3310 (ISENIX [[Yot L 4 1 ,m o4 44 4, #
SECRTY SYMPOSIM ISCAS . fiisnsdnis

A Wolf in Sheep’s Clothing: Practical Black-box Adversarial
Attacks for Evading Learning-based Windows Malware Detection
in the Wild

33 USENIX Security Symposium 2024

Xiang Ling, Zhiyu Wu, Bin Wang, Wei Deng, Jingzheng Wu, Shouling Ji, Tianyue Luo, Yanjun Wu

ISCAS 190204 i3a

Institute of Software, Chinese Academy of Sciences

Windows Malware

Malware remains one of the most serious security threats ™ """ °

» Normally perform malicious activities on computer systems
O stealing sensitive information

O demanding a large ransom

O disrupting national infrastructures

H DISTRIBUTION OF MALWARE AND PUA BY OPERATING o
Windows Malware

» World-wide popularity of Windows operating systems
» Windows has becoming the main target of malware attackers

@B WNDOWS () ANDROID ([l LINUX MACOS Tr < ¢ B

Source: AV-TEST Institute https://portal.av-atlas.org (July 12, 2024)

https://portal.av-atlas.org/

ISCAS tOHtRAdHE A

Institute of Software, Chinese Academy of Sciences

Windows Malware Detection and Anti-virus Products

Malware detection: static analysis versus dynamic analysis

For Windows malware, the static-analysis-based detection can be generally categorized into:

> Signature-based malware detection

O fast speed in detecting malware

O cannot detect previously unknown malware

O easily evaded by obfuscations like compression, register reassignment, code virtualization, etc.
> Learning-based malware detection

O leverage the high learning capability of machine learning / deep learning models

O can detect some newly emerging malware

O make some obfuscations ineffective for evasions

More and more mainstream anti-virus products (Kaspersky, McAfee, etc.) adopt the learning-
based malware detection as a pivotal component in their security solutions

ISCAS 190204 i3a

Institute of Software, Chinese Academy of Sciences

How about the security risk of learning-based Windows malware detection?

Target model: the learning-based Windows malware detection f(-)
Adversary’s goal

)
» Misclassify malware as goodware — ﬁ‘ Tﬂ?:iilg \
_ . X
» Preserve the original semantics A yEY | o yETY
Adversary’s knowledge & capability it Caoete | Enainesring Model
X = P(z) Malware

» Classic black-box adversarial attack ' y=1

O scenario #1: black-box attack with predicted probabilities mﬁ e ; prﬁ";ﬂfil,n

O scenario #2: black-box attack without predicated probabilities Testing Sample(s) _— G?iwg ©

> No prior information on the target model e—— y=/@ —l

O no training dataset

O no extracted feature set

O no learning algorithm with parameters
O no model architectures with weights

» Adversary has the capability of manipulating Windows executables
while adhering to its standard specifications

v W v ; it ‘2 4 %'
CAS EK IRy T
Institute of Software, Chinese Academy of Sciences

MalGuise: Overall Framework

Two challenges:

» How to generate the adversarial malware file?
O maintain the same semantics as the original one
O remain less noticeable to possible defenders —

@ Adversarial Transformation @ MCTS-Guided Searching
Preparation é h -
=| %
=\

Expansion

—

=S

=
.,_'L‘ \
=1
IJJ
I"VJ

N
> How to efficiently search the adversarial malware? zlwm Assembly Control-flow 1 S L;L'
O search in the large & discrete space of malware Code Graph (CFG) Optimizerd]Control_
O search in the strict black-box setting J_I > A
rAvailab_llg Serr]:antic:.—preserving\ ® Adversarial Malware
ranstormations Reconstruction
Our solution: MalGuise e ety = _,
(® Adversarial Transformation Preparation \b) e 0P miocting) Adviﬁal Ad?;rsarial
@ MCTS-Guided Searching | Assembly Code Malware

® Adversarial Malware Reconstruction Figure 2: The overview framework of MalGuise.

