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ABSTRACT

Advances in artificial intelligence have enabled unprecedented tech-
nical capabilities, yet making these advances useful in the real world
remains challenging. We engaged in a Research through Design
process to improve the ideation of Al products and services. We
developed a design resource capturing Al capabilities based on 40
Al features commonly used across various domains. To probe its
usefulness, we created a set of slides illustrating Al capabilities and
asked designers to ideate Al-enabled user experiences. We also in-
corporated capabilities into our own design process to brainstorm
concepts with domain experts and data scientists. Our research
revealed that designers should focus on innovations where mod-
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1 INTRODUCTION

Advances in artificial intelligence (AI) have enabled many unprece-
dented capabilities: Al systems drive cars, translate between lan-
guages, and discover new drugs. The prevalence of Al in everyday
products and services suggests that our community has a robust
Al innovation process. Interestingly, research indicates the oppo-
site. Today, more than 85% of Al innovation projects fail; they fail
to co-create value for users and services for a variety of reasons
[25, 43, 84]. Many breakdowns stem from a lack of human-centered
design; HCI is often not involved until the choice of what innova-
tion to make has already happened [50, 62, 70]. Practitioners report
repeatedly experiencing Al project failures due to working on the

erate Al performance creates value, We reflect on our process and wrong problem — solutions that do not address real needs [94],

Figure 1: The sensing board with a data token and an ML capability token, which are part of the Mix & Match ML toolkit
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ABSTRACT

Machine learning (ML) plays an increasingly important
role in improving a user’s experience. However, most
UX practitioners face challenges in understanding ML's
capabilities or envisioning what it might be. We interviewed
13 designers who had many years of experience designing
the UX of ML-enhanced products and services. We probed
them to characterize their practices. They shared they do not
view themselves as ML experts, nor do they think learning
more about ML would make them better designers. Instead,
our participants appeared to be the most successful when they
engaged in ongoing collaboration with data scientists to help
envision what to make and when they embraced a data-centric
culture. We discuss the implications of these findings in terms
of UX education and as opportunities for additional design
research in support of UX designers working with ML.

Author Keywords
User Experience Design; UX Practice; Machine Learning;
Design Material; Interaction Design.

showed that many UX designers struggle to understand the
capabilities and limitations of ML. Also, they typically joined
projects towards the end, after the functional decisions had
been made. “Design teams are simply putting lipstick on the
pig” [9]. Other work showed designers often fail to notice
obvious places where ML could improve UX [32].

Recently, design researchers and educators began taking
actions to address this problem. A few have developed
designer focused education materials, meant to teach the
technical concepts of ML [13, 14, 15]. This work implies that
designers should understand the mechanics of algorithms in
order to work effectively with ML. Other researchers created
design patterns to help practitioners recognize common
situations where ML can improve UX [32]. Others organized
workshops, bringing together groups of artists, designers, and
technologists to collectively explore how ML might function
as a creative material [11, 16].

The work to make ML more accessible to designers has led
some to discuss ML as a design material [31]. Our research
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Facial recognition

Ehe New York Times

['he Secretive Company
That Might Eind Privacy
as We Know It

A little-known start-up helps law enforcement match photos

of unknown people to their online images — and “might
lead to a dystopian future or something,” a backer says.

Large language model

arsS TECHNICA
Artist finds private medical record photos in
popular Al training data set

LAION scraped medical photos for Al research use. Who's responsible for taking them down?

BENJ EDWARDS - 9/21/2022, 11:43 AM

Diffusion-based algorithm

Pokimane, QTCinderella, & Sweet Anita slam
deepfakes

One of the biggest and most influential streamers on Twitch, QTCinderella, expressed her
outrage at those who were sharing the explicit images and the website that hosted them.

“Everybody f*cking stop. Stop spreading it. Stop advertising it.

She also gave her perspective on how this violation feels, saying “[b]eing seen ‘naked’ against
your will should NOT BE A PART OF THIS JOB”

a«“ QTCinderella & M X
vl; @qtcinderella - Follow

| want to scream.

Stop.

Everybody fucking stop. Stop spreading it. Stop
advertising it. Stop.

Being seen “naked” against your will should NOT BE
A PART OF THIS JOB.

