

A Wolf in Sheep's Clothing: Practical Black-box Adversarial Attacks for Evading Learning-based Windows Malware Detection in the Wild

33rd USENIX Security Symposium 2024

Xiang Ling, Zhiyu Wu, Bin Wang, Wei Deng, Jingzheng Wu, Shouling Ji, Tianyue Luo, Yanjun Wu

Windows Malware

Malware remains one of the most serious security threats

- > Normally perform malicious activities on computer systems
 - stealing sensitive information
 - demanding a large ransom
 - disrupting national infrastructures
 -

Windows Malware

- World-wide popularity of Windows operating systems
- Windows has becoming the main target of malware attackers

Windows Malware Detection and Anti-virus Products

- Malware detection: static analysis *versus* dynamic analysis
- For Windows malware, the static-analysis-based detection can be generally categorized into:
 - Signature-based malware detection
 - ☐ fast speed in detecting malware
 - cannot detect previously unknown malware
 - easily evaded by obfuscations like compression, register reassignment, code virtualization, etc.
 - Learning-based malware detection
 - □ leverage the high learning capability of machine learning / deep learning models
 - □ can detect some newly emerging malware
 - make some obfuscations ineffective for evasions
- More and more mainstream anti-virus products (Kaspersky, McAfee, etc.) adopt the learningbased malware detection as a pivotal component in their security solutions

How about the security risk of learning-based Windows malware detection?

- **Target model:** the learning-based Windows malware detection $f(\cdot)$
- Adversary's goal
 - Misclassify malware as goodware
 - Preserve the original semantics
- Adversary's knowledge & capability
 - Classic black-box adversarial attack
 - □ scenario #1: black-box attack with predicted probabilities
 - □ scenario #2: black-box attack without predicated probabilities
 - ➤ No prior information on the target model
 - no training dataset
 - no extracted feature set
 - no learning algorithm with parameters
 - no model architectures with weights
 -
 - Adversary has the capability of manipulating Windows executables while adhering to its standard specifications

MalGuise: Overall Framework

Two challenges:

- How to generate the adversarial malware file?
 - maintain the same semantics as the original one
 - □ remain less noticeable to possible defenders
- > How to efficiently search the adversarial malware?
 - search in the large & discrete space of malware
 - search in the strict black-box setting

Our solution: MalGuise

- ① Adversarial Transformation Preparation
- ② MCTS-Guided Searching
- 3 Adversarial Malware Reconstruction

Figure 2: The overview framework of MalGuise.

MalGuise: ① Adversarial Transformation Preparation

- Represent the given malware as control-flow graph (CFG)
- Present a novel semantic-preserving transformation of callbased redividing
 - annotate all available basic blocks having the call instruction
 - > select one call instruction in the basic block as the dividing line
 - redivide the basic block *V* as a combination of three basic blocks
 - $\square V \rightarrow \{V_{fore}, V_{mid}, V_{post}\}$
 - \triangleright enrich V_{mid} by injecting semantic NOPs

(a) Before transformation.

(b) After applying a call-based redividing.

Figure 3: The call-based redividing redivides one basic block in the "LockBit 3.0" ransomware (*i.e.*, Fig. 3(a)) into a composite of three consecutive basic blocks (*i.e.*, Fig. 3(b)).

MalGuise: ② MCTS-Guided Searching

- Optimizing a sequence of call-based redividing transformations, i.e., $\mathbf{T} = T_1 \odot T_2 ... \odot T_n$
 - $\succ T_i$ is one atomic call-based redividing and involves two decision-markings:
 - select one from all available call instructions to be redivided
 - every call can be repeated selected in a recursive manner
 - determine the proper semantic NOPs to be injected
 - semantic NOPs can be infinitely generated with context-free grammar
- MCTS-guided searching algorithm
 - > input: the given malware's CFG, i.e., x
 - > output: the transformation sequence T
 - ➤ Monte-Carlo tree searching based optimization
 - widely used to solve long-standing optimization problems
 - □ requires little or no domain knowledge

Algorithm 1: MCTS-Guided Searching Algorithm.

Input: a given malware z with its CFG x, target system f, max length N, simulation number S, budget C.

