

KnowPhish:

Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection

<u>Yuexin Li</u>, Chengyu Huang, Shumin Deng, Mei Lin Lock, Tri Cao, Nay Oo, Hoon Wei Lim, Bryan Hooi

Presenter: Yuexin Li

33rd USENIX Security Symposium August 14-16, 2024

Background: What is Phishing?

Phishing webpages usually

- 1. Impersonate themselves as popular brands (e.g. PayPal, Bank of America, DHL)
- 2. Use a different domain from the legitimate ones
- 3. Require users to submit credentials

Background: Why Phishing Detection?

Phishing attacks are ubiquitous in cyberspace with severe consequences

Effective and efficient phishing detection systems are urgently needed

THE STRAITSTIMES SINGAPORE	= 9. DARK READING NEWSLETTE	\bigcirc cyberscoop \equiv
Scam victims in S'pore lost \$651.8m in 2023, with record high of over 46,000	<u>Cybersecurity Topics</u> World Y The Edge DR Technology Events V Resources V	FINANCIAL Scammers steal \$10 million from Norfund, the largest sovereign wealth fund
cases reported	South African Railways Lost Over \$1M in Phishing Scam	Looks like we have another BEC scam on our hands. BY JEFF STONE • MAY 14, 2020
	Just over half of the stolen funds have been recovered. John Leyden, Contributing Writer February 3, 2024 G 3 Min Read Editor's Choice	SHARE 🛐 🛅 💟 🔗
CRIME ALERT BE WARY OF ONLINE SCAMMERS.	AFRICATION SECURITY 14008.141 APPLICATION SECURITY 14008.141 101 01011011.011011010101001.0001 101 01010111.01101010101001.0001 101001010111.011010101001.0001.0	hieves spent months inside the networks of the world's largest sovereign wealth fund before stealing \$10 million in what the enterprise is describing as "a serious case of fraud."

Singapore

South Africa

Norway

[1] https://www.straitstimes.com/singapore/courts-crime/scam-victims-in-s-pore-lost-6518m-in-2023-with-record-high-of-over-46000-cases-reported

[2] https://www.darkreading.com/endpoint-security/south-african-railways-reports-1m-phishing

[3] https://cyberscoop.com/norfund-hacked-wealth-fund-10-million/

State-of-the-art Solutions

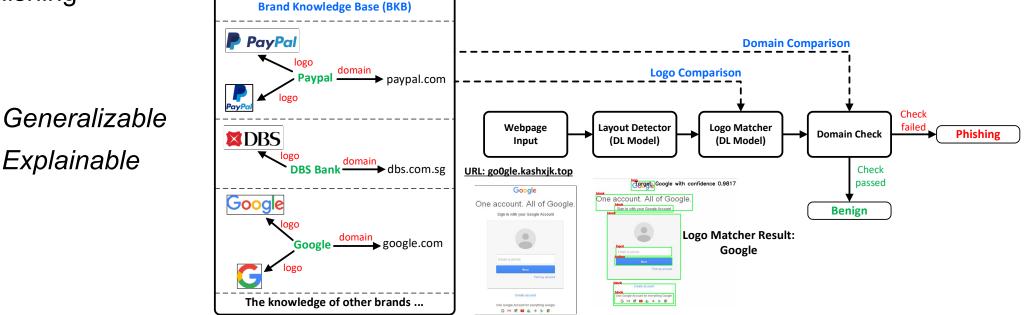
1

2.

Explainable

Reference-based phishing detectors (RBPDs) using computer vision

- E.g., Phishpedia (USENIX Security 2021), PhishIntention (USENIX Security 2022)
- Utilize deep learning models to analyze the logo (from the screenshot) of the webpage
- If the input domain is different from the brand's legitimate domain, it is very likely to be phishing



[1] Y Lin, et al. Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. USENIX Security 2021. [2] R Liu, et al. Inferring Phishing Intention via Webpage Appearance and Dynamics: A Deep Vision Based Approach. USENIX Security 2022.