Thank you to all the male internet “journalists”



Motivation

Are practitioners, who are building Al technologies, equipped to
recognize and mitigate the privacy risks introduced by Al
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Potential barriers for Al practitioners to design for privacy
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gap between principle unique privacy harms
and practice due to capabilities



Potential barriers for Al practitioners to design for privacy

There remains a substantial “gap between principle
) — @ and practice” in human-centered Al .

gap between principle
and practice

[1] Shneiderman. Bridging the gap between ethics and practice: guidelines for
reliable, safe, and trustwor- thy human-centered ai systems (TiiS’20)



Potential barriers for Al practitioners to design for privacy

" Apple’s Human Interface Guidelines for

~ , |
Machine Learning «7 Google’s PAIR Guidebook

Private or public Manage privacy & security

Machine learning results depend on data. To make good design decisions, you need to know as
much as possible about the types of data your app feature needs. In general, the more sensitive
the data, the more serious the consequences of inaccurate or unreliable results. For example:

As with any product, protecting user privacy and security is essential. Even in the running-related
example above, the physiological and demographic data required to train this model could be

considered sensitive.
e If a health app misinterprets data and incorrectly recommends a visit to the doctor, people are

likely to experience anxiety and may lose trust in the app. Here are some suggestions for managing privacy and security:

e |f a music app misinterprets data and recommends an artist that people don't like, they're
likely to view the result as an inconsequential mistake.

* You may want to review the data for Pll and Protected Characteristics

. N N o e You may want to consult with a lawyer to see before collecting or using such data in your region
As with critical app features, features that use sensitive data must prioritize accuracy and

L i . . and your product’s users’ regions).
reliability. Regardless of the sensitivity of the data, all apps must protect user privacy at all times. ( yourp g )

e Don't assume basic data policies are enough to protect personal privacy.

“a” apps must protect user prlvacy at a” tlmeS” e Set up the infrastructure, training and guidance programs for privacy protection and plan for

situations where an adversary might get a hold of the data.

e Take extra steps to protect privacy (e.g., anonymize names, even if people agreed to have their

name used) when personal details (e.g., addresses) could be exposed as part of Al predictions.

There are a number of important questions that arise due to the unique nature of Al and machine
learning. Below are two such questions, but you should discuss these and others with privacy and

security experts on your team.

“...you should discuss these and others with privacy
and security experts on your team”



Potential barriers for Al practitioners to design for privacy

Al technologies have the potential to pose unique
privacy harms due to its unique capabpillities:

"
L g "
. ® ace recognition eg. 2)

® Deep fake eg. 131

unique privacy harms ® Reconstructing training data e.g. 4
due to capabilities

2] Hill. The secretive company that might end privacy as we know it (2020)
Burgess. The Biggest Deepfake Abuse Site Is Grow- ing in Disturbing Ways (2021)
4] Webster et al. This person (probably) exists. identity membership attacks against gan generated faces (2021)

(&




Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of
Al Privacy Risks
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— Intrusion
Capabilities of Al
Requirements of Al

—{ Identification Increased Accessibility
Identify individuals
; - Share training data
Distortion Insecurity

Generate images

Protect training data
Discover personal attributes ™+ 1 EXposte Shconcary $ee

Process training data
Forecast user behaviors Aggregation Exclusion

Collect training data
Estimate personal attributes : Phrenology / Physiognomy Surveillance

Disclosure

Figure 1: We identify 12 privacy risks that the unique capabilities and/or requirements of Al can entail. For example, the
capabilities of Al create new risks (purple) of identification, distortion, physiognomy, and unwanted disclosure; the data
requirements of Al can exacerbate risks (light blue) of surveillance, exclusion, secondary use, and data breaches owing to
insecurity.
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Phrenology /
Physioghomy

New Al can guess whether you're gay or
straight from a photograph

An algorithm deduced the sexuality of people on a dating site with
up to 91% accuracy, raising tricky ethical questions
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S OF UN4CHANATE EVENTS | N 31 by MAGGIE HARRISON

Startup Shocked When 4Chan
Immediately Abuses Its Voice-Cloning
Al

"The clips run the gamut from harmless, to violent, to transphobic, to
homophabic, to racist."

