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Embedded Systems and firmware

* Microcontrollers (MCUSs):
« Highly efficient and optimized (firmware and hardware).
* Resourced-constrained.
« Widely-deployed.
« Single

HOME CONTROL
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Dire security situation.
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How the Internet of Things (loT) became a
dark web target —and what to do aboutit
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IoT Malware Attacks Jump 400% Since 2022, Report

Manufacturing was the primary target for malware attacks over the past year, though all industries adopting connected
devices are at risk

32.7

34.3

2018

2019

60.14
56.95 J
2020 2021

112.29

2022



Northeastern University

Khoury College of Computer Sciences

Problems with securing the firmware on the MCUs

0x6000,0000

0x4000,0000

Various, usually smaller than FLASH
0x2000,0000

Various, 1-2 MB Max

0x0000,0000

1. Resource constrained.

2. Highly heterogenous physical environment.
1. Alot of peripherals (types, vendors),
2. Function like a black-box.

Y
[1] Fasano, Andrew, et al. "Sok: Enabling security analyses of embedded systems via rehosting.” Proceedings of the 2021 ACM Asia conference on computer and communications security. 2021.
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Problems with securing the firmware on the MCUs- Cont

* For the past decade, almost all works rehost the firmware.
« Hardware-in-the-loop:

« Expensive (7 hardware access per second).

« Hard to support all hardware (e.g., DMA).

 CPU halting (breaks real-time operation).

« GDB interface (high in price)
* Emulation: modeled hardware is bad.
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Objectives

« High-quality peripheral access.

« Performant concolic execution.
Universally applicable.

Support All peripherals and hardware.

Concolic

Executor
\__ 1 J

1. Simpler Communication.
 No hardware events.

2. No emulator. |
3. only need Serial Port (i.e., USART/USB-CDC) Hardware DeV'Cel

* No GDB.
 No CPU Halting.
4. Real hardware and peripherals.

ReportlSerial Port
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How to achieve this?

Compile-time analysis + instrumentation.

~ _ B — ™
@modbusProcess(i32 %0} ! B | N -y
%1 = SymPara(1) | ReadSymMem(0x24007ab0, 4) ReadSymMem(_, 4)
%2 = load i32, 132" @var i
: SymPara 1

%3 = ReadSymMem(@var, 4) SymPara 1
%4 = add i32 %0, %2 |:::>

%9 = SymLessThan(%?5,%7)

bri1 %8, label %10, label %11 |[SymSolveConstraint(_, true) Eymsnluecm, )

SymSolveConstraint(%:9, %8)

Instrumented Target Program Symbolic Handler
i MCL A \. Workstation J

s e BLLENW
%5 = SymAdd(%1, %3) . [SymAdd] [SymBuildint(0x40,)] SymAdd||SymBuildint(_, 4)
%6 = load 132, i32* MMIO | Serial

%7 = SymBuildInt(%:6, 4) ; V Port \/

%8 = icmp st i32 %4, %6 i SymlLessThan SymLessThan
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How to achieve this- Cont
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Hybrid Fuzzing

Concolic Execution
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Evaluation

 Speed.
« 1.3-1.7x faster than SymCC (SotA concolic executor)
« 1000x faster than Avatar2 (Classic hardware-in-the-loop)

e Cover more code within 24 hours.
« 1.2x more than Symcc
. 2x more than Avatar?2

« Qverhead:

 27% FLASH overhead
* 2.9% RAM overhead. (different modes)
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Evaluation: bug detection

« Compare SHACO with P2IM/Fuzzware
« 1000x speed up in detecting all known bugs.
« Eliminates hundreds of false positives per firmware.
* Found 3 new bugs.

Ref # Firmware 0S MCU SHACO SHiFT P2IM/DICE Fuzzware
Time(s) UC TP FP |Time(s) SUF UC TP FP |Time(s) SUF UC TP FP |Time(s) SUF UC TP FP

P2IM [24] 1 PLC F h743 38 8 4 0 165 43x 8 4 0 3873 1019x 183 4 2 73980 1946x 30 4 2
DICE [42] 2 M. ?a’.bus F h743 20 4 3 0 38 19x 4 3 0 20881 1494x 71 3 2 I n/a 25 0 1
3 Midi F h743 126 20 2 0 129 1.02x 20 2 O 25413 201x 4 2 0 I n/a 104 0 2