4

Challenge 1: Limited-Scale Brand Knowledge

Existing RBPDs only maintain the knowledge of 277 brands

- Real-world phishing attacks are diverse, ranging from multinational companies (e.g. Microsoft, Facebook) to local firms
- If we do not have the brand knowledge, we are less likely to detect the phishing webpage targeting that brand

				<∾ bitkub	
	<u>Accueil</u> > Identification	Phishing			Phishing
Fortune	<u>Acces Client</u> g target: o Bank banking company)	Identifiant Mot de passe	Bitku	hing target : lb i cryptocurrency exchange)	เข้าสู่ระบบ ■ EMAIL ADDRESS PASSWORD
Legitim fortuneo	ate domain: o.fr	Mot de passe oublie/Acces bloque Conseils en termes de securite	-	timate domain: b.com	เข้าสู่ระบบ 🕗 หากยังไม่มีปัญชี? สมัครสมาชิกที่นี่ 📀 สีมรทัสผ่าน 🛞

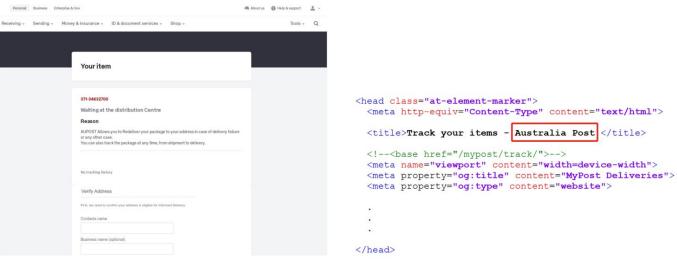
https://fortunneo.nl/

https://bitkub-th.app/wallet/

Challenge 2: Logo-less Phishing Webpage

Logo-less phishing webpage with textual brand intention

- Phishing webpage may not always convey their brand intention via logos
- Instead, they can show such intention via HTML texts
- Existing image-based RBPDs completely fails in such cases because they solely relies on logos to identify brand intention

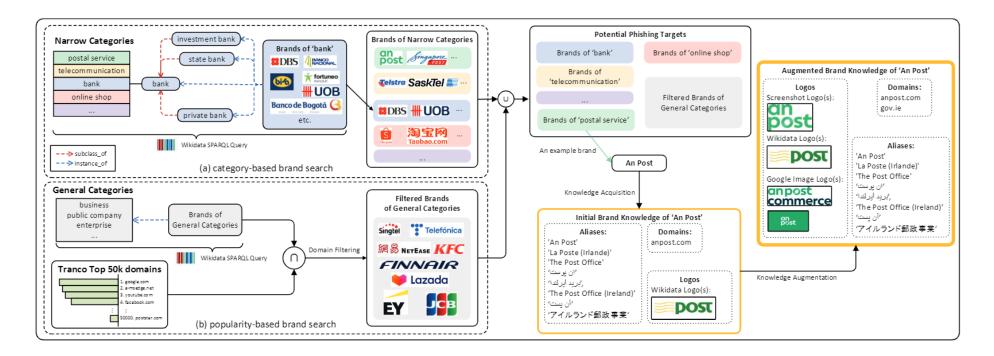


(a) Screenshot

Solution 1: KnowPhish

KnowPhish: A large-scale multimodal brand knowledge base

- Covering more than 20k potential phishing targets worldwide
- Comprehensive multimodal brand knowledge (e.g., brand names and aliases, logos, and legitimate domains)



"What indicates a potential phishing target?"

- Question 1: Do phishing targets differ across different phishing feeds?
- Question 2: What are the enduring characteristics shared by phishing feeds across different sources and periods?

We used two datasets for this empirical study:

Dataset	Source	Sample Size	Collection Time
<i>D</i> ₁	Phishpedia paper	30k	2021
D_2	APWG	5k	2023

[1] Y Lin, et al. Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. <u>USENIX Security 2021</u>.
 [2] <u>https://apwg.org/</u>

"What indicates a potential phishing target?"