Output: the transformation sequence **T**.

```
1 Begin
         \mathbb{I}^{\text{call}} \leftarrow \text{GetAllCalls}(x);
         v, \mathbf{T} \leftarrow \text{InitMCTSRootNode}(x, \mathbb{I}^{\text{call}}), \emptyset;
                                                                        //initialize
         for i \leftarrow 1 to N do
                                              //loop upto maximum length
               for j \leftarrow 1 to C do //loop upto computation budget
                     if random(0,1) < 0.5 then //avoid unlimited expansion
                           v_{selected} \leftarrow Selection(v);
                     else
                           v_{selected} \leftarrow \text{Expansion}(v);
                     reward \leftarrow Simulation(v_{selected}, f, S);
10
                     BackPropagation(v_{selected}, reward);
11
               v_{node} \leftarrow \text{ChildWithHighestReward}(v);
12
               \mathbf{T} \leftarrow \mathbf{T}.\mathtt{append}(v_{node}.T);
13
               x_{adv} \leftarrow v_{node}.x;
14
               if Evaded(f, x_{adv}) = True then
15
                     return T
16
               v \leftarrow v_{node}
17
```


MalGuise: 3 Adversarial Malware Reconstruction

- Reconstruct the final adversarial malware file z_{adv}
- Requirements:
 - > adhere to the specifications of Windows executables
 - > avoid unexpected errors, e.g., addressing errors
- Solutions:
 - \blacktriangleright for each call-based redividing transformation, patch the malware file by injecting the V_{mid} into the slack space or the new section
 - adjust other fields in the header
 - **>**

Figure 4: The conceptual layout of the reconstructed adversarial Windows malware file for the "LockBit 3.0" ransomware.

Evaluation Settings

Benchmark dataset

- > a balanced dataset of 210,251 Windows executables
- > split into three disjoint training/validation/testing datasets

Target systems with detecting performance

- > learning-based Windows malware detection systems
 - MalGraph (INFOCOM 2021)
 - Magic (DSN 2019)
 - MalConv (arXiv 2017, citations~670)
- > anti-virus products
 - McAfee, Comodo, Kaspersky, ClamAV, Microsoft Defender ATP

Baseline attacks

- Two adversarial attacks:
 - MMO (Lucas et al., Asia CCS 2021)
 - ☐ SRL (Zhang et al. TDSC 2022)
- Three obfuscation tools: UPX, VMProtect, Enigma

Table 1: Summary statistics of the benchmark dataset.

Dataset	Training	Validation	Testing	Total
Malware	81,641	10,000	10,000	101,641
Goodware	88,610	10,000	10,000	108,610
Total	170,251	20,000	20,000	210,251

Table 2: The detecting performance of three learning-based Windows malware detection systems in our testing dataset.

Target	AUC (%)	FPR	= 1%	FPR = 0.1%		
Systems		TPR (%)	bACC (%)	TPR (%)	bACC (%)	
MalGraph	99.94	99.34	99.18	92.78	96.36	
Magic	99.89	99.02	99.02	89.28	94.59	
MalConv	99.91	99.22	99.12	86.54	93.22	

Answer to RQ1 (Attack Performance)

RQ1 (Attack Performance): What is the attack performance of MalGuise against the state-of-the-art learning-based Windows malware detection systems?

Evaluation setup:

- > two black-box scenarios
- > two kinds of baseline attacks

For baseline adversarial attacks:

- MMO shows inferior attack performance on all target models in both scenarios
- SRL shows obviously higher ASRs against Magic

For baseline obfuscation tools:

- all three obfuscations show inferior attack performance
- VMProtect achieves the worst attack performance as it typically obfuscate a small portion of the malware file

Table 3: The ASR performance (%) comparisons between MalGuise and baseline attacks against three target systems under two black-box scenarios, *i.e.*, *w/ prob.* and *w/o prob.*

Black-box Scenarios		MalGraph		Magic		MalConv	
	Attacks	FPR	FPR	FPR	FPR	FPR	FPR
		=1%	=0.1%	=1%	=0.1%	=1%	=0.1%
	MMO	15.55	52.30	12.82	40.13	11.99	39.66
w/	SRL	2.39	19.59	25.38	86.77	_	_
prob.	MalGuise	97.47	97.77	99.29	99.42	34.36 (97.76)	97.38 (99.77)
	MMO	3.73	27.83	3.41	25.46	2.46	20.72
	SRL	2.59	15.28	3.84	47.48	_	_
w/o	UPX	0.55	4.43	3.30	39.80	0.31	9.32
prob.	VMProtect	0	0	0.23	4.33	0	0
	Enigma	0.81	11.69	0	28.96	0	0.24
	MalGuise	96.84	96.49	99.27	99.07	31.41 (95.18)	88.02 (99.77)

[&]quot;—" means SRL does not apply to MalConv as it cannot generate real malware files

MalGuise achieves the best attack performance on all target models in both scenarios

Answer to RQ2 (Utility Performance)

RQ2 (Utility Performance): Does the adversarial malware generated by MalGuise maintain the original semantics?

