e Department of Computer
E'HZUFICh Science

SOAP: A Social
Authentication Protocol

Felix Linker, David Basin
Department of Computer Science

End-to-End Encrypted Messaging

TR VARQNN

“ Q ChristophSpr.. @ (B %

Christoph

Q gehr:?rtgt%r; . Sngl\r}IaéI %eTngs sends Signal
e key material the OTP

Requires authentic | send | request Christoph
public key Christoph a Christoph’s uploads key

message keys material

@ Signal message @ Q’ o

ETHzurich 2

End-to-End Encrypted Messaging

{ Can we do better? 1

TR VARQNN

“ Q ChristophSpr.. @ (B %

€ Crisiop” [signat sencs [Chstonh
e key material the OTP

|

Requires authentic | send | request Christoph
public key Christoph a Christoph’s uploads key

message keys material

@ Signal message @ Q’ o

ETHzurich 3

End-to-End Encrypted Messaging

Christoph Sprenger
» % A

Video Awdic Mute

Hi Chiristoph, this is Feli! ... g

Disappearing messages
& :

(_) Chat color & wallpaper
(:\) sounds & notificatons
@

No groups in common

‘ At 1w Brevn

ETH:z(rich

1894¢

rify safety number

A

Christoph Sprenger

Hi Christoph, this is Felix! .. @

End-to-End Encrypted Messaging

''''' 5 R FIAN% 1596 ' N PAQUN ‘ 1526 PN VA0 1516 ¢ R VL0

s ﬁ ChristophSpr.. @ (@ & « €& Verify safety number < « 5"' o &
@

Q Christoph Sprenger R, .

-~

Christoph Sprenger \ / Christoph Sprenger
\

e Strong security guarantees

Hi Christoph, this is Felix!

Hi Chiristoph, this is Feli! ... g

N - Requires physical proximity
o -And... Youmarked you satly s

< \ , :/

—
@ Contact details thew phone, Leam mote

T View safety number

No groups in common Clear verfication

@ Signal message @ g °
4 A 10 Bt

ETHzurich

...what if there is an attack later?

v

Your safety number with

O

O ©
©I © O

has changed.

Something
happened and you
need to scroll to get
on with things...

Can we do better?
Yes, use SOAP!

ETH:z(rich

Alice to Bob Bob to Alice

& B Bob® O & & A Alice® O

B A

Alice
Bob .
Alice runs Today
SOAP for Bob
Today e ™
Your chat partner shared their identity.
They are also:
You shared your identity.
= soap-alice@outlook.com
* soap-alice@outlook.com \“ soap-alice@proton.me y

“ soap-alice@proton.me

@ Signal message @ \OJ

@ Signal message @ \QJ e

ETH:z(rich

What can Bob conclude from this message?

/Your chat partner shared their identity.
They are also:

8 soap-alice@outlook.com

& soap-alice@proton.me

ETH:z(rich

Bob socially authenticates Alice
[Vaziripour et al., CHI 2019]

The same person controlling the Signal
account, controls given third-party accounts

If Bob knows accounts, Bob can authenticate
Alice

If Bob doesn’t know accounts, Bob can use
them as second factor

Contributions

€ we formalize @ We present
€ We prove that
Social .
Authentication < provides SOAP
9 ...and formally relate it to existing 6 ...and implement

notions of authentication & evaluate prototypes

ETH:z(rich

Social Authentication Formalized

A Protocol P provides Social Authentication when...

|f
Completes P
Py
N | A |
L
dh
Verifier O B)
Ppg

Channels

ETH:z(rich

Then

10

Social Authentication

i soap-alice@outlook.com
0 Microsoft) a

Verifier 0 Signal) &
pk

ETHzurich 1

Automate Social Authentication using OpenlID Connect

G Continue with Google

OpenID) & Contonewith Apee

ETH:z(rich

12

Automate Social Authentication using OpenID Connect

Proof of 8) Issue token Generate
authentication

5) Redirect code 6) Forward code

app . com
D " 1) Log in with...
8 2) Open with n, h(r)

idp.com

3) Request

7) Request token and reveal r

ETH:z(rich

13

SOAP

Generate
r

8) Issue token

Include key fingerprint
commitment in nonce

gy 2) Open with n, h(r) I

idp.com

5) Redirect code 6) For
app .com

+1 123 456

P

3) Request

Share token

7) Request token and reveal r

v
11 700 N19
Your chat partner shared their identity.

They are also:

Request signature verification key

2" soap-alice@outlook.com
& soap-alice@proton.me

ETH:z(rich

14

What could go wrong?

8) Issue token Generate
Unauthenticated
' +1 123 456
=
Share token

idp.com

channels

7) Request token and reveal r

v
11 700 N19
Your chat partner shared their identity.

Request signature verification key U €I ElEeE

2" soap-alice@outlook.com
& soap-alice@proton.me

ETH:z(rich

15

Formal Model Run N-times

8) Issue token Generate Cellular Provider
r

Send OTPs ((é&)

5) Redirect code 6) Forward code t

app . com +1 123 456
P Send OTPs

3) Request W /

Share token
idp.com / @
Upload + Refjuest Keys

7) Request token and reveal r Messaging Key

\ Server
+1 789 012

Request signhature verification key "

ETHzurich 16

Formal Model Run N-times

8) Issue token (Generate} Cellular Provider
r
(()))
O
<\
5) Redire
| Formalized + Proven using the Send OTPs
3) Req 5 Tamarin Prover
[|
[|
—
' —
)
7))} dging Key
Server

+1 789 012
Request signhature verification key "

ETH:z(rich

SOAP Security Guarantees

An adversary can intercept messages if...

