

SoK: The Good, The Bad, and The Unbalanced

Measuring Structural Limitations of Deepfake Media Datasets

Seth Layton, Tyler Tucker, Daniel Olszewski, Kevin Warren, Kevin Butler, Patrick Traynor

The University of Florida

Motivation

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

1. Class Distributions

2. Metric Usage

3. Base-Rate Contextualization

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

Class Distribution

Impact of Class Distribution

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

Metrics

Current Deepfake Detectors claim EERs < 1%

Does that mean this is a "solved" space?

	EER	TPR	FPR
LFCC-GMM	25.5%	44.9%	8.80%
LFCC-LCNN	22.9%	94.7%	41.7%
Absolute Difference	2.6%	49.8%	32.9%

EER Inherently Obfuscates Results

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

Characterizing Model Efficacy

Call Center Scenario

1/1074 Incoming Calls are Deepfakes

~4,400 Calls Monthly

~4 Deepfake Calls Monthly

	EER	True Positive	False Positive
M _{LG}	25.5%	2	387
M _{SW}	4.14%	4	1182
	M_{sw} 4.1	14%	

 $M_{LG} = 1 \text{ DF per } 200 \text{ Alarms}$

M_{sw} = 1 DF per 333 Alarms

Call Center Scenario

1/11 Incoming Calls are Deepfakes

~4,400 Calls Monthly

~400 Deepfake Calls Monthly

	EER	True Positive	False Positive
M _{LG}	25.5%	180	352
M _{SW}	4.14%	400	1076

 $M_{LG} = ~1 DF per 2 Alarms$

 M_{sw} = ~ 2 DF per 5 Alarms

Class Distribution and Bias

Metric Usage Impacts

Base-Rate Contextualization

Improving Deepfake Detection

- 1. This applies to more than deepfakes
- 2. Honestly characterize model performance
- 3. Facilitate more research
- 4. Facilitate more meaningful research

In Conclusion

- 1. Currently used metrics obfuscate results
- 2. The class distribution in datasets can impose bias on results
- 3. Contextualization of a dataset is important
- 4. Current standards of reproducibility and comparability are lacking

sethlayton@ufl.edu