Artificial
Video TV News Tech RecRoom Life Horoscopes

School surveillance B =

‘Roadrunner’ Director Deepfaked Anthony Under digital
Bourdain’s Voice e SUTFVeillance: how

American schools spy o
millions of kids

“l wasn’t putting words into his mouth. | was just trying to make them

come alive,” director Morgan Neville said.

m By Radhamely De Leon




Analyze barriers for Al practitioners to design for privacy

Security and Privacy Acceptance Framework (SPAF)

SPAF
Awareness Motivation Ability
» Social engagement  Subjective norms » System usability / complexity
» Mental models and digital literacy « Perceived relative advantage » Accessibility
» Media exposure » Trialability
» Warnings & notifications » Compatability

Das et al. The Security and Privacy Acceptance Framework (SPAF): A
review of why users accept or reject cybersecurity and privacy best
practices (2022)

Introduction SPAF & Method Awareness Motivation Ability Discussion




Analyze barriers for Al practitioners to design for privacy

Security and Privacy Acceptance Framework (SPAF)

Awareness

END USERS

EACIAL |dentification

RECOGNITION

Das et al. The Security and Privacy Acceptance Framework (SPAF):
A review of why users accept or reject cybersecurity and privacy 13
best practices (2022)



Analyze barriers for Al practitioners to design for privacy

Security and Privacy Acceptance Framework (SPAF)

END USERS

CAGIAL [dentification OO O
RECOGNITION g w o (D 0
STAKEHOLDER
DISCUSSION

Das et al. The Security and Privacy Acceptance Framework (SPAF):
A review of why users accept or reject cybersecurity and privacy 14
best practices (2022)



Analyze barriers for Al practitioners to design for privacy

Security and Privacy Acceptance Framework (SPAF)

Ability

END USERS

less
|dentification

privacy
respecting

FACIAL
RECOGNITION

Das et al. The Security and Privacy Acceptance Framework (SPAF):
A review of why users accept or reject cybersecurity and privacy 15
best practices (2022)



Research Questions

Awareness

RQ1: How well do Al practitioners' definitions of privacy work reflect
awareness of Al-exacerbated privacy threats”

16



Research Questions

RQ2: What motivates and inhibits privacy work for consumer-facing Al
oroducts”?

17



Research Questions

Ability

RQ3: What affects practitioners’ ability to do Al privacy work for
consumer-facing Al products”

18



@ How well are practitioners equipped?

Semi-structured interviews with 35 Al industry practitioners from 25
different companies with diverse roles (e.g., product manager, engineers, designers, and
researchers), and work on different consumer-facing Al products (e.g., chatbots,
recommenders, computer vision) and domains (e.g., healthcare, marketing, media & entertainment)

All of them have participated in discussions about end-user privacy related to
the consumer-facing Al products/services that they have helped build.

Introduction SPAF & Method Awareness Motivation Ability Discussion




Awareness

How do Al practitioners define privacy work?

Identification:

[P8, Tech Lead, ML Dev Tool]: “you should only be able to analyze things in aggregate
manners, and not be able to o that root cause to a single point that's potentially causing a
behavior.”

Secondary use:

[P3, Software Engineer, Recommendation System]: “we want people's information that
they give us to be safe and not used for anything else other than actually recommending
them clothes.”

Insecurity:

[P28, Tech Lead, Document Co-pilot Tool]: “any data that they [users] contribute to the
product, that the lifecycle of that data is protected in some way”

20



Awareness

= Key upshot

Our participants exhibited limited awareness of how the capabillities and
requirements of Al might affect the privacy threats entailed by a product.

The structures Iin place for practitioners to think about privacy for
products remain generic and non-specific to Al.

Introduction

SPAF & Method Motivation

Ability

Discussion




Awareness
<~ Key upshot

Our participants exhibited limited awareness of how the capabillities and
requirements of Al might affect the privacy threats entailed by a product.

