

A Wolf in Sheep's Clothing: Practical Black-box Adversarial Attacks for Evading Learning-based Windows Malware Detection in the Wild

33rd USENIX Security Symposium 2024

Xiang Ling, Zhiyu Wu, Bin Wang, Wei Deng, Jingzheng Wu, Shouling Ji, Tianyue Luo, Yanjun Wu

Windows Malware

Malware remains one of the most serious security threats

- \triangleright Normally perform malicious activities on computer systems
	- \square stealing sensitive information
	- \Box demanding a large ransom
	- \Box disrupting national infrastructures
	- **口**……

Windows Malware

- \triangleright World-wide popularity of Windows operating systems
- \triangleright Windows has becoming the main target of malware attackers

DISTRIBUTION OF MALWARE AND PUA BY OPERATING

Windows Malware Detection and Anti-virus Products

- **Malware detection:** static analysis *versus* dynamic analysis
- For Windows malware, the static-analysis-based detection can be generally categorized into:
	- \triangleright Signature-based malware detection
		- \Box fast speed in detecting malware
		- \Box cannot detect previously unknown malware
		- \Box easily evaded by obfuscations like compression, register reassignment, code virtualization, etc.
	- \triangleright Learning-based malware detection
		- \Box leverage the high learning capability of machine learning / deep learning models
		- \square can detect some newly emerging malware
		- \square make some obfuscations ineffective for evasions
- More and more mainstream anti-virus products (Kaspersky, McAfee, etc.) adopt the learningbased malware detection as a pivotal component in their security solutions

How about the security risk of learning-based Windows malware detection?

- **Target model:** the learning-based Windows malware detection $f(\cdot)$
- **Adversary's goal**
	- \triangleright Misclassify malware as goodware
	- \triangleright Preserve the original semantics
- Adversary's knowledge & capability
	- \triangleright Classic black-box adversarial attack
		- \Box scenario #1: black-box attack with predicted probabilities
		- \Box scenario #2: black-box attack without predicated probabilities
	- \triangleright No prior information on the target model
		- \Box no training dataset
		- □ no extracted feature set
		- \Box no learning algorithm with parameters
		- \Box no model architectures with weights
		- **口**……
	- Adversary has the capability of manipulating Windows executables while adhering to its standard specifications

MalGuise: Overall Framework

Two challenges:

- \triangleright How to generate the adversarial malware file? \Box maintain the same semantics as the original one
	- \Box remain less noticeable to possible defenders
- \triangleright How to efficiently search the adversarial malware?
	- **□** search in the large & discrete space of malware
	- \Box search in the strict black-box setting

Our solution: MalGuise

- ① Adversarial Transformation Preparation
- ② MCTS-Guided Searching
- ③ Adversarial Malware Reconstruction

Figure 2: The overview framework of MalGuise.

MalGuise: ① Adversarial Transformation Preparation

- Represent the given malware as control-flow graph (CFG)
- Present a novel semantic-preserving transformation of callbased redividing
	- annotate all available basic blocks having the call instruction
	- \triangleright select one call instruction in the basic block as the dividing line
	- \triangleright redivide the basic block V as a combination of three basic blocks
		- \Box $V \rightarrow \{V_{fore}, V_{mid}, V_{post}\}$
	- \triangleright enrich V_{mid} by injecting semantic NOPs

(a) Before transformation. (b) After applying a call-based redividing.

Figure 3: The call-based redividing redivides one basic block in the "LockBit 3.0" ransomware $(i.e., Fig. 3(a))$ into a composite of three consecutive basic blocks $(i.e., Fig. 3(b))$.

MalGuise: ② MCTS-Guided Searching

Optimizing a sequence of call-based redividing transformations, i.e., $\mathbf{T} = T_1 \odot T_2 ... \odot T_n$

- \triangleright T_i is one atomic call-based redividing and involves two decision-markings:
	- \Box select one from all available call instructions to be redivided
		- every call can be repeated selected in a recursive manner
	- \Box determine the proper semantic NOPs to be injected
		- semantic NOPs can be infinitely generated with context-free grammar
- MCTS-guided searching algorithm
	- \triangleright input: the given malware's CFG, i.e., x
	- \triangleright output: the transformation sequence **T**
	- \triangleright Monte-Carlo tree searching based optimization
		- widely used to solve long-standing optimization problems
		- \Box requires little or no domain knowledge

MalGuise: ③ Adversarial Malware Reconstruction

- Reconstruct the final adversarial malware file z_{adv}
- Requirements:
	- \triangleright adhere to the specifications of Windows executables
	- \triangleright avoid unexpected errors, e.g., addressing errors
- Solutions:
	- \triangleright for each call-based redividing transformation, patch the malware file by injecting the V_{mid} into the slack space or the new section
	- \triangleright adjust other fields in the header
	- ……

Figure 4: The conceptual layout of the reconstructed adversarial Windows malware file for the "LockBit 3.0" ransomware.