ISCAS 190204 i3a

Institute of Software, Chinese Academy of Sciences

MalGuise: @ Adversarial Transformation Preparation

Represent the given malware as control-flow graph (CFG) Viore ¥
- , : g’ ¥ Vg,
Present a novel semantic-preserving transformation of S h T
call sub_41B2F4 () ... -
Ilea. . fea)lc,_[ebp+var_1] v t :::acc ::
. ush eax pos l
» annotate all available basic blocks having the call instruction cll whatss | e swiepecs | | S
> select one call instruction in the basic block as the dividing line m & T
. H H H H lea. - ;esil esi+ =l ke 04
> redivide the basic block VV as a combination of three basic blocks LSO e
lea esi, [esi+0F8h]
gv - {Vfore» Vmidrvpost} v v
» enrich Vmid by injeCting semantic NOPs (a) Before transformation. (b) After applying a call-based redividing.

Figure 3: The call-based redividing redivides one basic
block in the “LockBit 3.0 ransomware (i.e., Fig. 3(a)) into a
composite of three consecutive basic blocks (i.e., Fig. 3(b)).

MalGuise: @ MCTS-Guided Searching

ISCAS tOHtRAdHE A

Institute of Software, Chinese Academy of Sciences

Optimizing a sequence of transformations,i.e., T=T, 0T, ..O T,
» T; is one atomic call-based redividing and involves two decision-markings:

O select one from all available call instructions to be redivided
® every call can be repeated selected in a recursive manner

O determine the proper semantic NOPs to be injected
® semantic NOPs can be infinitely generated with context-free grammar

MCTS-guided searching algorithm
> input: the given malware’s CFG, i.e., x
» output: the transformation sequence T

» Monte-Carlo tree searching based optimization
O widely used to solve long-standing optimization problems
O requires little or no domain knowledge

Algorithm 1: MCTS-Guided Searching Algorithm.

1

2
3
4
5
[
7
8
9

10
11
12
13
14
15
16
17

Input :a given malware z with its CFG x, target system f,
max length N, simulation number S, budget C.
Output : the transformation sequence T.
Begin
<@l « GetAllCalls(x):
v, T < InitMCTSRootNode(x.I®"). 0: //initialize
for i< 1roNdo //loop upto maximum length
for j < 1 to Cdo //loop upto computation budget
if random(0,1) < 0.5 then //avoid unlimited expansion
‘ Vselected — Selection(v);
else
‘ Vselecred +— Expansion(v);
reward < Simulation(Veecreds f>5):
BackPropagation(Vyyecred. reward);
Vhode $— ChildWithHighestReward(v);
T + T.append(vyode-T):
Xadv <= Vnode -X-
if Evaded(f, x4,)==True then
‘ return T
V4= Viode

ISCAS 190204 i3a

Institute of Software, Chinese Academy of Sciences

MalGuise: @ Adversarial Malware Reconstruction

Reconstruct the final adversarial malware file z, 4, Header Section Information
. DOpnation section ".text" section i newly added section
Requirements: — ‘ 5
. . . DOS Header | I <) 0x42C400: ca sub_41B2F4
> adhere to the specifications of Windows executables oo e e | AL
. 0x42C455: inc ah
» avoid unexpected errors, e.g., addressing errors == v ovzces7:
. 0x41B033: lea eax, [ebp+var_1i] .
Solutions: oo w
. 0x41B047: mov [ebp+var_2], eax
> for each transformation, patch itk ot s i
the malware file by injecting the V,,,;,4 into the slack . Oneis0s0:ex e, [esvorh]
space or the new section M
Addressing Order >

» adjust other fields in the header
J Figure 4: The conceptual layout of the reconstructed adversar-

1al Windows malware file for the “LockBit 3.0” ransomware.