Evaluation setup:

- > SPR = the ratio of adversarial malware files that preserve the original semantics among all generated adversarial malware files
- ightharpoonup no exact solution to judge $Sem(z,z_{adv})$ due to the inherent complexity of executable
- > present an empirical solution by collecting and comparing the two API sequences invoked when they are run on the same sandbox

$$SPR = \frac{|Sem(z, z_{adv}) = 1|}{|(f(z) = 1) \land (f(z_{adv}) = 0)|}, \ \forall z \in \mathbf{Z}$$

$$Sem(z, z_{adv}) = \begin{cases} 1 & \text{if } dist_{norm}(z, z_{adv}) < dist_{\Delta} \\ 0 & \text{otherwise.} \end{cases}$$

$$dist_{norm}(z, z_{adv}) = \frac{Distance(\mathtt{API}_z, \mathtt{API}_{z_{adv}})}{max(l(\mathtt{API}_z), l(\mathtt{API}_{z_{adv}}))} \in [0, 1]$$

Evaluation results:

- > SRL is not applicable as it generates adversarial features
- ➢ for MMO, only less than 50% of adversarial malware preserves their original semantics
- MalGuise achieves the best utility performance with over 91% of generated adversarial malware preserving their original semantics

Table 5: The SPR (%) of MalGuise and two baseline adversarial attacks against three target systems.

Attacks	MalGraph		Maigc		MalConv	
	FPR=1%	FPR=0.1%	FPR=1%	FPR=0.1%	FPR=1%	FPR=0.1%
MMO	41.8	49.4	39.6	39.8	39.2	50.8
SRL	_	_	_	_	_	_
MalGuise	91.84	91.99	93.45	92.28	92.67	91.68

Answer to RQ3 (Real-world Performance)

RQ3 (Real-world Performance): To what extend does MalGuise evade existing commercial anti-virus products?

- For 4/5 evaluated anti-virus products, MalGuise achieves over 30% ASRs, presenting potential tangible security concerns to real-world users
- MalGuise can be further improved by carefully fine-tuning its hyper-parameters, e.g., limit the semantic NOPs to 25 most effective opcodes, MalGuise(S)
- MalGuise can be applied against anti-virus products by only modifying very few blocks in CFG
 - > for McAfee, Comodo and ClamAV, over 90% adversarial malware only need to modify one basic block
 - > the other two anti-virus products (i.e., Kaspersky & MS-ATP) only need to modify two basic blocks

Table 6: The ASR (%) of MalGuise against five anti-viruses.

Attacks	McAfee	Comodo	Kaspersky	ClamAV	MS-ATP
MalGuise	48.81	36.00	11.29	31.94	70.63
MalGuise(S)	52.49	36.36	13.36	32.33	74.97
Increased ASR	+3.68	+0.36	+2.07	+0.39	+4.34

Table 7: Distribution frequency (%) of the number of modified blocks for adversarial malware that evades anti-virus products.

# of blocks	McAfee	Comodo	Kaspersky	ClamAV	MS-ATP
1	96.66	94.28	88.17	97.54	38.21
2	4.58	4.71	9.68	2.05	42.88
3	0.76	1.01	2.15	0.41	17.35
4	0	0	0	0	1.17
5	0	0	0	0	0.39

Conclusion

- To understand and evaluate the security risks of existing learning-based Windows malware detection, we propose a practical black-box adversarial attack framework of MalGuise
- MalGuise is the first to apply a fine-grained manipulation towards the CFG representation of Windows executables, which not only manipulates the nodes of CFG but also its edges
- Evaluations show that MalGuise not only effectively evades state-of-the-art learning-based Windows malware detection with attack success rates exceeding 95%, but also evades five anti-virus products, achieving attack success rates ranging from 11.29% to 74.97%
- Code sharing to verified academic researchers at https://github.com/jiyuay/MalGuise-Access-Instructions

Thanks for Listening!

For any questions, feel free to contact

e-mail: lingxiang@iscas.ac.cn homepage: ryderling.github.io