- Question 1: Do phishing targets differ across different phishing feeds?
- Question 2: What are the enduring characteristics shared by phishing feeds across different sources and periods?

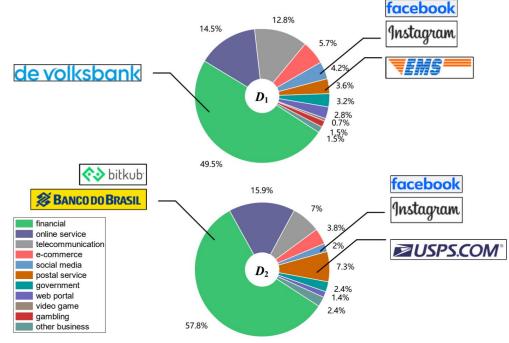
- Collection methodology
 - Proprietary Detectors (automated) or Human Report (manual)

"What indicates a potential phishing target?" High-value industries!

- Question 1: Do phishing targets differ across different phishing feeds?
- Question 2: What are the enduring characteristics shared by phishing feeds across different sources and periods?

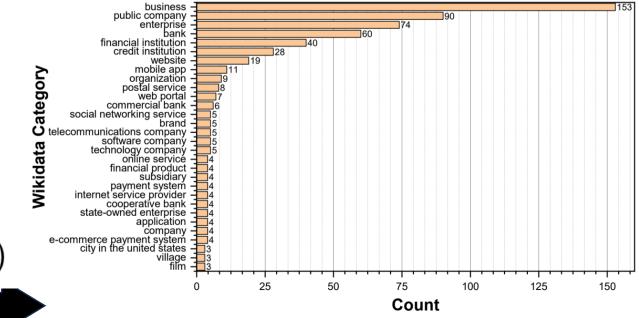
Observation 2:

The **industries** of those phishing targets remain mostly consistent.



High-value industries usually indicates phishing targets

 We search for potential Wikidata categories (c) of phishing targets (b) to represent the 10 high-value industries



 $(b, instance_of, c)$

Figure 4: Distribution of the top 30 Wikidata categories of the phishing targets in D_2 .

Knowledge Graph

[1] Denny V, et al. Wikidata: A free collaborative knowledgebase. <u>Communications of the ACM</u> 2014.

High-value industries usually indicates phishing targets

- Narrow Categories C_n: directly referring to specific high-value industries
- **General Categories** *C_g*: representing a <u>wider</u> <u>range</u> of potential phishing targets
- The selected Wikidata categories can further guide us to search for potential phishing targets in knowledge graph *G*

Industries	Wikidata Category	Wikidata ID
other business	business public company enterprise online service government organization	Q4830453 Q891723 Q6881511 Q19967801 Q2659904

Table 10: Full list of General Categories C_g

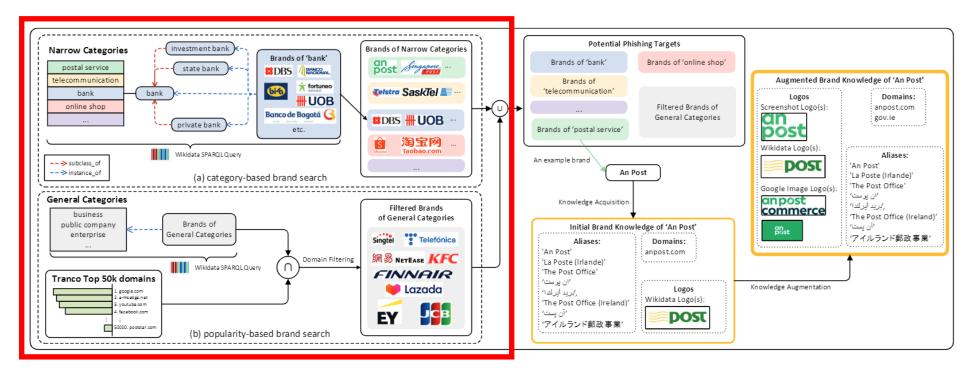
[1] Denny V, et al. Wikidata: A free collaborative knowledgebase. Communications of the ACM 2014.