CCAS T2k

44 Institute of Software, Chinese Academy of Sciences

Evaluation Settings

Table 1: Summary statistics of the benchmark dataset.
Benchmark dataset

> a balanced dataset of 210,251 Windows executables Dataset Training Validation Testing Total
Malware 81641 10,000 10000 101.641

» split into three disjoint training/validation/testing datasets Goodware 88610 10000 10000 108610

Target systems with detecting performance Total 170,251 20,000 20,000 210,251

» learning-based Windows malware detection systems
O MalGraph (INFOCOM 2021)
O Magic (DSN 2019)
O MalConv (arXiv 2017, citations~670) Target ~ AUC FPR = 1% FPR =0.1%

> anti-virus products Systems (%) TPR (%) bACC (%) TPR (%) bACC (%)

O McAfee, Comodo, Kaspersky, ClamAV, Microsoft Defender ATP ~ MalGraph 99.94°-99.34 = 99.18 —92.78 = 96.36
Magic 99.89 99.02 99.02 89.28 94.59

Baseline attacks MalConv 99.91 99.22 99.12 R6.54 93.22

» Two adversarial attacks:
O MMO (Lucas et al., Asia CCS 2021)
O SRL (Zhang et al. TDSC 2022)

» Three obfuscation tools: UPX, VMProtect, Enigma

Table 2: The detecting performance of three learning-based
Windows malware detection systems in our testing dataset.

ISCAS tai#nndnia

Institute of Software, Chinese Academy of Sciences

Answer to RQ1 (Attack Performance)

RQ1 (Attack Performance): What is the attack performance
of MalGuise against the state-of-the-art learning-based Table 3: The ASR performance (%) comparisons between
Windows malware detection Systems? MalGuise and baseline attacks against three target systems

under two black-box scenarios, i.e., w/ prob. and w/o prob.
Evaluation setup:

. MalGraph Magic MalConv
> two black-box scenarios BlackboX ks FPR FPR FPR FPR FPR FPR
> two kinds of baseline attacks =10 =0.1% =1% =0.1% =% =0.1%

. . . MMO 15.55 5230 1282 4013 11.99 39.66
For baseline adversarial attacks: W/ SRL 239 19.59[25.38 86.77| — —
» MMO shows inferior attack performance on all target P9%] MalGuise 97.47 97.77 9929 99.42 (S;"?,ﬁ) (g;'f;?[
models in both scenarios VY T T T PY : e 005
» SRL shows obviously higher ASRs against Magic SRL 259 1528| 384 4748| — —
. . , UPX 0.55 4.43 3.30 39.80 0.31 0.32
For baseline obfuscation tools: n VMProtect 0 0023 433 0 0
. . . Enigma 0.81 11.69 0 28.96 0 0.24

> all three obfuscations show inferior attack performance mems 07 - _
: : MalGuise 96.84 96.49 99.27 99.07 Sl sl

» VMProtect achieves the worst attack performance as it (95.18) (99.77
typlca”y Obfuscate a Sma” pOFtIOﬂ O.I: the malware flle “—" means SRL does not apply to MalConv as it cannot generate real malware files.

MalGuise achieves the best attack performance on all target models in both scenarios

SCAS ER IRy P
449 Institute of Software, Chinese Academy of Sciences

Answer to RQ2 (Utility Performance)

RQ2 (Utility Performance): Does the adversarial malware
generated by MalGuise maintain the original semantics?

Evaluation setup:

» SPR = the ratio of adversarial malware files that preserve the SPR =
original semantics among all generated adversarial malware files

> no exact solution to judge Sem(z, z,4,) due to the inherent
complexity of executable

» present an empirical solution by collecting and comparing the two distyom (2 2uds) = Distance(API,, APT,) o1
API sequences invoked when they are run on the same sandbox ’ max(I(API;),[(API)

|Sem(z,244v) = |

,Vzel

[(f(z) = 1) A(f(zaav) = 0)]

I ifdistnorm(z, Zagy) < dista
(0 otherwise.

Sem(z,zadv) = {

Evaluation results: Table 5: The SPR (%) of MalGuise and two baseline adver-
» SRL is not applicable as it generates adversarial features sarial attacks against three target systems.

