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Downsides of Existing Works

= Train auxiliary models on entire dataset [1, 2, 3] = Depend on entire untrusted datasets [5, 6, 7]
= Specific to a single model [4] = Specific to a single model [5]

= Dependent on large clean datasets [2, 4] = Missing consideration of poisoning
attacks [5, 6, 7]

Same underlying problem but no unique solution!

[1] Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor Defense via Adaptively Splitting Poisoned Dataset. In IEEE/CVF, 2023.

[2] Andrea Paudice, Luis Mufioz-Gonzalez, and Emil C Lupu. Label Sanitization Against Label Flipping Poisoning Attacks. ECML PKDD 2018 Workshops, 2019.

[3] Fereshteh Razmi and Li Xiong. Classification Auto-Encoder Based Detector Against Diverse Data Poisoning Attacks. In IFIP DBSec, 2023.

[4] Huayang Huang, Qian Wang, Xueluan Gong, and Tao Wang. Orion: Online Backdoor Sample Detection via Evolution Deviance. IJCAI, 2023.

[5] Charles Corbiere, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Addressing Failure Prediction by Learning Model Confidence. NeurlIPS, 2019.

[6] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To Trust Or Not To Trust A Classifier. NeurlIPS, 2018.

[7] Yan Luo, Yongkang Wong, Mohan S Kankanhalli, and Qi Zhao. Learning to Predict Trustworthiness with Steep Slope Loss. NeurlPS, 2021. 5/18



LabelTrust — Principle

SL-Mapping

v

‘ Small
-

, - - '% Reference 2 samples from each
Labe”mst class are sufficient
T Dataset

' ‘_*]‘P' : ENScore = | > Direct use

Filter Threshold

6/18



—
@l l
 ~— o

LabelTrust — Reference Dataset

Small
=
="2] Reference
Dataset
= Sampling from @g! = Sampling from the trainin §
pling = pling ¢ S
» LabelTrust provided by model
creator
Trusted = Small reference dataset
' /
Domain provided by model creator
Expert = QObservation of inference input

and output

7/18



LabelTrust — Reference Dataset
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LabelTrust — Training
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LabelTrust — Inference
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LabelTrust — Refeed Loop
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LabelTrust — Refeed Loop
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LabelTrust - Evaluation
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LabelTrust - Evaluation

MNIST Testset
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LabelTrust - Evaluation
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Poisoned MNIST Testset SL-Mapping Verification

X Siamese
Accuracy Accuracy False Rejection Rate AVG Score True Rejection Rate
2 59.56 92.52 72.98 0.0088 100.00
72.44 95.30 41.03 0.0074 99.75
10 75.50 96.29 32.07 0.0042 99.93
15 80.88 97.46 22.80 0.0047 99.87
20 81.74 97.36 22.94 0.0010 99.95
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LabelTrust - Evaluation
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- 1IC (colored) - Clean Label - 0.01
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LabelTrust - Evaluation

=
Dataset Cleaning
x | Clean | Filtered | TRR ACC
10 | 37,717 | 22,283 | 99.87 72.20
15 | 41,199 | 18,801 | 99.69 77.98
20 | 47,202 | 12,798 | 99.34 87.92
25 | 47,038 | 12,962 | 99.39 87.65
30| 47,027 | 12.973 | 99.71 87.70
35 | 50,009 | 9,981 | 99.82 92.70

= 350 reviewed samples after 5 refeed loops
— 0.0058 % of the dataset

= 16.63 % filtered
— 99.70% of poisonings
— Only 4,366 samples falsely filtered

* Backdoor removed in the first iteration
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LabelTrust - Evaluation

@ —%D—’ Prediction

Confidence Scoring

x = 10

= False SL-mappings reliably yield very low scores
Confidence Score

Mispredictions from...

= Poisoning can be clearly identified Mean Median

...benign testset 0.30 0.0018
...poisoned testset 0.0052 | 5.83 - 1077

= High thresholds of 0.99 would barely yield errors
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Conclusion
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SL-Mappings are central in machine learning

Two use-cases: dataset cleaning & confidence scoring

* No dual-use tool

 Dependency on large (clean) datasets
 Dependent on a specific model architecture
* Missing consideration of poisonings

* SL-Mapping score based on reference data

* Consolidation of two use-cases

* Minimal clean dataset due to few-shot learning
* Ongoing enhancement via refeed loop
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