
A Friend's Eye is A Good Mirror:
Synthesizing MCU Peripheral Models

from Peripheral Drivers
Chongqing Lei, Zhen Ling, Yan Yang, Junzhou Luo, Southeast University

Yue Zhang, Drexel University
Xinwen Fu, University of Massachusetts Lowell

Background – MCU

• Microcontroller units (MCUs) are widely used in embedded systems

• MCU firmware controls the MCU

• MCU firmware can be vulnerable

• Security analysis of MCU firmware is essential
◦ Static analysis

◦ Dynamic analysis: requires execution environment

2

3

Background – Rehosting

• Rehosting
◦ Creating virtual execution environment for dynamic firmware analysis

• Challenge
◦ Sea of hardware (CPUs + peripherals)

• Existing solutions
◦ Hardware oriented – requires actual hardware, not always available

• Hardware-in-the-loop: Avatar[NDSS'14], Surrogates[WOOT'15], Inception[Security'18]

• Record-and-replay: Pretender[RAID'19], Conware[AsiaCCS'21]

◦ Firmware oriented – limited fidelity and generality
• Function level: HALucinator[Security'20], Para-rehosting[NDSS'21], BaseSAFE[WiSec'20]

• Register level: Laelaps[ACSAC'20], P2IM[Security'20], 𝜇Emu[Security'21], Fuzzware[Security'22]

Manual emulation is unscalable

Can we automatically emulate hardware with high fidelity and generality?

4

Motivating Example

• Drivers contain rich information about hardware behaviors
// uart.c
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef
*huart, uint8_t *pData, uint16_t Size, uint32_t
Timeout) {
...
while (Size > 0) {
/* wait until UART_FLAG_RXNE flag in the ISR

register is set by the hardware */
if (UART_WaitOnFlagUntilTimeout(huart,

UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
{

return HAL_TIMEOUT;
}
/* read incoming data from the TDR register */
*pData = (uint8_t)(huart->Instance->RDR &

(uint8_t)uhMask);
++pData;
--Size;

}
...
return HAL_OK;

}

Software Belief: Data register RDR can only
be read when RXNE is set

Hardware Behavior: RXNE is set by
hardware when the incoming data stored in
RDR is ready to be read

5

PERRY Design – Overview

6

PERRY Design – Pre-processing

// uart.c
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef
*huart, uint8_t *pData, uint16_t Size, uint32_t
Timeout) {
...
while (Size > 0) {
/* wait until UART_FLAG_RXNE flag in the ISR

register is set by the hardware */
if (UART_WaitOnFlagUntilTimeout(huart,

UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
{

return HAL_TIMEOUT;
}
/* read incoming data from the TDR register */
*pData = (uint8_t)(huart->Instance->RDR &

(uint8_t)uhMask);
++pData;
--Size;

}
...
return HAL_OK;

}

Loop Header

Peripheral Structure Name

Success Return Value

• Extract useful information for later use

A loop waiting for RXNE to be set by hardware

huart->Instance contains peripheral registers

HAL_OK represents success return

7

PERRY Design – Trace Collection

• Collect useful information for model inference

• Context setup
◦ Top-level driver functions as entry points
◦ Symbolize MMIO regions, global variables and parameters
◦ Taint MMIO registers and data buffers
◦ Hook callbacks (unresolved function pointers)

• Symbolic execution
◦ Taint propagation
◦ Jump out of loops actively
◦ Remove conflicting register-related constraints using check-points

• Collected information
◦ Symbolic execution exit status, function return value, path constraints, register

accesses, taints, callback invocations

...
while (p->CR & FLAG);
...
while (!(p->CR & FLAG));

Conflict!

8

PERRY Design – Model Inference

• Reading data registers
◦ Registers whose taints flow into data buffers

int rx_func(u8 *data) {
...
while (!(p->SR & RXNE));
*data = p->DR;
...

}

Software Belief: Data register 𝐷𝑅 can only be read when register-related path constraints 𝐶 is
satisfied

Hardware Behavior: Hardware updates registers such that 𝐶 is satisfied when incoming data
stored in 𝐷𝑅 is ready to be read

9

PERRY Design – Model Inference

• Writing data registers
◦ Registers tainted by data buffers

◦ Success return value

int tx_func(int *data, int len) {
for (int i = 0 ; i < len; ++i) {

while (!(p->SR & TXE));
p->DR = data;

}
while (!(p->SR & TC));
return success;

}

Software Belief: Data transmission through data register 𝐷𝑅 only succeeds when register-
related path constraints 𝐶 is satisfied

Hardware Behavior: Hardware updates registers such that 𝐶 is satisfied when outgoing data
stored in 𝐷𝑅 is successfully transmitted

10

PERRY Design – Model Inference

• Updating non-data registers
◦ Waiting registers to be updated after reads/writes

void non_data_update() {
p->R1 |= FLAG_1; // software update, 𝐶ோଵ
while (!(p->R2 & FLAG_2)); // wait hardware update, 𝐶ோଶ
...
if (p->R1 & FLAG_1) { // check software update, 𝐶ோଵ

while (!(p->R2 & FLAG_2)); // wait hardware update, 𝐶ோଶ
}

}

Software Belief: The value of register 𝑅ଶ must satisfy constraint 𝐶ோమ after the value of register 𝑅ଵ
is updated in a way that constraint 𝐶ோభ is satisfied

Hardware Behavior: Hardware updates 𝑅ଶ such that 𝐶ோమis satisfied when 𝑅ଵ is updated in a way
that constraint 𝐶ோభ is satisfied

Case 1

Case 2

11

PERRY Design – Model Inference

• Handling interrupts
◦ Reading/writing data registers

◦ Invoking callbacks
void isr_func() {

if ((p->CR & TXEIE) && (p->SR & TXE)) {
// handle TXE interrupt
txe_callback();