Industries	Wikidata Category	Wikidata ID
financial	bank financial institution credit institution federal credit union payment system digital wallet cryptocurrency exchange	Q22687 Q650241 Q730038 Q116763799 Q986008 Q1147226 Q25401607
online service	webmail web service mobile app office suite	Q327618 Q193424 Q620615 Q207170
telecommunication	telecommunication company mobile network mobile network operator internet service provider	Q2401749 Q15360302 Q1941618 Q11371
e-commerce	online shop online marketplace	Q4382945 Q3390477
social media	social media social networking service online video platform	Q202833 Q3220391 Q559856
postal service	postal service package delivery	Q1529128 Q1447463
government	government	Q7188
web portal	web portal web search engine	Q186165 Q4182287
video game	video game distribution platform	Q81989119
gambling	gambling	Q11416

Table 9: Full list of Narrow Categories C_n

KnowPhish constructs brand knowledge through a 2-step process (1) Brand Search

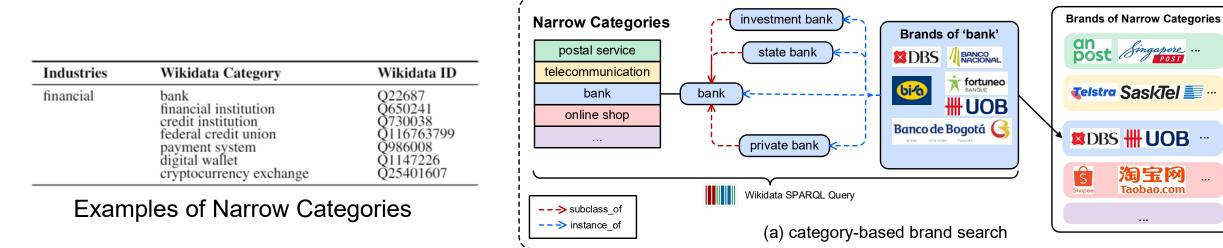
(2) Knowledge Acquisition and Augmentation



Brand Search

- (1) Category-based Brand Search
 - Search for brands that belong to <u>Narrow Categories</u> C_n and their subcategories, directly identifying potential phishing targets

$$\mathcal{B}_n(c_n) = \{b | (b, \texttt{instance_of}, c) \in \mathcal{G}, c \in \{c_n\} \cup \mathcal{C}'_n\}$$



Brand Search

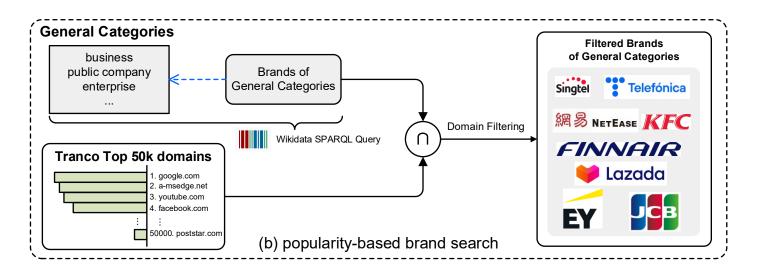
(2) Popularity-based Brand Search

• Search for brands that belong to General Categories C_g and are popular, augmenting the set of potential phishing targets

 $\mathcal{B}_g(c_g) = \{b | (b, \texttt{instance_of}, c_g) \in \mathcal{G}, r_{\mathcal{D}}(b.\textit{domains}) \leq \eta\}$

Industries	Wikidata Category	Wikidata ID
other business	business public company enterprise online service government organization	Q4830453 Q891723 Q6881511 Q19967801 Q2659904

