BeeBox

Hardening BPF against Transient Execution Attacks

Di Jin Alexander J. Gaidis Vasileios P. Kemerlis

Secure Systems Laboratory (SSL)
Department of Computer Science
Brown University

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 1/20

https://cs.brown.edu/~vpk
https://gitlab.com/brown-ssl/
https://cs.brown.edu
https://www.brown.edu
mailto:di_jin@brown.edu
https://cs.brown.edu

e The separation between the OS and applications can be at odds with modern
computing infrastructure's performance requirements

e BPF bends the line of separation, reducing context switching, data copying,
and unnecessary software stack traversals

% ... but it undermines kernel security, especially in the presence of transient
execution attacks

« BeeBox is here to save the day!

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 2/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Background

Berkeley Packet Filter (BPF)

o User apps =» Safely delegate computations to the OS kernel®

o A small virtual architecture with a RISC-like instruction set

e Many applications

Packet filtering

Networking (Cilium, Katran, ...)

System call filtering (Android, Docker, Chrome, OpenSSH, Tor, ...)
Kernel profiling

FUSE (Filesystem in Userspace)?

High-performance storage?

LThe BSD Pkt. Filter: A New Arch. for User-level Pkt. Capture. USENIX Winter 1993

2 Extension Framework for File Systems in User space. USENIX ATC 2019 oy

3XRP: In-Kernel Storage Functions with eBPF. OSDI 2022 BROWN
Di Jin (Brown University) BeeBox USENIX Sec 2024 3/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BPF Features

e Basic instructions =» ALU, memory access, conditional branching
e Safety =¥ Statically verified (termination, non-leaking behavior)
e JIT-compilation

e Runtime environment

m BPF helpers =» Pre-defined native kernel funcs. (invoked from BPF code)
m BPF context =» Data passed to BPF program by the kernel
m BPF stack =» Scratch space used by BPF programs
m BPF maps =» A collection of data structures used to store aggregated results
(array, hash table, bloomfilter, etc.)
[[

BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 4/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Transient Execution

e Pipeline, slow memory =¥ Out-of-order/speculative/. .. execution
e Being speculative =» Need to revert instructions

m mis-prediction: conditional branch target, indirect branch target, memory
access address, . ..
m exception: page fault, permission check, ...

e Transient instructions := the instructions that are squashed*

[[
BROWN

4A Systematic Evaluation of Transient Execution Attacks and Defenses. USENIX SEC 2019
Di Jin (Brown University) BeeBox USENIX Sec 2024 5/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Transient Execution Vulnerabilities

(a) Transient execution may break the semantics intended by the developer
e Permission restrictions
e Sanity checks
e Other invariants
(b) Transient execution cannot be fully reverted, leaving the door open for
side-channel attacks

(a) + (b) = Information leakage from a correct program

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 6 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

BPF and Transient Execution Attacks

BPF is an attractive attack vector for transient execution attacks

e BPF JIT = Power to “push” native code in kernel space
e BPF operates on user data = Complete control over the execution trace
e BPF works on hot paths = Side channels are less noisy

e BPF lives in the kernel = Bypasses cross-domain defenses

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 7/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Existing Solutions and their Limitations

LPM (Linux Provisional Mitigations) := Existing defenses in Linux BPF

e Analysis over impossible branch/value combinations =¥ Prevents unsafe
behavior in speculation

e Speculation barriers =¥ Prevents speculative store bypass

LPM limitations

e Compatibility =» Rejects legal programs
m Forbids some pointer arithmetics due to uncertain speculative behavior
m Rejects programs due to analysis-time explosion

e Performance =¥ Significant overhead for complex BPF programs

e Scope =% Does not protect helper functions &

BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 8/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox

BeeBox Design

BeeBox goals:

e Defend against Spectre-PHT (v1) and Spectre-STL (v4)

m Similar to LPM
m Other transient execution attacks are handled by generic defenses

e Maintain full compatibility

e Remain performant
Key idea:

e Allow any (mis-)speculation

e ... but sandbox all memory accesses

el . . .] [
= No sensitive data (kernel data) is exposed during speculation ey
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 9/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox Design

Inspired by Software-Fault Isolation (SFI)® techniques

JiTed BPF {bee
regs :

‘"@\ BPF Map

Sandbox region per user (4GB)
Dedicated boxbase register (1)

BPF Map

nnnnnnnn

Transform BPF pointers
Isolating BPF's data

\@\EPF Stack Region 1
\@\ B stk
m BPF stack Context

Interrupted BPF Stack

Interrupted Context

m BPF maps
m BPF context

RALCGE EN

[[

BROWN
5 Efficient software-based fault isolation. OSDI 1993

Di Jin (Brown University) BeeBox USENIX Sec 2024 10/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox Design: Instrumentation

mov r12, 0xffffc90000000000

r2 = $map_ptr mov rsi, Oxffffc90000001000 mov rsi, 0x1000
r3 =1r2 + r3 add rcx, rsi add rcx, rsi
r4 = *(ub4 *) r3 mov rdx, qword ptr [rcx] mov ecx, ecx

mov rdx, qword ptr [ri2 + rcx]