} else if ((p->CR & RXNEIE) && (p->SR & RXNE)) {
// handle RXNE interrupt
rxne_callback();

}
}

Software Belief: Interrupts are handled only when register-related path constraint
𝐶
ଵ ∨ 𝐶

ଶ ∨ ⋯∨ 𝐶
ே is satisfied

Hardware Behavior: Hardware fires interrupts when 𝐶
ଵ ∨ 𝐶

ଶ ∨ ⋯∨ 𝐶
ே is satisfied

12

PERRY Design – Model Synthesis

• Template-based model synthesis
◦ Fills-in holes with inferred hardware behaviors

◦ Generates source files that can be integrated into QEMU

def on_recv(data):
store(DR, data)
update related regs

...
fire interrupts
if should_interrupt():

fire_interrupt()

def on_update(r1, data1):
store(r1, data1)
update related registers
r2, data2 = get_related(r1, data1)
store(r2, data2)
fire interrupts
if should_interrupt():

fire_interrupt()

def on_send():
send(load(DR))
update related regs
...
fire interrupts
if should_interrupt():

fire_interrupt()

13

Evaluation – Efficiency

• 10 driver libraries from 3 top MCU vendors (ST, NXP, Microchip)

• >30 MCUs are covered

• Synthesis time ranges from 0.3 seconds to ~9 hours

RQ1: How effective is PERRY?

14

Evaluation – Efficiency

• Dataset: P2IM unit tests (66 in total)

• 49/66 (74.24%) passed without manual intervention

• All passed after fixing wrong/missing hardware behaviors with 6 LoC

0% for SEmu[CCS'22]

RQ2: Can PERRY infer consistent hardware behaviors?

15

Evaluation – Universality

• Dataset: P2IM real world firmware samples (10) + shell firmware from
LiteOS and Zephyr (19)

• 20/29 (68.97%) are emulated without manual intervention

RQ3: Can hardware models generated by PERRY emulate various firmware?

16

Evaluation – Scalability

• 35 LoC to fix all generated models, at most 4 LoC to fix one model

• Can emulate various firmware once fixed

RQ4: Can hardware models generated by PERRY be easily fixed?

17

Security Application – Mining Specification Violation Bugs

• Drivers may interact with peripherals without following protocols
defined by the specification

• Cross-checking hardware behaviors inferred by PERRY with those
defined in the specification

• 2 specification violation bugs in ST and NXP drivers

#define __HAL_RCC_HSI48_ENABLE() \
SET_BIT(RCC->CR2, RCC_CR2_HSI48ON)

#define RCC_FLAG_HSI48RDY ((uint8_t)((CR2_REG_INDEX << 5U) |
RCC_CR2_HSI48RDY_BitNumber))
#define RCC_CR2_HSI48RDY_BitNumber 16
#define RCC_CR2_HSI48ON_Pos (16U)
#define RCC_CR2_HSI48RDY_Pos (17U)

__HAL_RCC_HSI48_ENABLE();
tickstart = HAL_GetTick();
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET) { ... }

Conflicted bit number
for HSI48RDY

18

Security Application – Reproducing Firmware Vulnerabilities

• CVE-2022-1041, CVE-2022-1042
◦ Vulnerabilities in Zephyr's BLE host protocol stack

◦ Triggered through malformed HCI packets transferred over UART/USB

◦ UART on the emulated hardware is connected to a real BLE controller

◦ Inject payload after BLE connection establishment

19

Security Application – Fuzzing RTOS

• 11 fuzz drivers for the MQTT and LWM2M protocol stacks of LiteOS

• Implement various sanitizers
◦ UBSAN, KASAN, KMSAN, KCSAN

◦ FLASH/RAM are too small to contain instrumented code/shadow memory…

◦ Emulated hardware, just increase sizes of FLASH/RAM regions!

• 7 0-day vulnerabilities and 3 N-day vulnerabilities

Conclusion

• Drivers help infer hardware behaviors

• We introduce PERRY, a tool that effectively synthesizes hardware
models from hardware drivers

• PERRY generates hardware models that can faithfully emulate various
firmware

• PERRY can boost various security-focused tasks

20

PERRY is available on GitHub

Thank You!
leicq@seu.edu.cn

21

Evaluation – Scalability

• 35 LoC to fix all generated models, at most 4 LoC to fix one model

• Causes of failing cases:
◦ Non-trivial hardware functionalities

• e.g., interrupt table relocation via non-standard peripherals

◦ Implicit assumptions on hardware
• Cannot capture behaviors not presented in driver code

◦ In-context register operations

RQ4: Can hardware models generated by PERRY be easily fixed?

CLEAR_BIT(RCC->CR, RCC_CR_HSEON);
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) { ... }

Expected Inferred

22

PERRY Design – Model Synthesis

• Complex software beliefs and hardware behaviors
(e.g., DMA)

◦ Extend PERRY with on-demand analysis

void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const
edma_transfer_config_t *config, ...)
{

tcd->SADDR = config->srcAddr;
tcd->DADDR = config->destAddr;
tcd->NBYTES = config->minorLoopBytes;

}

void EDMA_HandleIRQ(edma_tcd_t *tcd) {
bool transfer_done = tcd->CSR &

DMA_CSR_DONE_MASK) != 0U);
if (transfer_done) {

transfer_done_callback()
}

}

void EDMA_StartTransfer(edma_handle_t *handle) {
handle->base->SERQ = DMA_SERQ_SERQ(handle-

>channel);
}

• Parameter
◦ registers receiving taints

• Function
◦ register updates

• Callback
◦ invocation constraints