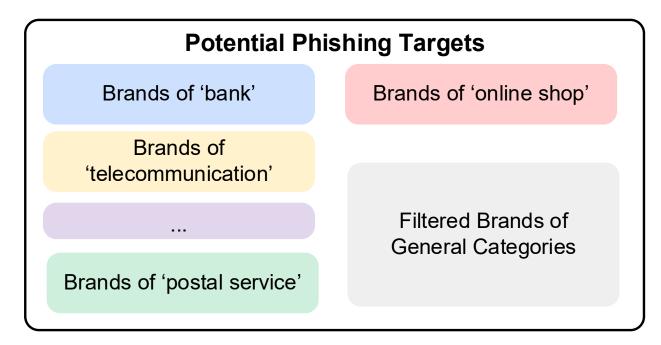
Table 10: Full list of General Categories C_g



Brand Search

The two brand search components return a list of potential phishing targets

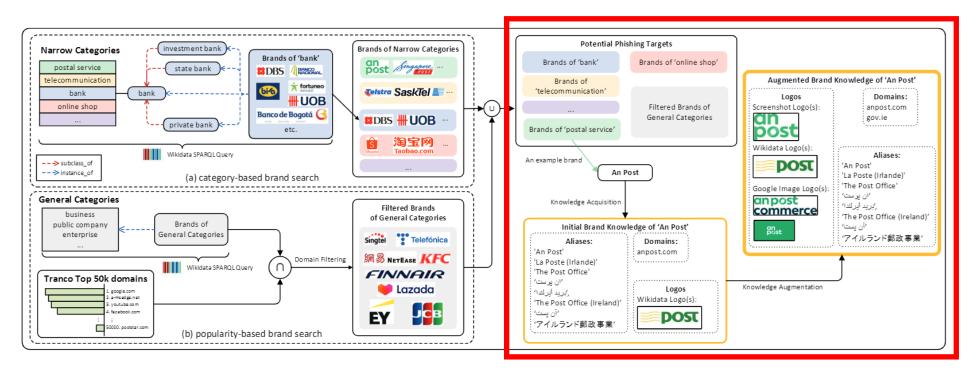
- Ready for brand knowledge collection
- Necessary to enhance RBPDs in terms of identifying brand intention



KnowPhish constructs brand knowledge through a 2-step process

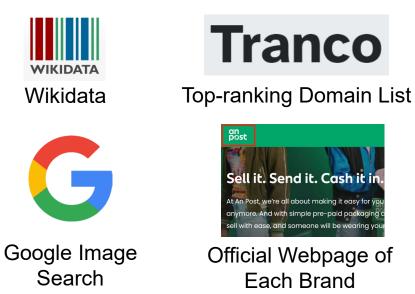
(1) Brand Search

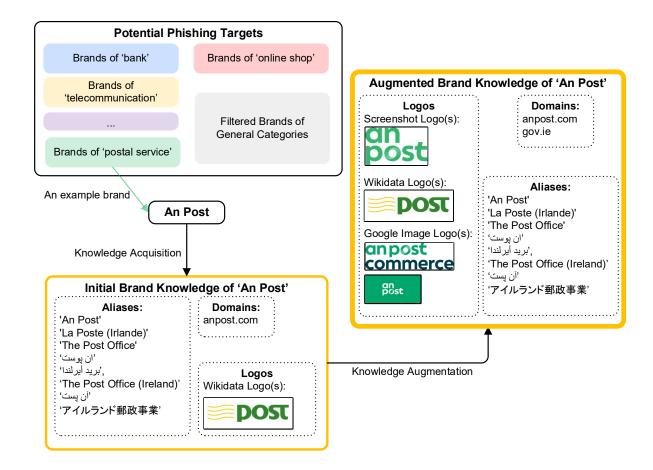
(2) Knowledge Acquisition and Augmentation



Knowledge Acquisition and Augmentation

- We collect brand knowledge with
 - 1. Logos
 - 2. Aliases (alternative names)
 - 3. Legitimate domains





[1] D Vrandečić, et al. Wikidata: A free collaborative knowledgebase. <u>Communications of the ACM</u> 2014.
[2] V Pochat, et al. Tranco: A research-oriented top sites ranking hardened against manipulation. <u>NDSS</u> 2019.

