# ClearStamp

A Human-Visible and Robust Model-Ownership Proof based on Transposed Model Training

Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko

University of Würzburg, Germany

33<sup>rd</sup> USENIX Security Symposium

## Image





## ML Model



## Image



## ML Model



## ML Models are Intellectual Property



## Intellectual Property Violations

Trained ML Model



F - Theft

- Illicit Utilization











### **Intellectual Property Protection**



#### ML Model Watermark Verification



Secret Lock

#### ML Model Watermark Verification



## Rigid Threshold VS. Partially Removed Watermarks





100 % Watermark





85 % Watermark



49 % Watermark







#### ClearStamp - Principle



#### ClearStamp - Principle



#### Transposed Training for Watermarking



#### Transposed Training for Watermarking



#### Transposed Training for Watermarking



#### Transposed Training - Details

| Model Component      | Forward Model                                                           | Transposed Model                                                                       |  |
|----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Linear Layer         | $y = x \cdot w^T + b$                                                   | $x = (y - b) \cdot w$                                                                  |  |
| Batch Normalization  | $y = \frac{x - E(x)}{\sqrt{Var(x) + \varepsilon}} \cdot \gamma + \beta$ | $x = \frac{(y-\beta)\cdot\sqrt{1+\varepsilon}}{\gamma}$ with $E(x) = 0$ , $Var(x) = 1$ |  |
| Convolutions [1]     | Replace with deconvolutions [2]                                         |                                                                                        |  |
| Pooling Layer [3]    | Replace with Interpolations [4, 5]                                      |                                                                                        |  |
| Dropout Layers [6]   | Keep same dropout                                                       |                                                                                        |  |
| Activation Functions | Use same activation, e.g., ReLU [7]                                     |                                                                                        |  |
| Skip Connections     | Fixate skip connections                                                 |                                                                                        |  |

<sup>[1]</sup> Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.

<sup>[2]</sup> Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. CVPR, 2010.

<sup>[3]</sup> Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz, Abdulrahman Alruban, Ashit Kumar Dutta, and Sultan Almotairi. A comparison of pooling methods for convolutional neural networks. AppliedSciences, 2022.

<sup>[4]</sup> Olivier Rukundo and Hanqiang Cao. Nearest Neighbor Value Interpolation. IJACSA, 2012.

<sup>[5]</sup> Olivier Rukundo and Bodhaswar T Maharaj. Optimization of Image Interpolation based on Nearest Neighbour Algorithm. VISAPP, 2014.

<sup>[6]</sup> Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.

<sup>[7]</sup> Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv preprint arXiv:1803.08375, 2018.

#### Transposed Training - Details

| Model Component      | Forward Model                                                           | Transposed Model          |
|----------------------|-------------------------------------------------------------------------|---------------------------|
| Linear Layer         | $y = x \cdot w^T + b$                                                   | $x = (y - b) \cdot w$     |
| Batch Normalization  | $y = \frac{x - E(x)}{\sqrt{Var(x) + \varepsilon}} \cdot \gamma + \beta$ | V = 0, Var(x) = 1         |
| Convolutions [1]     | Replay                                                                  | with deconvolutions [2]   |
| Pooling Layer [3]    | Replace                                                                 | with Interpolation [4, 5] |
| Dropout Layers [6]   | k                                                                       | Ke prome dropo            |
| Activation Functions | Use 🔊                                                                   | Zacheren, ReLU [7]        |
| Skip Connections     | Fix                                                                     | ate skip connections      |

<sup>[1]</sup> Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.

<sup>[2]</sup> Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. CVPR, 2010.

<sup>[3]</sup> Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz, Abdulrahman Alruban, Ashit Kumar Dutta, and Sultan Almotairi. A comparison of pooling methods for convolutional neural networks. AppliedSciences, 2022.

<sup>[4]</sup> Olivier Rukundo and Hanqiang Cao. Nearest Neighbor Value Interpolation. IJACSA, 2012.

<sup>[5]</sup> Olivier Rukundo and Bodhaswar T Maharaj. Optimization of Image Interpolation based on Nearest Neighbour Algorithm. VISAPP, 2014.

<sup>[6]</sup> Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.

<sup>[7]</sup> Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv preprint arXiv:1803.08375, 2018.



Secret Lock







Secret Lock



## ClearStamp - Workflow

1 Watermark Hardening



2 Constraint Training



Legal / Illegal Model Distribution -

3 3<sup>rd</sup> Party Manipulation



Copyright Infringement?









|                        | Fine-Tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                  | Pruning |            |         | Fine-Pruning                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|---------|------------|---------|-------------------------------------------|
|                        | Same LR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>1</sup> / <sub>10</sub> LR | <sup>1</sup> / <sub>10</sub> LR &<br>unseen data | 60 %    | 80 %       | 90 %    | <sup>1</sup> / <sub>10</sub> LR &<br>40 % |
| Performance            | 87.42 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.86 %                         | 97.02 %                                          | 78.56 % | 50.10 %    | 26.76 % | 89.79 %                                   |
| Extracted<br>Watermark | ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABCD                            | A B<br>C D                                       | ABCD    | A B<br>G B | 1 B B   | 6 B                                       |
|                        | Solution of the second se |                                 |                                                  |         |            |         |                                           |

Aco

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Pruning Level 0.0

|                     | Erase Watermark        | Performance                           | Capacity                                                                        | Runtime                                                                                                     |
|---------------------|------------------------|---------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| A B E F G H C D C H | IJ MN QRUV<br>KLOPSTW) | 83.89 %   70.38 %   56.39 %   46.52 % | <u>MiT License Text</u><br><b>8,544 bits</b><br><u>Bit Error Rate</u><br>5.92 % | <u>Hardening</u><br>53.48 s ( <b>one time</b> )<br><u>Training</u><br>67.62 s → 94.39 s<br>+ <b>39.58 %</b> |
|                     |                        |                                       | Dot code                                                                        | <u>Extraction</u><br><b>0.02 s</b>                                                                          |





#### Conclusion



Copyright Infringement of ML models



Watermarking of ML models

- Non-intuitive algorithms
- Non-human-interpretable
- Rigid threshold
- Partially removed watermarks





Transposed training to generate a human-visible watermark

## Thank you!!11!!1

## Any Questions?

#### Parameter Entanglement





Torsten Krauß, Jasper Stang, Alexandra Dmitrienko

University of Würzburg

