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=====Deepfake Datasets
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=====Metrics
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=====Metrics
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Current Deepfake Detectors claim EERs < 1%

Does that mean this is a “solved” space?



=====Impact of EER
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EER TPR FPR

RawNet2 
22.1% 95.9% 36.2%

LFCC-LCNN
22.9% 94.7% 41.7%

Absolute Difference
0.8% 1.2% 5.5%

EER TPR FPR

LFCC-GMM
25.5% 44.9% 8.80%

LFCC-LCNN
22.9% 94.7% 41.7%

Absolute Difference
2.6% 49.8% 32.9%

EER Inherently Obfuscates Results
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=====Characterizing Model Efficacy
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EER

MLG 25.5%

MSW 4.14%

EER

MLG 25.5%

EER True 

Positive

False 

Positive

MLG 25.5% 2 387

MSW 4.14% 4 1182

Call Center Scenario
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~4,400 Calls Monthly1/1074 Incoming Calls are Deepfakes

~4 Deepfake Calls Monthly

MLG = 1 DF per 200 Alarms

MSW = 1 DF per 333 Alarms
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EER True 

Positive

False 

Positive

MLG 25.5% 180 352

MSW 4.14% 400 1076

Call Center Scenario
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~4,400 Calls Monthly1/11 Incoming Calls are Deepfakes

~400 Deepfake Calls Monthly

MLG = ~ 1 DF per 2 Alarms

MSW = ~ 2 DF per 5 Alarms
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=====Improving Deepfake Detection
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Assumptions 
(i.e., base-rate, 

…, etc.)

Publish 
scores File

Evaluate and compare 
with multiple metrics and 
appropriate base-rates



=====Broader Impacts
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1. This applies to more than deepfakes

2. Honestly characterize model performance

3. Facilitate more research

4. Facilitate more meaningful research 



=====In Conclusion

1. Currently used metrics obfuscate results

2. The class distribution in datasets can impose bias on results

3. Contextualization of a dataset is important

4. Current standards of reproducibility and comparability are lacking
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