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End-to-End Encrypted Messaging
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End-to-End Encrypted Messaging
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End-to-End Encrypted Messaging
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End-to-End Encrypted Messaging
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...what if there is an attack later?
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Can we do better?
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Alice to Bob Bob to Alice
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What can Bob conclude from this message?

/Your chat partner shared their identity.
They are also:

8 soap-alice@outlook.com

& soap-alice@proton.me
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Bob socially authenticates Alice
[Vaziripour et al., CHI 2019]

The same person controlling the Signal
account, controls given third-party accounts

If Bob knows accounts, Bob can authenticate
Alice

If Bob doesn’t know accounts, Bob can use
them as second factor
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Social Authentication Formalized
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Social Authentication
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Automate Social Authentication using OpenlID Connect
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Automate Social Authentication using OpenID Connect
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SOAP
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What could go wrong?
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Formal Model Run N-times
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SOAP Security Guarantees
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SOAP Security Guarantees

An adversary can intercept messages if...

: They break They break
Standard Security ( SMS OTPs V key server )
A In particular:
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Conclusion . More on social

authentication formally

* Protocol details

* More discussion on HTTP
redirect assumption

« Comparison to other
mechanisms

» Going forward
— More OpenlID Connect providers
— Standardization
— Make it work in the background
— Finding the ideal Ul
— Combination with transparency logs

« Contributions presented
— Social authentication formalized
— SOAP: Automated Social Authentication
— Proven to be secure
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SOAP: A Social Authentication Protocol

Felix Linker
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Abstract

Social authentication has been suggested as a usable authenti-
cation ceremony to replace manual key authentication in mes-
saging applications. Using social authentication, chat partners
authenticate their peers using digital identities managed by
identity providers. In this paper, we formally define social
authentication, present a protocol called SOAP that largely
automates social authentication, formally prove SOAP’s secu-
rity, and demonstrate SOAP’s practicality in two prototypes.
One prototype is web-based, and the other is implemented in
the open-source Signal messaging application.

Using SOAP, users can significantly raise the bar for com-
promising their messaging accounts. In contrast to the default
security provided by messaging applications such as Signal
and WhatsApp, attackers must compromise both the messag-
ing account and all identity provider-managed identities to
attack a victim. In addition to its security and automation,
SOAP is straightforward to adopt as it is built on top of the
well-established OpenID Connect protocol.

1 Introduction

Social authentication promises simple, usable, and remote
key authentication for messaging applications [48] and was
first implemented in the Keybase application [27]. Using
Keybase, Alice can link her Keybase account to, for example,
her Twitter account by tweeting a message signed with her
Keybase account’s key. This allows other users to socially
authenticate Alice on Keybase via her Twitter account. More
generally, when performing social authentication, users verify
that their actual chat partner controls accounts at different
identity providers (IdPs) which they know are controlled by
their intended chat partner.

Authenticating chat partners is critical for user security: if
not done properly, users risk that a Meddler-in-the-Middle
(MITM) intercepts their messages. Existing authentication
ceremonies do not sufficiently address this risk. Various stud-
ies have found that users are unwilling or unable to perform
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Figure 1: SOAP implements a social authentication ceremony.
A user initiates the ceremony in their messaging application,
which requests an identity token for each of the user's identi-
ties and forwards the tokens. The verifier’s application verifies
the token's sender. The verifier uses the identities to authenti-
cate the user.

these authentication ceremonies [24, 41, 42, 49]. In particular,
users are both challenged and constrained by the in-person
comparison of safety numbers as implemented in the messag-
ing applications Signal and WhatsApp. Not only must they
understand how to perform this ceremony correctly, they must
also be in close physical proximity with one another.
In contrast, 1 social auth ion was
as a usable authentication ceremony [48] that works remotely.
Keybase was first to study social authentication beyond the
idea, but Keybase requires manually posting key material,
which requires non-trivial user effort. Moreover, the posting
is public, which discloses account associations to everyone.
After Zoom acquired Keybase, Zoom published an end-to-
end encryption whitepaper [7] which continued this line of
work. In particular, it automated the authentication process
using a modified version of the OpenID Connect protocol.
Zoom’s proposal, though, was designed in a setting where
every account can be authenticated only by a single IdP and,
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