Example BPF program, its vanilla JIT-ed code, and its BeeBox JIT-ed code

e If array index (r3 and rcx) is speculatively out-of-bound
= Out-of-bound access in vanilla

= Sandbox-ed access in BeeBox o

BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 11/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox Design: BPF Stack

e Pre-allocate per-CPU region

B i “@\» BPF Map
e BPF stack ((2)) =» local variables - —
m Only used by BPF - —
m Allocated per execution \@\
— \<‘D\ BPF Stack

Context

m Reduce memory allocation Interupled BPF Stack

Interrupted Context

VRRLCGC ENG

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 12 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox Design: BPF Maps

JITed BPF ibeebox_2

e BPF map ((3)) =» data structures R 1 MUE N —
storing aggregated results B :
BPF Map

m Used by BPF and the kernel - —
m Persistent allocation \@\
e Split BPF maps \@\ BPF Stack

Context
m Kernel metadata =» Outside i B S
) Interrupted Context
m BPF (meta)data =¥ Inside

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 13/20

mailto:di_jin@brown.edu
https://cs.brown.edu

BeeBox Design: BPF Context

e BPF context ((4)) =» data passed E :
in by the kernel 3BPFSM:PF'MSP
m Used by BPF and the kernel \@\ o
m Allocated by the kernel — \@\ BPF Stack
Contert
e Copy to BPF stack region [ETEEEE

Interrupted Context

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 14 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

Context-copying Optimizations

Copying context can be costly

e BeeBox-RC (reduce copy)

=» Only copy fields that are used ~~ via static analysis
« Generally applicable

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 15/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Context-copying Optimizations

Copying context can be costly

e BeeBox-RC (reduce copy)
=» Only copy fields that are used ~~ via static analysis
« Generally applicable

e BeeBox-RB (ring buffer)

=» When the context's entire page is accessible, map it into the sandbox
« Applicable for device-level BPF (e.g., XDP)

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 15/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Context-copying Optimizations

Copying context can be costly

e BeeBox-RC (reduce copy)
=» Only copy fields that are used ~~ via static analysis
« Generally applicable
e BeeBox-RB (ring buffer)
=» When the context's entire page is accessible, map it into the sandbox
« Applicable for device-level BPF (e.g., XDP)
e BeeBox-CP (clean pointer)

=» Avoid instrumenting context pointers when they cannot be speculatively
hijacked ~~ via static analysis
m Applicable to BPF programs with simple context usage (e.g., packet filter ands

cBPF)

BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 15/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Other Interesting Features

Helper instrumentation is guided by annotations and static analysis

boxbase register reservation in BPF's runtime

Return addresses are separated from the BPF stack

Support for interrupts and re-entrant BPF programs

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 16 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

Evaluation

Evaluation: Synthetic Micro-benchmarks

Emm No Mitigation
3.5 . LPM
[BeeBox-RC
v 3.0 BeeBox-CP
£
£
o
£
=
=
&
o
¥
©
£
o
=4
BPF Programs
Manually-written BPF programs that stress different BPF access patterns ofig
=» 0%—23% overhead BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 17 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

Evaluation: Katran

1250

= o Mitigation
= - LPM
E] == BeeBox-RC
§10°°7 um BeeBox-RB
< 1
g
£ 750 1
k] i I » »
& H .
A <Ml) .
£ s00
)
2
8
§ 250
H
o

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Workload

Katran's performance test suite for load balancing
=» ~20% overhead (vs. ~112% of LPM)

Di Jin (Brown University) BeeBox USENIX Sec 2

mailto:di_jin@brown.edu
https://cs.brown.edu

Evaluation: Packet Filtering and seccomp-BPF

Benchmark

No Mitigation

BeeBox

Nginx
Redis

0.81% (+ 1.09%) 0.32% (+ 1.47%)

0.98% (+ 0.44%) 0.84% (= 0.74%)

Throughput decrease of seccomp-BPF (95% Cls)

Filter

No Mitigation

BeeBox-CP

%-Chg

bpfl
bpf2
bpf3
bpf4
bpf5
bpf6

325027 (& 3611)
324615 (+ 3960)
324114 (& 3977)
328610 (+ 4827)
328072 (& 3883)
314801 (& 2025)

327778 (& 3006)
323374 (+ 5375)
323834 (& 5088)
325568 (+ 7818)
325395 (& 7352)
313618 (& 2650)

+0.57%
—-0.38%
—0.09%
—0.93%
—0.82%
—0.38%

Packet filtering performance in pkts/sec (95% Cls)

Di Jin (Brown University)

BeeBox

[[
BROWN

USENIX Sec 2024 19/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Conclusion

e BPF is important, but prone to transient execution attacks

e BeeBox mitigates the problem by sandboxing the BPF runtime, restricting

memory access targets under speculation

e BeeBox is efficient and more secure than LPM, while maintaining
compatibility with vanilla BPF

