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Background

• Covert Channel and Side-Channel Attacks
• Memory Hierarchy

• fsync
• Unprivileged system calls 
• Synchronously flush data to storage
• Very long response latency 

• fsync contention
• Multiple files
• Even longer response latency 
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fsync Contention

• Program A and Program B
• ftruncate / write / idle + fsync

• Only measure the fsync latency of 
Program A
• A+B: about 2x A-only

• Why?
• Contention within file system

• Only one running transaction in Ext4 at a time.

• Contention within storage device
• Software/hardware queues
• REQ_PREFLUSH and REQ_FUA flags
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Sync+Sync - Covert Channel 

• Types of Channels
• Cross-file

• 20,000 bps at an error rate of about 0.40%

• Cross-container
• Overlay file system

• Cross-VM: disk images 

• Positions of two sides
• Intra-partition
• Inter-partition

• Various storage devices
• SATA SSDs
• NVMe SSDs
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bit `1’ 𝑡$%
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Sync+Sync - Side-Channel Attacks 

• Principle
• Victim application: accesses files and may invoke fsync

• E.g. Databases, Linux/Android applications, and web browsers
• Attacker

• On the same disk but invokes fsync on an irrelevant file periodically
• Can observe the application’s fsync behaviors 

• Observation 
• Different applications exhibit varying patterns of fsync calls 

• Frequency
• Data volume to be flushed 

• The attacker can recognize different patterns of fsync calls
5
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Database Operations Speculation

• Attack Design
• Victim database

• SQLite, Invoking fsync when committing

• Observations
• Attacker: Higher fsync latency
• SQLite: fsync operations 
(committing a transaction)

• Information Leakage 
• Insert/Update Ratio over Time
• B-Tree Split Detection 
• Database Operation Leakage
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Application Information Leakage 

• Application Fingerprinting 
• e.g., Twitter and Facebook 
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Application Information Leakage 

•Website Fingerprinting 
• Most websites do not commonly use fsync. 
• Some websites invoke fsync more frequently and exhibit 

different I/O behaviors. 
• Due to the use of Indexed Database 
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Keystroke Attack 

• Attack Design 
• Victim

• For every keystroke typed by the victim, the service program auto-commits the 
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings 
• Inter-keystroke latency (> 100ms) 
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2%

9



Keystroke Attack 

• Attack Design 
• Victim

• For every keystroke typed by the victim, the service program auto-commits the 
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings 
• Inter-keystroke latency (> 100ms) 
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2%

9



Keystroke Attack 

• Attack Design 
• Victim

• For every keystroke typed by the victim, the service program auto-commits the 
user input by storing it in a file with an fsync

• A keystroke -> an fsync
• Attacker

• Increased fsync latency -> a keystroke

• Inter-keystroke Timings 
• Inter-keystroke latency (> 100ms) 
• Attacker’s fsync latency (< 100us)
• An accuracy of 99.2% Keystroke Index

0
500

1000
1500 0

500
1000
1500

0 2000 4000 6000

ΔT
 fo

r 
Sy

nc
+

Sy
nc

(m
s)

ΔT for Reference (m
s)

9



Conclusion 

• Sync+Sync is the first covert channel that makes use of 
fsync at the persistent storage level.
• Sync+Sync covert channel effectively works in various 

scenarios.
• Cross-partition, cross-file system, cross-container, cross-VM, and 

even cross-disk 

• Sync+Sync attacks affects real-world applications that 
utilize fsyncs in their implementations. 
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A full version of the paper is available at https://arxiv.org/abs/2309.07657
Source code of Sync+Sync covert channel is available at https://github.com/toast-lab/sync-sync
Should you have any question, drop an email to toast-lab@outlook.com
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Thanks :-)

https://toast-lab.tech
toast-lab@outlook.com
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