
METASAFE: Compiling for Protecting
Smart Pointer Metadata To Ensure Safe

Rust Integrity
Martin Kayondo, Inyoung Bang, Yeongjun Kwak, Hyungon Moon, and

Yunheung Paek
USENIX Security 2024

Rust: A Memory Safe System Programming
Language

• Rust is gaining popularity as a memory safe programming language
• Replacing C/C++ in some production software (Linux, Microsoft, Android)
• Reportedly resulted memory bug reduction (Android: 76% è 25%)

• Aspires to maintain runtime performance
• In some cases faster than C/C++

• Currently gradually replacing C/C++, Python, Java

2

Memory Safety in Rust: Policy
• Memory Access Policy:

• Ownership: A memory object shall have one owner
at any point in time.

• Borrowing: A memory object may be borrowed:
• Immutably by one or more entities
• Mutably by a single entity

• Lifetimes: A memory object can only be accessed
when it is live

• Policy Enforcement:
• Compiler-based (borrow checker, lifetime analyzer)

https://livebook.manning.com/book/code-like-a-pro-in-rust/chapter-1/v-2/

3

Smart Pointers and Their Metadata in Rust
• Rust Memory Rules are too strict

• Limit expressive power
• Impossible to implement some widely-used DS.

• How to design a Doubly Linked List?

• Smart Pointers to the SAFE rescue
• A way to enforce memory safety rules at
runtime
• Buffer Pointers with buffer length metadata

• Vec<T>, Slice<T>
• Shared Pointers with reference counters

• Rc<T>, Arc<T>
• Interior Mutability with special metadata

• RefCell<T> with mutable borrower counters
• Mutex<T>, RwLock with lock metadata

https://tc.gts3.org/cs3210/2020/spring/l/lec09/lec09.html

4

Node nextprev

Who’s the owner? next or prev?

Smart Pointer Metadata Storage

Several existing CVEs on unsafe Rust and unchecked length-related buffer overflows.
5

Smart Pointer APIs and Metadata Access

User drops the string pointer

User creates Box pointer using from_raw
Box doesn’t check received pointer
println! reads from new pointer è UAF

User overwrites Vec metadata using set_len
Vec doesn’t validate new length

buffer[9] makes OOB read due to new
invalid length metadata

CVE-2021-25900

6

Related Works: Enhancing Rust Safety
• Most works focus on Unsafe Vs Safe Rust memory Isolation.
• TRust: USENIX Security 2023

• Protects Safe Rust by isolating memory used by Safe Rust and Unsafe/FFI
• Uses static analysis, Intel MPK + SFI to achieve runtime performance

• PKRU-Safe: CCS 2022
• Similar to TRust, isolates safe Rust and FFI with Intel MPK
• Relies on dynamic profiling instead of static analysis

• Galeed: ACSAC 2021
• Similar to TRust, isolates safe Rust and FFI with Intel MPK
• Uses pseudo-pointers to provide strict Temporal access to shared Rust objects by FFI

• XRust: ICSE 2020
• Provides isolation between safe and unsafe Rust memory
• Does not specifically consider FFI

• None of Existing works give special care to smart pointers, eg. Validating metadata updates
• METASAFE aims NOT to REPLACE unsafe Rust Isolation works, rather to COMPLEMENT them

7

Protecting Smart Pointer Metadata
• METASAFE:

• Protects smart pointer metadata & validates updates

• Requirements:
• Identification of Smart Pointers

• The Rust Compiler treats smart pointers similarly to other data structures (except Box)

• Separate isolated storage
• Need for storing smart pointers in a gated region.

• Controlled write access to metadata
• Preventing illegal access to smart pointer metadata

• Authentication of metadata updates through unsafe APIs
• Ensure unsafe APIs write valid smart pointer metadata

8

METASAFE Overview

Regular Code

Smart Pointer &
Allocator Domain

Regular Data Regular DataRegular Data

Allocator
Metadata

Smart Pointer

Smart Pointer

Code View Data View

• Categorize code between regular and smart pointer domain
• Categorize data into regular, allocator and smart pointer metadata

𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒✓

𝑅𝑒𝑎𝑑✓
𝑊𝑟𝑖𝑡𝑒❌

MPK Entry gate
Update smart pointer

Validate state
MPK Exit gate

• Enforce access control on allocator and smart pointer metadata
• Metadata updates validated by comparison with ground truth

𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒✓

9

Identifying Smart Pointers

• Identifying Smart Pointers at Compile time
• Require Smart Pointer Developers to implement a special trait (MetaUpdate)

• Diversity of Smart Pointer types & uses
• Challenge for authenticating metadata updates
• The MetaUpdate trait requires implementation of a validate function

• Insert calls to validate function after API call that takes mutable sp.

10

Isolated Storage for Smart Pointers & Metadata
• Separate Compartmentalized Storage for Metadata
• Stack è Allocate a separate stack for smart pointers (similar to safestack)
• Heap è Use Allocator with grouping property (Arenas) (tcmalloc, mimalloc)

• Heap[0] for FFI
• Heap[1] for Smart Pointers
• Heap[2…TypeN] for user data

Normal Stack

Normal data0

Normal data1

…

SP Stack

SP0<T>

SP1<U>

…

User
Code SP APIs

11

• Enforcing In-process Isolation.
• Use Intel-MPK to enforce different access permissions on gated region

• Deciding the boundary of gated region access.
• Find call sites to smart pointer APIs in application context.
• Insert WPKRU instructions to enable write before API call.
• Insert WPKRU instructions to disable write before return inside API function

Protecting Smart Pointer Metadata

12

Struct-Inlined Smart Pointers

• Protecting In-struct Embedded Smart Pointers
• How to control access to in-struct embedded smart pointer

• Treat whole struct as smart pointer è Not safe
• Treat smart pointer as user-data è Defeats METASAFE
• Use shadow memory for inlined smart pointers.

13

Evaluation: Performance

• METASAFE Alone:
• 25.5% performance overhead on micro benchmarks
• 3.5% performance overhead on servo browser

14

Evaluation: Memory Usage
• METASAFE Alone:
• 27% Memory usage overhead on

single-threaded micro-benchmarks
• Upto 8x more memory usage for

heavily multithreaded micro-
benchmarks
• 31% memory overhead if separate

stacks are disabled

15

Evaluation: Performance

• METASAFE + TRust
• TRust: A mechanism for isolating

unsafe Rust to protect Safe Rust
• METASAFE + TRust incurs 13%

performance overhead on micro-
benchmarks.
• TRust Alone incurs 11%

performance overhead

16

Evaluation: Memory Usage
• METASAFE + TRust

• METASAFE + TRust incurs 89%
memory overhead
• TRust alone incurs 69% memory

overhead
• More memory for separating smart

pointers

17

Conclusion

• METASAFE presents a mechanism to recognize and protect smart pointer
metadata, thus enhancing Rust memory safety.
• It allows developers to mark smart pointers and provide means of

validating metadata updates.
• Relying on Intel-MPK and Compiler instrumentation, METASAFE incurs

acceptable runtime overhead for realworld programs such as servo.
• Artifact Open Sourced at:
• https://github.com/seccompgeek/trust23-metsafe24.git
• kayondo/metasafe for built image

18

https://github.com/seccompgeek/trust23-metsafe24.git

