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Intellectual Property Violations
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Intellectual Property Protection
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Rigid Threshold VS. Partially Removed Watermarks
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Transposed Training for Watermarking
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Transposed Training - Details
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Transposed ModelForward Model

Linear Layer

withBatch Normalization

Replace with deconvolutions [2]Convolutions [1]

Replace with Interpolations [4, 5]Pooling Layer [3]

Keep same dropoutDropout Layers [6]

Use same activation, e.g., ReLU [7]Activation Functions

Fixate skip connectionsSkip Connections

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.
[2] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. CVPR, 2010.
[3] Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz, Abdulrahman Alruban, Ashit Kumar Dutta, and Sultan Almotairi. A comparison of pooling methods for convolutional neural networks. AppliedSciences, 2022.
[4] Olivier Rukundo and Hanqiang Cao. Nearest Neighbor Value Interpolation. IJACSA, 2012.
[5] Olivier Rukundo and Bodhaswar T Maharaj. Optimization of Image Interpolation based on Nearest Neighbour Algorithm. VISAPP, 2014.
[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014.
[7] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv preprint arXiv:1803.08375, 2018.
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ClearStamp - Evaluation
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Extracted
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Same LR Τ1 10 LR
Τ1 10 LR & 

unseen data

Fine-Tuning

60 % 80 % 90 %

Pruning Fine-Pruning

Τ1 10 LR & 

40 %

Performance 87.42 % 89.86 % 97.02 % 78.56 % 26.76 %50.10 % 89.79 %



ClearStamp - Evaluation
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5.92 %
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67.62 s →  94.39 s

+ 39.58 %
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Copyright Infringement of ML models

Watermarking of ML models

• Non-intuitive algorithms
• Non-human-interpretable
• Rigid threshold
• Partially removed watermarks

Transposed training to generate a human-visible watermark



Thank you!!11!!1

Any Questions?

Torsten Krauß, Jasper Stang, Alexandra Dmitrienko
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