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Memory Corruption Errors

- Google Project Zero discovered that heap errors accounted for 69% of 
zero-day vulnerabilities observed in the wild.

- 65% vulnerabilities are confirmed as heap-based zero-day in Linux.



CAMP

- ✅ A defense mechanism designed to render OOB and UAF 
vulnerabilities unexploitable.

- ✅ Low performance overhead.



Temporal Security

- Constructs the point-to relation by 
instrumenting the program. 

- When a memory object is freed, 
CAMP could identify the dangling 
pointers and nulitify them.



Temporal Security

- New point-to relations are temporarily stored in 
the cache until it becomes full, at which point the 
records are transferred to the allocator in a batch, 
while skipping any duplicates. This cache design 
boosts runtime speed and reduces memory 
overhead, particularly in scenarios where the 
program operates repeatedly in the same block 
and creates similar point-to relations.
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Spatial Security SegList Allocator

- Uses span as unit. Each span 
manages a size class of memory 
objects on several contiguous 
memory pages.

- Leverage the base address and 
size of span, we can calculate the 
boundary of each pointer.
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Spatial Security

Insert checking at 
pointer arithmetic site



Optimization Type

Ensure the memory space 
referenced by a typed pointer is 
adequate for its corresponding type



Optimization Type

Ensure the memory space 
referenced by a typed pointer is 
adequate for its corresponding type



Optimization 

Fetch boundary at first

Merge



Optimization 

Fetch boundary at first

Simplified Checking

Merge



Security Evaluation

- The evaluation compares CAMP’ performance with other defense solutions offering similar 
heap protection levels.

Real World Vulnerabilities



Performance Evaluation

- CAMP provide better performance on SPEC CPU 2017.

SPEC CPU 2017



Ablation Study

- Evaluation result of CAMP breakdown. The bars show the normalized time of 
tcmalloc replacement, CAMP, CAMP with each optimization disabled, and CAMP 
without optimization.



Conclusion

- Introduction of CAMP: Employs a customized allocator and a compiler to safeguard 
against heap memory corruption.

- Implementation: Customizes tcmalloc and builds on LLVM 12.0 compiler framework, 
with the prototype open-sourced.

- Evaluation: Tested on Nginx and SPEC CPU benchmarks, assessed for security and 
runtime overhead, and compared with other defense solutions.
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