» for MMO, only less than 50% of adversarial malware

i t] : alGrs aig alConv
preserves their original semantics Affacks TP Maigc MalConv
. . . . ~ FPR=1% FPR=0.1% FPR=1% FPR=0.1% FPR=1% FPR=0.1%
> MalGuise achieves the best utility performance with over ’ ‘ ” i ’ -
91% of generated adversarial malware preserving their I‘;E‘f 418 494 396 398 392 5038

original semantics

MalGuise 91.84 91.99 9345 9228 92.67 91.68

ISCAS tad#nndaia

Institute of Software, Chinese Academy of Sciences

Answer to RQ3 (Real-world Performance)

RQ3 (Real-world Performance): To what extend does
MalGuise evade existing commercial anti-virus products?

For 4/5 evaluated anti-virus products, MalGuise achieves over 30% ASRs, presenting potential
tangible security concerns to real-world users

MalGuise can be further improved by carefully fine-tuning its hyper-parameters, e.g., limit the
semantic NOPs to 25 most effective opcodes, MalGuise(S)

MalGuise can be applied against anti-virus products by only modifying very few blocks in CFG
» for McAfee, Comodo and ClamAV, over 90% adversarial malware only need to modify one basic block
» the other two anti-virus products (i.e., Kaspersky & MS-ATP) only need to modify two basic blocks

Table 7: Distribution frequency (%) of the number of modified

-) . : - . .. blocks for adversarial malware that evades anti-virus products.
Table 6: The ASR (%) of MalGuise against five anti-viruses. P

of blocks McAfee Comodo Kaspersky ClamAV MS-ATP

Attacks| McAfee Comodo Kaspersky ClamAV MS-ATP —
96.66 04.28 88.17 07.54 38.21

1
MalGuise 48.81 36.00 11.29 31.94 70.63 2 4.58 4.71 9.68 205 42.88
MalGuise(S) 5249 36.36 13.36 32.33 74.97 3 0.76 1.01 2.15 0.41 17.35
4
i

Increased ASR +3.68 +0.36 +2.07 +039 +4.34 0 0 0 0 117
0 0 0 0 0.39

ISCAS tOHtRAdHE A

Institute of Software, Chinese Academy of Sciences

Conclusion

To understand and evaluate the security risks of existing learning-based Windows malware
detection, we propose a practical black-box adversarial attack framework of MalGuise

MalGuise is the first to apply a fine-grained manipulation towards the CFG representation of
Windows executables, which not only manipulates the nodes of CFG but also its edges

Evaluations show that MalGuise not only effectively evades state-of-the-art learning-based
Windows malware detection with attack success rates exceeding 95%, but also evades five
anti-virus products, achieving attack success rates ranging from 11.29% to 74.97%

Code sharing to verified academic researchers at https://github.com/jiyuay/MalGuise-Access-
Instructions

https://github.com/jiyuay/MalGuise-Access-Instructions
https://github.com/jiyuay/MalGuise-Access-Instructions

ISCAS 190204 i3a

Institute of Software, Chinese Academy of Sciences

Thanks for Listening!

For any questions, feel free to contact
e-mail;
homepage:

mailto:lingxiang@iscas.ac.cn

	A Wolf in Sheep’s Clothing: Practical Black-box Adversarial Attacks for Evading Learning-based Windows Malware Detection in the Wild
	Windows Malware
	Windows Malware Detection and Anti-virus Products
	How about the security risk of learning-based Windows malware detection?
	MalGuise: Overall Framework
	MalGuise: ① Adversarial Transformation Preparation
	MalGuise: ② MCTS-Guided Searching
	MalGuise: ③ Adversarial Malware Reconstruction
	Evaluation Settings
	Answer to RQ1 (Attack Performance)
	Answer to RQ2 (Utility Performance)
	Answer to RQ3 (Real-world Performance)
	Conclusion
	幻灯片编号 14