Evaluation Settings

Benchmark dataset

- \geq a balanced dataset of 210,251 Windows executables
- \triangleright split into three disjoint training/validation/testing datasets

Target systems with detecting performance

- \triangleright learning-based Windows malware detection systems
	- MalGraph (INFOCOM 2021)
	- \Box Magic (DSN 2019)
	- MalConv (arXiv 2017, citations~670)
- \triangleright anti-virus products
	- McAfee, Comodo, Kaspersky, ClamAV, Microsoft Defender ATP

Baseline attacks

- \triangleright Two adversarial attacks:
	- MMO (Lucas et al., Asia CCS 2021)
	- SRL (Zhang et al. TDSC 2022)
- Three obfuscation tools: UPX, VMProtect, Enigma

Table 1: Summary statistics of the benchmark dataset.

Table 2: The detecting performance of three learning-based Windows malware detection systems in our testing dataset.

Answer to RQ1 (Attack Performance)

RQ1 (Attack Performance): What is the attack performance of MalGuise against the state-of-the-art learning-based Windows malware detection systems?

- Evaluation setup:
	- \triangleright two black-box scenarios
	- \triangleright two kinds of baseline attacks
- For baseline adversarial attacks:
	- \triangleright MMO shows inferior attack performance on all target models in both scenarios
	- \triangleright SRL shows obviously higher ASRs against Magic
- For baseline obfuscation tools:
	- \triangleright all three obfuscations show inferior attack performance
	- \triangleright VMP rotect achieves the worst attack performance as it typically obfuscate a small portion of the malware file

Table 3: The ASR performance $(\%)$ comparisons between MalGuise and baseline attacks against three target systems under two black-box scenarios, *i.e.*, *w/ prob.* and *w/o prob.*

MalGuise achieves the best attack performance on all target models in both scenarios

Answer to RQ2 (Utility Performance)

RQ2 (Utility Performance): Does the adversarial malware generated by MalGuise maintain the original semantics?

- **Evaluation setup:**
	- \triangleright SPR = the ratio of adversarial malware files that preserve the original semantics among all generated adversarial malware files
	- \triangleright no exact solution to judge $Sem(z, z_{adv})$ due to the inherent complexity of executable
	- \triangleright present an empirical solution by collecting and comparing the two API sequences invoked when they are run on the same sandbox

Evaluation results:

- \triangleright SRL is not applicable as it generates adversarial features
- \triangleright for MMO, only less than 50% of adversarial malware preserves their original semantics
- \triangleright MalGuise achieves the best utility performance with over 91% of generated adversarial malware preserving their original semantics

 $SPR = \frac{|Sem(z, z_{adv}) = 1|}{|(f(z) = 1) \land (f(z_{adv}) = 0)|}, \forall z \in \mathbb{Z}$

$$
Sem(z, z_{adv}) = \begin{cases} 1 & \text{if } dist_{norm}(z, z_{adv}) < dist_{\Delta} \\ 0 & \text{otherwise.} \end{cases}
$$

$$
dist_{norm}(z, z_{adv}) = \frac{Distance(\text{API}_{z}, \text{API}_{z_{adv}})}{max(l(\text{API}_{z}), l(\text{API}_{z_{adv}}))} \in [0, 1]
$$

Table 5: The SPR (%) of MalGuise and two baseline adversarial attacks against three target systems.

Answer to RQ3 (Real-world Performance)

RQ3 (Real-world Performance): To what extend does MalGuise evade existing commercial anti-virus products?

- For 4/5 evaluated anti-virus products, MalGuise achieves over 30% ASRs, presenting potential tangible security concerns to real-world users
- MalGuise can be further improved by carefully fine-tuning its hyper-parameters, e.g., limit the semantic NOPs to 25 most effective opcodes, MalGuise(S)
- MalGuise can be applied against anti-virus products by only modifying very few blocks in CFG
	- \triangleright for McAfee, Comodo and ClamAV, over 90% adversarial malware only need to modify one basic block
	- \triangleright the other two anti-virus products (i.e., Kaspersky & MS-ATP) only need to modify two basic blocks

Table 6: The ASR $(\%)$ of MalGuise against five anti-viruses.

Table 7: Distribution frequency $(\%)$ of the number of modified blocks for adversarial malware that evades anti-virus products.

Conclusion

- To understand and evaluate the security risks of existing learning-based Windows malware detection, we propose a practical black-box adversarial attack framework of MalGuise
- MalGuise is the first to apply a fine-grained manipulation towards the CFG representation of Windows executables, which not only manipulates the nodes of CFG but also its edges
- Evaluations show that MalGuise not only effectively evades state-of-the-art learning-based Windows malware detection with attack success rates exceeding 95%, but also evades five anti-virus products, achieving attack success rates ranging from 11.29% to 74.97%
- Code sharing to verified academic researchers at [https://github.com/jiyuay/MalGuise-Access-](https://github.com/jiyuay/MalGuise-Access-Instructions)**[Instructions](https://github.com/jiyuay/MalGuise-Access-Instructions)**

Thanks for Listening!

For any questions, feel free to contact e-mail: lingxiang@iscas.ac.cn homepage: ryderling.github.io