo

r
Sy

nc
+

Sy
nc

(m
s)

ΔT for Reference (m
s)

9

Conclusion

• Sync+Sync is the first covert channel that makes use of
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and

even cross-disk

• Sync+Sync attacks affects real-world applications that
utilize fsyncs in their implementations.

10

Conclusion

• Sync+Sync is the first covert channel that makes use of
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and

even cross-disk

• Sync+Sync attacks affects real-world applications that
utilize fsyncs in their implementations.

10

Conclusion

• Sync+Sync is the first covert channel that makes use of
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and

even cross-disk

• Sync+Sync attacks affects real-world applications that
utilize fsyncs in their implementations.

10

Conclusion

• Sync+Sync is the first covert channel that makes use of
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and

even cross-disk

• Sync+Sync attacks affects real-world applications that
utilize fsyncs in their implementations.

10

Conclusion

• Sync+Sync is the first covert channel that makes use of
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and

even cross-disk

• Sync+Sync attacks affects real-world applications that
utilize fsyncs in their implementations.

A full version of the paper is available at https://arxiv.org/abs/2309.07657
Source code of Sync+Sync covert channel is available at https://github.com/toast-lab/sync-sync
Should you have any question, drop an email to toast-lab@outlook.com

10

https://arxiv.org/abs/2309.07657
https://github.com/toast-lab/sync-sync

Thanks :-)

https://toast-lab.tech
toast-lab@outlook.com

Toast Lab in ShanghaiTech (June 1st, 2024)

Jian Zhang is on the job market

