
CAMP: Compiler and Allocator-based 
heap Memory Protection

Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni, Peter Dinda, and Xinyu Xing



Memory Corruption Errors

- Google Project Zero discovered that heap errors accounted for 69% of 
zero-day vulnerabilities observed in the wild.

- 65% vulnerabilities are confirmed as heap-based zero-day in Linux.



CAMP

- ✅ A defense mechanism designed to render OOB and UAF 
vulnerabilities unexploitable.

- ✅ Low performance overhead.



Temporal Security

- Constructs the point-to relation by 
instrumenting the program. 

- When a memory object is freed, 
CAMP could identify the dangling 
pointers and nulitify them.



Temporal Security

- New point-to relations are temporarily stored in 
the cache until it becomes full, at which point the 
records are transferred to the allocator in a batch, 
while skipping any duplicates. This cache design 
boosts runtime speed and reduces memory 
overhead, particularly in scenarios where the 
program operates repeatedly in the same block 
and creates similar point-to relations.

Escape Cache

Escape Cache

Point To-Relation



Spatial Security SegList Allocator

- Uses span as unit. Each span 
manages a size class of memory 
objects on several contiguous 
memory pages.

- Leverage the base address and 
size of span, we can calculate the 
boundary of each pointer.

Span1

Span2

Span3



Spatial Security

Insert checking at 
pointer arithmetic site



Optimization Type

Ensure the memory space 
referenced by a typed pointer is 
adequate for its corresponding type



Optimization Type

Ensure the memory space 
referenced by a typed pointer is 
adequate for its corresponding type



Optimization 

Fetch boundary at first

Merge



Optimization 

Fetch boundary at first

Simplified Checking

Merge



Security Evaluation

- The evaluation compares CAMP’ performance with other defense solutions offering similar 
heap protection levels.

Real World Vulnerabilities



Performance Evaluation

- CAMP provide better performance on SPEC CPU 2017.

SPEC CPU 2017



Ablation Study

- Evaluation result of CAMP breakdown. The bars show the normalized time of 
tcmalloc replacement, CAMP, CAMP with each optimization disabled, and CAMP 
without optimization.



Conclusion

- Introduction of CAMP: Employs a customized allocator and a compiler to safeguard 
against heap memory corruption.

- Implementation: Customizes tcmalloc and builds on LLVM 12.0 compiler framework, 
with the prototype open-sourced.

- Evaluation: Tested on Nginx and SPEC CPU benchmarks, assessed for security and 
runtime overhead, and compared with other defense solutions.



Thank You

● Zheng Yu
● zheng.yu@northwestern.edu

mailto:zheng.yu@northwestern.edu