@ Artifact ~» https://gitlab.com/brown-ssl/beebox

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

é;usenlx érusenlx é;usenlx
ASSOCIATION ASSOCIATION ASSOCIATION

AVAILABLE REPRODUCED

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

https://gitlab.com/brown-ssl/beebox
mailto:di_jin@brown.edu
https://cs.brown.edu

Backup Slides

Securing Helper Functions

Helper functions need to change accordingly:

e Compatibility ~~ different pointer representation

e Security ~» untrusted pointer value from BPF
To secure a helper function:

« We instrument sandbox-ed pointer dereferences
v We verify that native pointers are safe to access
m If not, we fall back to inserting speculation barriers
[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Securing Helper Functions: Instrumentation

static void *array_map_lookup_elem(struct bpf_array *array, void *key)

{
u32 index = *(u32 *)key;

if (index >= array->map.max_entries)
return NULL;

return array->value + (u64)array->elem_size * index;

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Securing Helper Functions: Instrumentation

static __beebox void *array_map_lookup_elem(struct bpf_array __beebox x*array,

void __beebox *key)

{
u32 index = *(u32 *) unbox (key);
if (index >= #unbox (& array->max_entries))
return NULL;
return array->value + (u64) *unbox (& array->elem_size) * index;
}

e _ beebox annotation =» Avoid normal dereference

e unbox macro =» Apply instrumentation and dereference

e Checking is achieved via the static analysis tool sparse® &5

BROWN

6https://www.kernel.org/doc/htmI/Iatest/dev-tools/sparse.html
Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Securing Helper Functions: Clean Pointers

e Clean pointers =
| Embedded immediate
| Pointers loaded through clean
pointers
e Safety requirement

m No spilling into sandbox
m No leaking into BPF runtime

« Can be identified by static analysis

Di Jin (Brown University)

BeeBox

bpf_get_current_uid_gid:

mov
test
je

rax,
rax,
1f

rax,

rax,

rax,

QWORD PTR gs:0x1ad00 # struct task_struct
rax

QWORD PTR [rax+0x638] # struct cred

QWORD PTR [rax+0x4] # uid, gid

Oxffffffffffffffea # -EINVAL

[[
BROWN

USENIX Sec 2024 20 /20

mailto:di_jin@brown.edu
https://cs.brown.edu

Memory Usage

Experiment Vanilla Usage BeeBox Usage Overhead
At rest 176MB (178MB) 180MB (180MB) 2.4%
Packet filter 182MB (183MB) 186MB (188MB) 2.3%
Katran 580MB (582MB) 592MB (592MB) 2.0%

Nginx (seccomp) 189MB (190MB) 196MB (197MB) 3.5%
Redis (seccomp) 212MB (213MB) 218MB (221MB) 3.0%

Memory usage of BeeBox compared to vanilla Linux. ‘At rest’ means no workload is
running. The reported numbers are formatted as avg (max).

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Scope and Compatibility

Category Feature LPM retpoline IBRS KPTI BeeBox

Block Spectre-PHT in BPF code v
Block Spectre-PHT in BPF helpers
Security Block Spectre-STL in BPF code v
Block Spectre-STL in BPF helpers
Block Spectre-BTB v v
Block Meltdown v
Allow conditional ptr. arithmetic in unpriv. BPF
Avoid verifier state explosion in unpriv. BPF

AN YRANAN

AN

‘ Compatibility

Existing Linux kernel defenses and BeeBox’s coverage over transient execution attacks
and compatibility features.

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Scope and Compatibility

Category Feature LPM retpoline IBRS KPTI BeeBox
Block Spectre-PHT in BPF code v v
Block Spectre-PHT in BPF helpers 4
Security Block Spectre-STL in BPF code v v
Block Spectre-STL in BPF helpers
Block Spectre-BTB v v
Block Meltdown v

Allow conditional ptr. arithmetic in unpriv. BPF

v
Avoid verifier state explosion in unpriv. BPF v

‘ Compatibility

Existing Linux kernel defenses and BeeBox’s coverage over transient execution attacks
and compatibility features.

[[
BROWN

Di Jin (Brown University) BeeBox USENIX Sec 2024 20/20

mailto:di_jin@brown.edu
https://cs.brown.edu

Scope and Compatibility

N\ N\
Category Feature LPM\ retpoline IBRS KPTI ﬁeeBo\‘
Block Spectre-PHT in BPF code v v
Block Spectre-PHT in BPF helpers 4
Security Block Spectre-STL in BPF code v v
Block Spectre-STL in BPF helpers v

Block Spectre-BTB
Block Meltdown

Allow conditional ptr. arithmetic in unpriv. BPF ‘

v
v
v
Avoid verifier state explosion in unpriv. BPF \ / \ v A
\/ \/

‘ Compatibility

Existing Linux kernel defenses and BeeBox’s coverage over transient execution attacks
and compatibility features.

[[
BROWN

20/20

Di Jin (Brown University) BeeBox

mailto:di_jin@brown.edu
https://cs.brown.edu

	Background
	BeeBox
	Evaluation
	Backup Slides