Solution 1: KnowPhish

KnowPhish can be equipped with any RBPDs to enhance their phishing detection performance

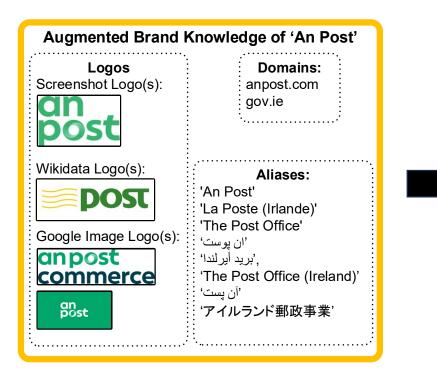


Image-based RBPDs

- Phishpedia
- PhishIntention

Multimodal RBPDs

• Our proposed KPD (discuss soon)

[1] Y Lin, et al. Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. <u>USENIX Security 2021</u>.
 [2] R Liu, et al. Inferring Phishing Intention via Webpage Appearance and Dynamics: A Deep Vision Based Approach. <u>USENIX Security 2022</u>.

Solution 2: KnowPhish Detector (KPD)

(Image + Text)

KPD: A multimodal reference-based phishing detector

 Leveraging Large Language Models (LLMs) to analyze text information in HTML (e.g., extracting textual brand intention), breaking the limit of existing image-based RBPDs that only analyze logos

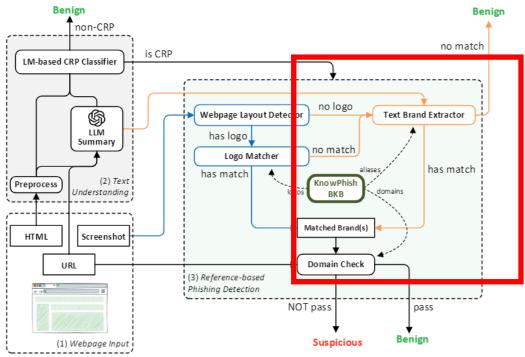


Figure 6: An overview of our phishing detector KPD.

KPD: Text Brand Extractor

Text Brand Extractor identifies textual brand intention through

- 1. LLM predictions and
- 2. Brand aliases in KnowPhish

KPD: Text-based CRP Classifier

CRP = Credential Requiring Page

Our text-based CRP Classifier can detect both <u>explicit</u> and <u>implicit</u> CRPs

- Explicit CRP has credential submission field
- <u>Implicit</u> CRP only contains buttons that redirect to explicit CRP pages, and cannot be detected by existing solution because they solely look at credential submission field
- Our text-based CRP classifier can analyze HTML texts and LLM summaries to recognize potential CRP signals encoded in HTML elements, regardless whether they have credential submission field

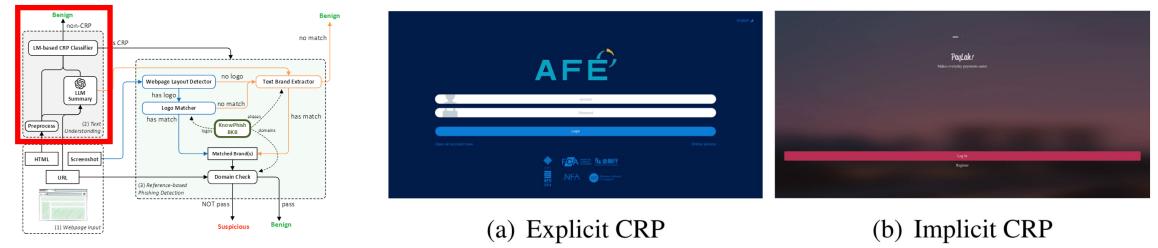


Figure 6: An overview of our phishing detector KPD.

