
UIHASH: Detecting Similar Android UIs through
Grid-Based Visual Appearance Representation

Jiawei Li, Jian Mao, Jun Zeng, Qixiao Lin, Shaowen Feng, Zhenkai Liang

USENIX Security Symposium, August 2024



• Main channel for users to interact with mobile apps
• Attackers often deceive users via fake UIs

1

User Interface: A Popular Attack Surface

A Fake Facebook Login UI



2

Related Work on Similar UI Detection

Screenshot image-based detection

• Users show high tolerance on images

Screenshot images are not always reliable

• Image content always updates
• news apps, music apps, shopping apps…

• Compare UI images by pixel features

40% users login



Layout tree-based detection
oComparing tree structure similarity

Related Work on Similar UI Detection

Text

LinearLayout LinearLayout

Btn Btn Text Btn Btn

RelativeLayout

ConstraintLayout

FrameLayout

FrameLayout

RelativeLayout

···

ConstraintLayout

···

LinearLayout

LinearLayout

LinearLayout

LinearLayoutLinear
Layout

Btn

Text Btn
Btn

Relative
Layout

Relative
Layout

Relative
Layout

Btn Btn Btn

Btn Btn Text Text

FrameLayout FrameLayoutimg

Text Btn Text Btn

3

Tree structures are not always reliable



• The principle of proximity
o A powerful Gestalt principle
o People treat objects close together as a group

• By grouping UI controls, detect similar UIs with mutations on 
screenshot images or layout trees that bypass prior detections

4

Our Motivation



• Abstract UI visual appearance and tolerate minor 
variations based on grid
o In each grid, encode visual features that are important to 

users (i.e., low tolerance for changes)
oAggregate semantics in individual grid regions to capture a 

high-level layout characteristic of UI

5

UI#: A New UI Representation

There is a logo at the top, two big text 
inputs and a button in the middle, 
and small texts at the bottom

Logo

Small
Text

Big Input 
Button

(size) (type) (position)



6

UIHash Overview

Apps

UI# Generation

UI Appearance 
Parsing 

UI Feature Encoding
UI Similarity

Similarity Detection

UI# Semantic
Distilling

Similarity Calculating



• Get appearance semantics that match user perception
oTake as input UI runtime semantics instead of static trees
oRe-identify controls based on visual appearance instead of 

sticking to their claimed names to better represent UI appearance

7

Parsing UI Appearance

Toggle

“ToggleButton” “Switch” “ImageButton” “CheckBox” “Button” “CompoundButton”



8

Generating UI Representation

• Collect and integrate UI visual semantics from different 
grid regions
oSelected features: position, size and type of UI control

Image Text Button

Control Position

collect regional visual 
semantics via grid 

Control Type separate control types in different channels

Control Size
encode control size by Intersection over 
Union (control vs. region) 

UI#



Similarity Detection

Distilling semantics of UI# to compare UI similarity
• Generalize visual features when embedding 
• Apply a CNN-based Siamese network to calculate 

pairwise similarity score

9



• Evaluation Setup
o RePack dataset: a repackaging app dataset: 18,359 apps 
o RmvDroid dataset: a malicious app dataset: 9,133 apps
o Recent apps collected from six markets: 8,963 apps

• Effectiveness of Representing UI
o How effective is UIHash as a UI similarity detection system?

• Active Evasion UI Identification
o How common are active evasion UIs in the wild?

• Use case of UIHash
o What benefits can analysts gain from our UI representation?

10

Evaluation



• UIHash outperforms prior tree-based / image-based UI 
similarity detectors
oHigher recall, more similar UI can be detected

11

Effectiveness on Detecting Similar UIs

Approach Precision Recall F1 AUC
Image-based 85.1% 79.7% 0.823 0.77
DroidEagle 96.8% 86.5% 0.914 N/A

GeminiScope 95.6% 94.3% 0.949 0.92
Text-based 31.7% 83.0% 0.459 0.74

UIHash 97.0% 99.8% 0.984 0.99



Similar UIs that bypass tree-based methods
• Many detected similar UIs have large tree differences

oMeasured by TED: change A’s node to make A=B

oEvasion techniques we identified to change tree structure
 Flexible use of View groups (e.g., LinearLayout, RelativeLayout)
 Add controls (Views) that are invisible to human

12

Active Evasion UI Detected

In all similar pairs, given the 
node num of the small tree 𝑛𝑛
• 5% pairs have 𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 𝑛𝑛
• 27% pairs have 𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 1

4
𝑛𝑛

• 𝑇𝑇𝑇𝑇𝑇𝑇 is up to 4𝑛𝑛

Txt Btn Btn

LinearLayout

···

Tree 
A

Tree
B

Insert / Delete / Update nodes
···

RelativeLayout

Txt Txt Btn

RelativeLayout Btn



Similar UIs that bypass image-based methods

13

Active Evasion UI Detected

Although detailed contents differ, users rated them as similar UI

User
Rating 

Phishing Bank AppsRepackaging Games with AdCloning Radio Apps



• We combine UI-based similarity detection with other 
app features, e.g., code semantics

• More similar apps can be detected for different methods

14

Collaborate with Other App Features

Combining multiple app features to better study app similarity

UI-based
(UIHash)

Non-UI-based
(e.g., Library)

+5.9% +6.8%



• We propose UIHASH:
oGuided by Proximity principle, use a grid to integrate UI 

control appearance by groups
oUse a new representation UI#: Capture and abstract UI 

layout semantics
oPowerful in finding similar UIs that bypass prior detections

• Insight
oRepresent UI in consistent with human perception

15

Summary



Thank you!
daweix@buaa.edu.cn

https://github.com/DaweiX/UIHash

UIHASH: Detecting Similar Android UIs through
Grid-Based Visual Appearance Representation


	UIHash: Detecting Similar Android UIs through�Grid-Based Visual Appearance Representation
	User Interface: A Popular Attack Surface
	Related Work on Similar UI Detection
	Related Work on Similar UI Detection
	Our Motivation
	UI#: A New UI Representation
	UIHash Overview
	Parsing UI Appearance
	Generating UI Representation
	Similarity Detection
	Evaluation
	Effectiveness on Detecting Similar UIs
	Active Evasion UI Detected
	Active Evasion UI Detected
	Collaborate with Other App Features
	Summary
	幻灯片编号 17