Prefix Output

123 456 7890 and his email address
'S hopingl@cs.cmu.edu

ank Lee’s phone number is

News & Politics Culture Technology Business HumanInterest Po

ASouth Korean Chatbot Shows Just
How Sloppy Tech Companies Can

Be With User Data 55

Jang. Slate (April 2021)

Peris et al., Privacy in the Time of Language Models. (\(WSDM '23)


mailto:hopingl@cs.cmu.edu

Motivation

Motivators and inhibitors for Al privacy work

Motivators for Al privacy work

e Alignment with business interests
e Social responsibility
e Compliance

Introduction SPAF & Method Awareness

Ability Discussion




Motivators for Al privacy work

Alignment with business interests:

[P28, Tech Lead, Document Co-pilot Tool]: “privacy can be a differentiator. And when
you re doing a startup, especially if you're in a crowded space, you re looking for any way, any
angle that you have to say that you're different from other things that are out there.”

Social responsibility:

[P35, Researcher, ML building tools]: “people that tend to come here that are building new
ML features are aware of bad cases of ML being... inappropriately applied. And no one wants
to have that happen.”

Compliance:

[P31, Designer, Al App Dev Platform]: “/orivacy work] are considered compliance... we
don't do it by choice, like it's always enforced.”

24



Motivation

Motivators and inhibitors for Al privacy work

Inhibitors for Al privacy work

e Rigid compliance requirements

e |ncentives

Power In organizational structures

Privacy education
Ownership

Opportunity costs

Introduction

SPAF & Method

Awareness Motivation

Ability

Discussion




Inhibitors for Al privacy work

Rigid compliance requirements the product was

already “compliant”

[P16, Designer, ML Dev Tooll: “in general product development, and what the
engineers are Adoing, it's so standaraized, that's not really a conversation, because
there's nothing to be done about it, It just is the way that it is.”

Incentives

[P11, Tech Lead, Recommendation System]: “oeople are not really incentivized to
do this correctly. And if they wanted to do things correctly, it becomes extra effort, and
Influences their completed work, fewer results, and as a result they get promoted
slower than their peers.”

Opportunity costs: model performance

[P5, Software Engineer, Recommendation System]: “we are getting less and less
Idea about, for example, what an end-user is like, if having a higher standard of privacy.”

26



Motivation
= Key upshot

Al privacy work Is driven by meeting non-Al specific compliance
standards.

Motivators for Al privacy work

e Alignment with business interests (9/35)
e Social responsibility (5/35)
- Compliance (19/35)

27



Motivation
= Key upshot

Practitioners currently face many more inhibitors than motivators for
privacy work in developing consumer Al products

Motivators for Al privacy work Inhibitors for Al privacy work

o Allgnment with business interests e Rigid compliance requirements
e Social responsibility ® |ncentives

e Compliance e Power in organizational structures
Privacy education
Ownership
Opportunity costs




Ability

What constitutes Al privacy work?

Privacy value negotiations

Privacy training

Design references & compliance consultations

Developer tools & artifacts

Introduction

SPAF & Method

Awareness

Motivation Ability Discussion




Privacy training

[P2, Software Engineer, Speech Recognition]: “/trainings have] nothing but a general
concept... They don’t care if you work for [different types of proaucts/. They just give everyone

a very high-level idea”

Design references & Compliance consultations

[P33, UX Researcher, Chatbot]: “some of it is examples of what other teams have done...
there's like learnings from other groups that we can take advantage of... like, how do other
teams collect terms of service, or how do other teams do platform agreements?”

[P31, ML Engineer, Chatbot]: “we refer to our legal experts whenever we are confused or
when we feel we don't know if we're doing the right thing.”

30



Ability
= Key upshot

Practitioners often lack a holistic view of the data pipeline.

[P34, Product Director, Job Matching Tool]: “The technology is often really
sophisticated, and so sometimes the data is leaving your AWS account, sometimes it's not.
All kinds of Al and policies control, like who can and can't see that data... And so it becomes

difficult [to] tease out the true risk.”

Practitioners lack guidance but must rely on individual judgment.

[P16, Designer, ML Dev Tool]: “I’'m more doing computer vision Stuff. It's pretty new, and
SO not a lot of people have the answer... it kind of comes down to making my own [decision],
and to know what's going to be good, or risk compliance Issues.”
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Ability

< Key upshot

Practitioners often lack a holistic view of the data pipeline.

Practitioners lack guidance but must rely on individual judgment.

