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Two Use-Cases 
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Dataset Cleaning Confidence Scoring
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Downsides of Existing Works
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▪ Train auxiliary models on entire dataset [1, 2, 3]

▪ Specific to a single model [4]

▪ Dependent on large clean datasets  [2, 4]

▪ Depend on entire untrusted datasets [5, 6, 7]

▪ Specific to a single model [5]

▪ Missing consideration of poisoning 

attacks [5, 6, 7]

Same underlying problem but no unique solution!

[1] Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor Defense via Adaptively Splitting Poisoned Dataset. In IEEE/CVF, 2023.
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[4] Huayang Huang, Qian Wang, Xueluan Gong, and Tao Wang. Orion: Online Backdoor Sample Detection via Evolution Deviance. IJCAI, 2023.
[5] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Addressing Failure Prediction by Learning Model Confidence. NeurIPS, 2019.
[6] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To Trust Or Not To Trust A Classifier. NeurIPS, 2018.
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▪ Sampling from the training

▪ LabelTrust provided by model 

creator

▪ Small reference dataset 

provided by model creator

▪ Observation of inference input 

and  output

LabelTrust – Reference Dataset 
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LabelTrust – Reference Dataset 
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LabelTrust – Training
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LabelTrust – Inference
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LabelTrust – Refeed Loop 
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20 81.74 97.36 22.94
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MNIST
ResNet-18

2 Linear
Layer

Siamese
Dataset

𝑥 = 2,5,10,15,20
samples
ser class

expand

60,000 60,000 Binary 
Cross 

Entropy
Loss 0.99

𝒙
MNIST Testset

Siamese
Accuracy

MNIST Testset SL-Mapping Verification Poisoned MNIST Testset SL-Mapping Verification

Accuracy False Rejection Rate AVG Score True Rejection Rate

2 59.56 92.52 72.98 0.0088 100.00

5 72.44 95.30 41.03 0.0074 99.75

10 75.50 96.29 32.07 0.0042 99.93

15 80.88 97.46 22.80 0.0047 99.87

20 81.74 97.36 22.94 0.0010 99.95

MNIST Testset

Poison each sample

AVG Score & True Rejection Rate

MNIST Testset

Poison each sample

AVG Score & True Rejection Rate



trainselect

LabelTrust - Evaluation
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MNIST
ResNet-18

2 Linear
Layer

Siamese
Dataset

𝑥 = 2,5,10,15,20
samples
ser class

expand

60,000 60,000 Binary 
Cross 

Entropy
Loss 0.99

Datasets
- MNIST
- F-MNIST
- IIC (colored)

Poisonings
- Pixel Trigger
- Blend / Noise
- Clean Label
- Random Label

Models
- ResNet-18
- Small CNN

Thresholds
- 0.99
- 0.50
- 0.01



LabelTrust - Evaluation
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Dataset Cleaning Confidence Scoring

Prediction

𝒙 Clean Filtered TRR ACC

10 37,717 22,283 99.87 72.20

15 41,199 18,801 99.69 77.98

20 47,202 12,798 99.34 87.92

25 47,038 12,962 99.39 87.65

30 47,027 12.973 99.71 87.70

35 50,009 9,981 99.82 92.70

▪ 350 reviewed samples after 5 refeed loops

− 0.0058 % of the dataset

▪ 16.63 % filtered

− 99.70% of poisonings

− Only 4,366 samples falsely filtered

▪ Backdoor removed in the first iteration



LabelTrust - Evaluation
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Dataset Cleaning Confidence Scoring

Prediction

▪ False SL-mappings reliably yield very low scores

▪ Poisoning can be clearly identified

▪ High thresholds of 0.99 would barely yield errors

Mispredictions from…
Confidence Score

Mean Median

…benign testset 0.30 0.0018

…poisoned testset 0.0052 5.83 ∙ 10−7

𝑥 = 10



Conclusion
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SL-Mappings are central in machine learning

Two use-cases: dataset cleaning & confidence scoring

• No dual-use tool
• Dependency on large (clean) datasets
• Dependent on a specific model architecture
• Missing consideration of poisonings

• SL-Mapping score based on reference data
• Consolidation of two use-cases
• Minimal clean dataset due to few-shot learning
• Ongoing enhancement via refeed loop

“Bird”



Thank you!!11!!1

Any Questions?

Torsten Krauß, Jasper Stang, Alexandra Dmitrienko
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