CAMP: Compiler and Allocator-based

heap Memory Protection

Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni, Peter Dinda, and Xinyu Xing

Northwestern
&/ University

Memory Corruption Errors

- Google Project Zero discovered that heap errors accounted for 69% of
zero-day vulnerabilities observed in the wild.
65% vulnerabilities are confirmed as heap-based zero-day in Linux.

> Northwestern
=7 University

CAMP

A defense mechanism designed to render OOB and UAF
vulnerabilities unexploitable.
- Low performance overhead.

Northwestern
>y University

EXERN >
el BH
s,

P\
J85)

Temporal Security

char *buf = malloc(16);

Constructs the point-to relation b
g Yo __escape (&buf, buf);

instrumenting the program.

When a memory object is freed,
CAMP could identify the dangling
pointers and nulitify them.

_»free(buf);

> Northwestern
=7 University

Temporal Security Escape Cache

- New point-to relations are temporarily stored in
the cache until it becomes full, at which point the
records are transferred to the allocator in a batch,
while skipping any duplicates. This cache design
boosts runtime speed and reduces memory
overhead, particularly in scenarios where the
program operates repeatedly in the same block
and creates similar point-to relations.

Escape Cache

Point To-Relation

4 -5 Northwestern
&/ University

Spatial Security SeglList Allocator

- Uses span as unit. Each span
manages a size class of memory
objects on several contiguous
memory pages. Span2

- Leverage the base address and
size of span, we can calculate the
boundary of each pointer.

Span1

Span3

2 Northwestern
=7 University

Spatial Security

struct obj *o = malloc(sizeof (struct obj));
__check_range(o, o, sizeof (struct obj));

Insert checking at _check_range (ptr, &ptr->a, sizeof (ptr->a));

pointer arithmetic site ptr->a = 1;
\ __check_range (ptr, &ptr—->b, sizeof (ptr->b));

ptr->b = 2;

Optimization Type

1 struct obj {

2 int a;

3 int b;

4 };

5 struct obj* bar() {

6 // type—-casting from void* to obj*

7 struct obj *o = malloc(sizeof (struct obj));
8 __check_range(o, o, sizeof (struct obj));

9

10 }

1 int foo(struct obj *ptr) {

12 __check_range(ptr, &ptr->a, sizeof (ptr->a));
13 ptr->a = 1;

14 __check_range (ptr, &ptr->b, sizeof (ptr->b));

15 ptr->b = 2;

Ensure the memory space
referenced by a typed pointer is
adequate for its corresponding type

Northwestern
University

Optimization Type

struct obj {
int a;
int b;
bi
struct obj* bar() {
// type-casting from voidx to objx* Ensure the memaory space
struct obj *o = malloc(sizeof (struct obj)); Y referenced by a typed pointer is

heck , O, i f (st t obj)); . .
—checkrangelo, o, sizeof(struct ob3)) adequate for its corresponding type

O X NN L B W N =

10 }

1 int foo(struct obj *ptr) {

12 —¢check—range{ptrrSptr—a;—sizeef{ptr>ari—
13 ptr->a = 1;

14 —check range(ptr,—&ptr—b, sizeof{ptr—bii—
15 ptr->b = 2;

Northwestern
University

Optimization Merge

1 void foo(char *ptr, int i, int j) ({ Fetch boundary at first
2 unsigned int start, end; /
3 __get_range(ptr, &start, &end);

4 assert (&ptr[i]>=start && &ptr[i]+l<end);

5 ptr[i] = 'x"';

6 assert (&ptr[j]>=start && &ptr[j]+l<end);

7 ptr(j]l = 'y';

8 }

Northwestern
University

Optimization Merge

void foo(char *ptr, int i, int j) {

1

2 unsigned int start, end; ‘////////////////

3 __get_range(ptr, &start, &end);

4 assert (&ptr[i]>=start && &ptr[i]+l<end);

5 ptr(i] = 'x'; ‘\\\\\\\\\\\\\\\\\\
6 assert (&ptr[jl>=start && &ptr[j]+l<end);

.

8

Fetch boundary at first

_ Simplified Checking
ptrljl = "y";
}

Northwestern
University

Security Evaluation Rreal world vulnerabilities

- The evaluation compares CAMP’ performance with other defense solutions offering similar
heap protection levels.