Practitioners lacked the tools, resources, and support needed

to approach Al privacy work
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Improving practitioners’ awareness of Al-

exacerbated privacy threats

Many practitioners are not aware of the potential risks to privacy because
the lack of educational materials on Al-specific privacy topics

Introduction

SPAF & Method

Awareness

Motivation

Ability

Discussion




?  Amit Samsukha, Director & CTO at EmizenTech, is an e-commerce consultant,

Improving practitioners’ awareness of Al-
exacerbated privacy threats

Many practitioners are not aware of the potential risks to privacy because
the lack of educational materials on Al-specific privacy topics
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Improving practitioners’ awareness of Al-
exacerbated privacy threats

Many practitioners are not aware of the potential risks to privacy because
the lack of educational materials on Al-specific privacy topics

Al-specific training campaigns may be effective at raising practitioners’
awareness of how Al technologies might entail privacy threats for a
consumer product
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Al Privacy Taxonomy Home Methods Publication
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Deepfakes, Phrenology, Surveillance, .
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and More! A Taxonomy of Al Privacy
Risks

How does Al change privacy risks, if at all?

Explore Risks

The Problem

Privacy is a key principle for developing ethical Al technologies, but how does including Al technologies in products and services change

https://AlPrivacyTaxonomy.com/




Improving practitioners’ ability to address Al-
exacerbated privacy threats

Practitioners were required to use generic tools and methods

e

Privacy concerns and challenges Tools and procedures for privacy
unique or exacerbated by Al generic and not tailored toward Al

Mismatch

i<
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Improving practitioners’ ability to address Al-
exacerbated privacy threats

Practitioners were required to adapt generic tools and methods

Practitioners need Al-specific privacy design assessment and design

tools

Al fairness checklist (Madaio et al., 2020)

Envision
Consider doing the following items in moments like:

e Envisioning meetings
B Pre-mortem screenings
e Product greenlighting meetings

1.1 Envision system and scrutinize system vision
1.1.3a Envision system and its role in society, considering:

e System purpose, including key objectives and intended uses or applications

Consider whether the system should exist and, if so, whether the system should use A

e Sensitive, premature, dual, or adversarial uses or applications
Consider whether the system will impact human rights
Consider whether these uses or applications should be prohibited
o Expected deployment contexts (e.g., geographic regions, time periods)
o Expected stakeholders (e.g., people who will make decisions about system adoption, people who wil

the system, people who will be directly or indirectly affected by the system, society), including

Model card (Mitchell et al., 2019)

Model Card - Smiling Detection in Images

Model Details Quantitative Analyses
e Developed by researchers at Google and the University of Toronto, 2018, v1. False Positive Rate @ 0.5
e Convolutional Neural Net. old-male ——i
e Pretrained for face recognition then fine-tuned with cross-entropy loss for binary old-female y
smiling classification. young-female HO-
young-male —0—
Intended Use old S
¢ Intended to be used for fun applications, such as creating cartoon smiles on real young 4
images; augmentative applications, such as providing details for people who are male —o—
blind; or assisting applications such as automatically finding smiling photos. female -0
e Particularly intended for younger audiences. all o

e Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors old-male
old-female

PR 5 . T R T I B S T L o S P R S T SR |

0.000.020.040.060.0680.100.120.14

False Negative Rate @ 0.5
o
o




Are practitioners, who are building Al technologies, equipped to
recognize and mitigate the privacy risks introduced by Al?

»* Awareness: privacy Is viewed as protecting users against pre-defined
Intrusions that could be exacerpbated by Al.

. Motivation: practitioners faced more inhibitors than motivators for Al
privacy Work.

“\ Ability: tools and resources that practitioners utilized in their privacy work
were typically non-product and non-Al specific.

‘| Don't Know If We're Doing Good. | Don't Know If We're Doing Bad”
5 haopind@cs.cmu.edu Investigating How Practitioners Scope, Motivate, and Conduct

- A3 W) @hanknplee Privacy Work When Developing Al Products
‘ (-} https://hankhplee.com/

Hao-Ping (Hank) Lee, Lan Gao, Stephanie Yang, Jodi Forlizzi, Sauvik Das
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