Results: Closed-World Study

TR-OP Dataset

#Samples: 10k (benign 5k + phishing 5k)

KPD+KnowPhish is effective and efficient

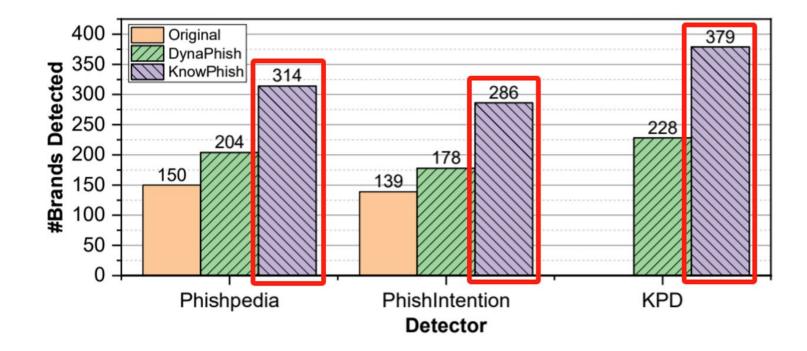
- **KPD+KnowPhish** yields the highest accuracy, F1 score, and recall
- KnowPhish enhances different RBPDs to detect more phishing webpages (higher recall)
- KnowPhish significantly outperforms DynaPhish (USENIX Sec '23) in terms of inference time

Detector	BKB	ACC↑	F1↑	Precision	Recall	Time↓
Phishpedia	Original	69.91	57.17	99.16	40.16	0.25s
	DynaPhish	66.40	52.52	89.50	37.16	10.92s
	KnowPhish	85.79	83.67	98.27	72.80	0.22s
PhishIntention	Original	66.62	49.96	99.76	33.32	0.28s
	DynaPhish	62.51	41.16	95.62	26.22	10.67s
	KnowPhish	77.84	71.60	99.67	55.84	0.26s
KPD	DynaPhish	76.10	69.71	95.16	55.00	12.18s
	KnowPhish	92.49	92.05	97.84	86.90	2.02s

Results: Closed-World Study

KPD+KnowPhish detects the most phishing targets (379/440)

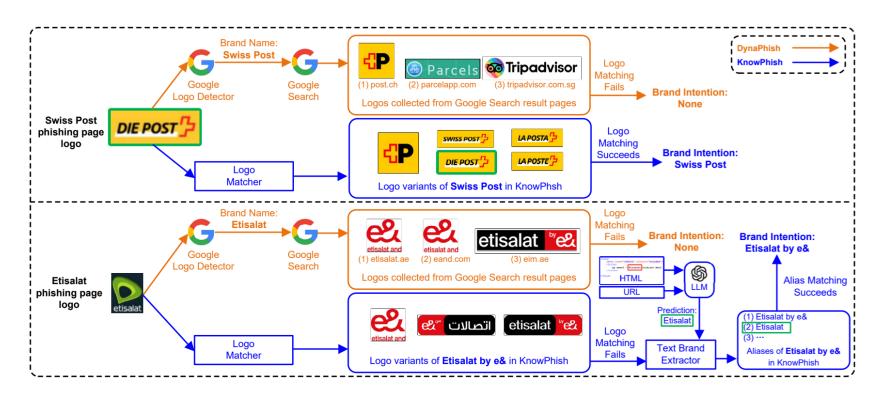
• KnowPhish enhances RBPDs better than DynaPhish does



Comparison with DynaPhish (USENIX Sec '23)

KnowPhish outperforms DynaPhish (static) in terms of

- the diversity of brand knowledge (e.g., logo variants) and
- the ability to detect textual brand intention through KPD when logo-analysis fails