CVE/Issue ID Application Bug Type CAMP ASAN-- Memcheck DangNull MarkUs Delta pointer

CVE-2015-3205 libmimedir Use-After-Free (4 4 (4 v (4 /
CVE-2015-2787 PHP 5.6.5 Use-After-Free v v v ® ® /
CVE-2015-6835 PHP5.4.44 Use-After-Free 4 v v v ® /
CVE-2016-5773 PHP 7.0.7 Use-After-Free v v v 4 ® /
Issue-3515 [50] mruby Use-After-Free v v v Build Fail 3 7
CVE-2020-6838 mruby Use-After-Free v v v Build Fail ® /5
CVE-2021-44964 Lua Use-After-Free 4 v v Build Fail 4 /
CVE-2020-21688 FFmpeg Use-After-Free v v v ® v /
CVE-2021-33468 yasm Use-After-Free 4 v v v v /
CVE-2020-24978 nasm Use-After-Free [4 v [4 ® v L
Issue-1325664 [6] Chrome Use-After-Free v v v Build Fail ® /
CVE-2022-43286 Nginx Use-After-Free v v v ® v /
CVE-2019-16165 cflow Use-After-Free [4 v (4 ® v /
CVE-2021-4187 vim Use-After-Free (4 v (4 ® (4 /
CVE-2022-0891 libtiff Heap Overflow 4 v v / / v
CVE-2022-0924 libtiff Heap Overflow [4 4 (4 / / (4
CVE-2020-19131 libtiff Heap Overflow (4 v [4 / / [4
CVE-2020-19144 libtiff Heap Overflow v v v / / v
CVE-2021-4214 libpng Heap Overflow 4 v 4 / / Build Fail
CVE-2021-3156 sudo Heap Overflow Run Well v v / / Build Fail
CVE-2018-20330 libjpeg-turbo Heap Overflow v v v / / v
CVE-2020-21595 libde265 Heap Overflow 4 v 4 / / Build Fail
CVE-2020-21598 libde265 Heap Overflow (4 v v / / Build Fail
Issue-5551 [4] mruby Heap Overflow v v v / / Build Fail
CVE-2022-0080 mruby Heap Overflow Run Well v v / / Build Fail
CVE-2019-9021 PHP Heap Overflow 4 v v / / Build Fail
CVE-2022-31627 PHP Heap Overflow v v v / / Build Fail
CVE-2021-32281 gravity Heap Overflow v v v / / Build Fail
CVE-2020-15888 Lua Heap Overflow v v v / / Build Fail
CVE-2021-26259 htmldoc Heap Overflow v ® v / / Build Fail
CVE-2022-28966 Wasm3 Heap Overflow v v v / / Build Fail

Performance Evaluation sreccpu 2017

- CAMP provide better performance on SPEC CPU 2017.

Northwestern
University

Benchmark Time and Memory Overhead
CAMP ASAN—— ASAN ESAN Memcheck

600.perlbench_s 237.95% /2241.12% 76.95% /366.92% 143.59% /358.20% 644.00% /4.15% 3496.46% / 138.97%
602.gcc_s 78.56% 1 135.52% 83.61% /63.42% 99.47% / 62.77% - 2888.13% / 30.42%
605.mcf_s 14.62% / 31.55% 24.45% / 3.61% 27.88% /3.61% 109.33%/-4.24% 601.05% / 22.68%

623.xalancbmk_s 138.94% / 1220.66% 107.86% / 428.07% 109.41% /433.51% 81.67%/8.60% 4962.60% / 98.81%
625.x264_s 75.07% / 12.68% 62.26% /13.52% 75.92%/13.26% 90.94% /-3.55% 2070.57% / 56.96%
631.deepsjeng_s 1.58% / 0.00% 44.23%/-023% 64.08%/-0.23% 18.85% /-0.25% 3251.34% / 25.34%
641.leela_s 3.02%/514.19% 13.97% /2832.83% 17.33% /2833.72% 6.65% /-17.52% 4163.69% / 262.82%
657 xz_s 7.79% / 0.00% 17.45% / 2.98% 13.40% / 2.98% 14.61% /-0.70% 718.87% / 24.45%

619.1bm_s 1.34% / 0.01% 37.32% / 5.94% 29.38% / 5.94% 34.14% /-0.36% 2907.53% / 25.98%
638.imagick_s 45.47% 1 0.07% 17.23% / 4.46% 28.56% / 4.47% 21.70% / -2.00% 4452.66% / 22.93%
644 .nab_s 62.55% /26.13% 35.18% 1 67.52% 35.14% / 66.63% 1988.66% / -1.34% 3722.35% / 31.80%
Geomean 21.27% 1 127.47% 38.27% /104.72% 44.78% / 104.35% 65.31% /-1.94% 2546.88% / 56.49%

Northwestern
University

Ablation Study

- Evaluation result of CAMP breakdown. The bars show the normalized time of
tcmalloc replacement, CAMP, CAMP with each optimization disabled, and CAMP
without optimization.

tcmalloc
camp
redundant-opt
struct-opt
merge-opt
no-opt
no-cache

Normalized Time
FS

perlbench gee mcf xalancbmk x264 deepsjeng leela Xz Ibm imagick nab

\ Northwestern
University

Conclusion

- Introduction of CAMP: Employs a customized allocator and a compiler to safeguard
against heap memory corruption.

- Implementation: Customizes tcmalloc and builds on LLVM 12.0 compiler framework,
with the prototype open-sourced.

- Evaluation: Tested on Nginx and SPEC CPU benchmarks, assessed for security and
runtime overhead, and compared with other defense solutions.

Thank You

® /heng Yu
® zheng.yu@northwestern.edu

mailto:zheng.yu@northwestern.edu