: They break They break
Standard Security (SMS OTPs v key server)
AN
+ SOAP They_break every
associated account
/Account credentials TLS keys Messaging application\ 4)
uncompromised uncompromised uncompromised Secure user
Web browser HTTP redirects . behavior
uncompromised remain confidential Symbolic Model) U)
-
...assuming ...not assuming

ETH:z(rich

SOAP Security Guarantees

An adversary can intercept messages if...

: They break They break
Standard Security (SMS OTPs V key server)
A In particular:
« Users click on all links
 Users consentto
+ SOAP They_break every "
associated account everytning
e . . 0\
Account credentials Trade-off! 5saging application

uncompromised unc ncompromised

Secure user

Web browser HTTP redirects Svmbolic Model behavior
uncompromised remain confidential y
\ D2\ /
...assuming ...not assuming

ETHzurich 19

Conclusion . More on social

authentication formally

* Protocol details

* More discussion on HTTP
redirect assumption

« Comparison to other
mechanisms

» Going forward
— More OpenlID Connect providers
— Standardization
— Make it work in the background
— Finding the ideal Ul
— Combination with transparency logs

« Contributions presented
— Social authentication formalized
— SOAP: Automated Social Authentication
— Proven to be secure

@felixlinker

ETH:z(rich

SOAP: A Social Authentication Protocol

Felix Linker
Department of Computer Science, ETH Zurich

Abstract

Social authentication has been suggested as a usable authenti-
cation ceremony to replace manual key authentication in mes-
saging applications. Using social authentication, chat partners
authenticate their peers using digital identities managed by
identity providers. In this paper, we formally define social
authentication, present a protocol called SOAP that largely
automates social authentication, formally prove SOAP’s secu-
rity, and demonstrate SOAP’s practicality in two prototypes.
One prototype is web-based, and the other is implemented in
the open-source Signal messaging application.

Using SOAP, users can significantly raise the bar for com-
promising their messaging accounts. In contrast to the default
security provided by messaging applications such as Signal
and WhatsApp, attackers must compromise both the messag-
ing account and all identity provider-managed identities to
attack a victim. In addition to its security and automation,
SOAP is straightforward to adopt as it is built on top of the
well-established OpenID Connect protocol.

1 Introduction

Social authentication promises simple, usable, and remote
key authentication for messaging applications [48] and was
first implemented in the Keybase application [27]. Using
Keybase, Alice can link her Keybase account to, for example,
her Twitter account by tweeting a message signed with her
Keybase account’s key. This allows other users to socially
authenticate Alice on Keybase via her Twitter account. More
generally, when performing social authentication, users verify
that their actual chat partner controls accounts at different
identity providers (IdPs) which they know are controlled by
their intended chat partner.

Authenticating chat partners is critical for user security: if
not done properly, users risk that a Meddler-in-the-Middle
(MITM) intercepts their messages. Existing authentication
ceremonies do not sufficiently address this risk. Various stud-
ies have found that users are unwilling or unable to perform

@ felixiinker.de

David Basin
Department of Computer Science, ETH Zurich

Verifier £ Digital [dentities

) @ oo
R @ voricr s o

messaging application

D forwards tokens

Vetifier Verifies that
App the user app () App
sent the tokens

Figure 1: SOAP implements a social authentication ceremony.
A user initiates the ceremony in their messaging application,
which requests an identity token for each of the user's identi-
ties and forwards the tokens. The verifier’s application verifies
the token's sender. The verifier uses the identities to authenti-
cate the user.

these authentication ceremonies [24, 41, 42, 49]. In particular,
users are both challenged and constrained by the in-person
comparison of safety numbers as implemented in the messag-
ing applications Signal and WhatsApp. Not only must they
understand how to perform this ceremony correctly, they must
also be in close physical proximity with one another.
In contrast, 1 social auth ion was
as a usable authentication ceremony [48] that works remotely.
Keybase was first to study social authentication beyond the
idea, but Keybase requires manually posting key material,
which requires non-trivial user effort. Moreover, the posting
is public, which discloses account associations to everyone.
After Zoom acquired Keybase, Zoom published an end-to-
end encryption whitepaper [7] which continued this line of
work. In particular, it automated the authentication process
using a modified version of the OpenID Connect protocol.
Zoom’s proposal, though, was designed in a setting where
every account can be authenticated only by a single IdP and,

Bliched

20

	Slide 1: SOAP: A Social Authentication Protocol
	Slide 2: End-to-End Encrypted Messaging
	Slide 3: End-to-End Encrypted Messaging
	Slide 4: End-to-End Encrypted Messaging
	Slide 5: End-to-End Encrypted Messaging
	Slide 6: …what if there is an attack later?
	Slide 7
	Slide 8: What can Bob conclude from this message?
	Slide 9: Contributions
	Slide 10: Social Authentication Formalized
	Slide 11: Social Authentication
	Slide 12: Automate Social Authentication using OpenID Connect
	Slide 13: Automate Social Authentication using OpenID Connect
	Slide 14: SOAP
	Slide 15: What could go wrong?
	Slide 16: Formal Model
	Slide 17: Formal Model
	Slide 18: SOAP Security Guarantees
	Slide 19: SOAP Security Guarantees
	Slide 20: Conclusion