Results: Field Study

KPD+KnowPhish identifies many local phishing targets in Singapore

 Detects phishing websites targeting local brands

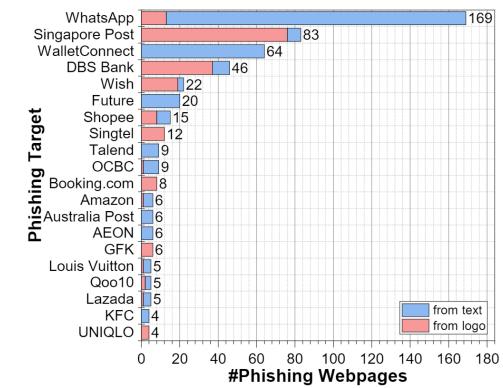
SG-SCAN Dataset

Imbalanced and unlabelled

#Samples: 10k

- Singapore Post
- DBS Bank
- Shopee
- OCBC
- Qoo10
- Lazada
- ...
- Further validates our empirical insights
 - high-value industries usually indicate phishing targets

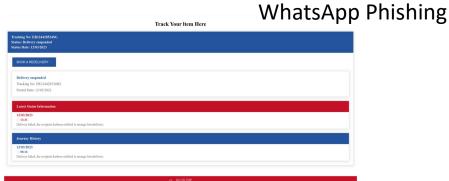
Detector	BKB	#P	#TP↑	Precision [↑]	Time↓
Phishpedia	Original	54	17	31.48	0.16s
	DynaPhish	583	481	82.67	5.98s
	KnowPhish	353	333	94.33	0.16s
PhishIntention	Original	25	8	32.00	0.18s
	DynaPhish	163	140	85.89	5.91s
	KnowPhish	138	133	96.37	0.19s
KPD	DynaPhish	628	581	92.52	7.83s
	KnowPhish	699	681	97.42	1.64s



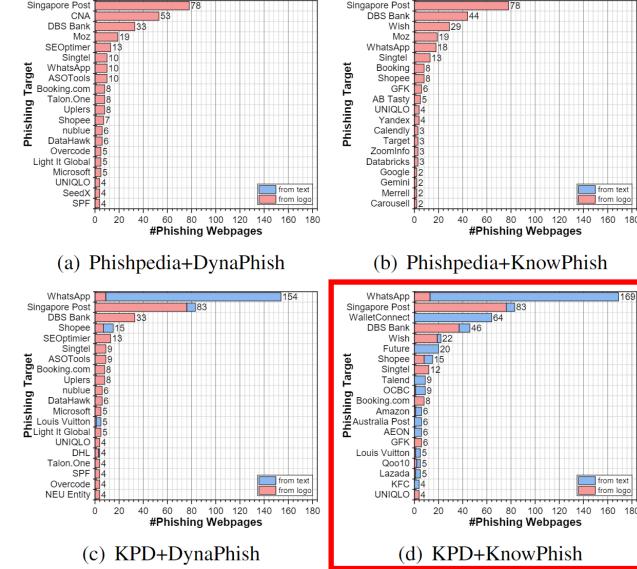
Results: Field Study

Logo-less phishing webpages are common in real-world

 Image-based RBPDs are not able to detect logo-less phishing in static environment



Singapore Post Phishing



Takeaway

KnowPhish: Large-scale Multimodal Brand Knowledge Base

- The industries of phishing targets remain mostly consistent, despite the dynamic nature of phishing targets across different datasets
- Based on Wikidata, we constructed a large-scale multimodal brand knowledge base covering more than 20k potential phishing targets
- Can directly enhance any RBPDs without additional runtime maintenance cost

• <u>KPD</u>: Multimodal Reference-based Phishing Detector:

 A multimodal RBPD operating in static environment that can detect phishing webpages with or without logos

> Thanks for your listening! Presenter: Yuexin Li yuexinli@nus.edu.sg