SHIFT [43] 4 Synthetic F h743 26 20 11 0 340 13.1x 23 11 O I n/a 8 3 1 I n/a 48 0 10
5 Shelly Dimmer F  h743 40 6 3 0 262 6.5x 7 3 0 NB n/a 0 0o 0 I n/a 1496 0 1
6 CANopen F 14r5 164 7 3 0 525 32x 8 3 0 NB n/a 0 0 0 I n/a 0 0 0
SHACO 7 Stepper F 14r5 187 7 2 0 691 3.7x 7 2 0 NB n/a 0 0o 0 I n/a 2355 1 3
8 Bldc C f429 376 4 2 0 2068 5.5x 4 2 0 NB n/a 0 0 O NB n/a 0 0 O
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A& lcm@lcm-lab-ubuntu: ~

time:16.69 / 86400

symcc generated 18 inputs, ® new edge found

iter:1,cur at 21 from 1 to 123,
time:17.24 / 86480
symcc generated 53 inputs,

need 143351 inputs to finish
® new edge found

*CTraceback (most recent call last):
File "/home/lcm/github/spear/spear—code/code_coverage/generate_inputs_symcc.py"”,
ule>
main()
File "/home/lem/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 131,
num_generated_inputs, num_run_inputs, total_time, coverage = runSymcc(benchmark)
File "/home/lcm/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 72,
mcc

line 135, in <mod

in main
in runSy

pl.wait()

File "/usr/lib/python3.10/subprocess.py"”, line 1289, in wait
return self._wait(timeout=timeout)

File "/usr/lib/python3.18/subprocess.py", line 1959, in _
(pid, sts) = self._try wait(®)

File "/usr/lib/python3.18/subprocess.py", line 1917, in
(pid, sts) = os.waitpid(self.pid, wait_flags)

KeyboardInterrupt

wait

_try_wait

lem@lem—Llab-ubuntu 1 X r ~oV $
iter:®,cur at @ From <] to 1 need 73813 inputs to finish
time:1.52 / 86400

symcc generated 122 inputs,

python generate_inputs_symcc.py

iter:1,cur at 1 from 1 to 123,
time:2.79 / 86UB0
symcc generated 119 inputs,

need 805U4 inputs to finish

*CTraceback (most recent call last):
File "/home/lem/github/spear/spear—code/code_coverage/generate_inputs_symcc.py", line 135, in <mod
ule>
main()
File "/home/lem/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 131,
num_generated_inputs, num_run_inputs, total_time, coverage = runSymcc(benchmark)
File "/home/lcm/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 72,
mcc

in main
in runSy

pl.wait()

File "/usr/lib/python3.18/subprocess.py", line 1209, in wait
return self._wait(timeout=timeout)

File "/usr/lib/python3.10/subprocess.py",
(pid, sts) = self._try_wait(e)

File "/usr/lib/python3.18/subprocess.py", line 1917,
(pid, sts) = os.waitpid(self.pid, wait_flags)

KeyboardInterrupt

line 1959, in _wait

in _try_wait

lem@lem—Llab—ubuntu:

In [1]: e
Out[1]: b

In [2]:

exit(l]
Lxmuh:m—ljd— ibuntu

$ python co3_firmware.py —p /dev/ttyACM1 -b 7580000

Traceback (most recent call last):

File "/home/lem/github/spear/C03/utils/co3_firmware.py", line 153,

main()

File "/home/lcm/github/spear/C03/utils/co3_firmware.py", line 158,

in <module=>

in main

runC03(args)
File "/home/lem/github/spear/C03/utils/co3_firmware.py", line 107, in runCO3

print("iter:{},cur at {} from {} to {},
batch_input_id_start , batch_input_id_end,

edge size:{}, need {} inputs to finish".format(it, cur_input_id,
estimate_inputs_needed(cur_input_id + 1, total_time, time_budget

IndexError: Replacement index 5 out of range for positional args tuple

lem@lem—Llab—ubuntu:

iter:0,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1l,cur at

building time:

co3 generated

Ls$ python co3_firmware.py —-p /dev/ttyACM1 -b 7500000
® from @ to 1, need 7238 inputs to finish

0.26, transmit 106.45 KB costs:©.19, total time:©.26 / 1uue

119 inputs, @ new edge found

1 from 1 to 120, need 81Ul inputs to finish
0.46, transmit 134.09 KB costs:0.29, total time:
119 inputs, @ new edge found

0.u6 /

2 from 1 to 120, need 7857 inputs to finish
0.71, transmit 164.19 KB costs:0.38, total time:
135 inputs, @ new edge found

3 from 1 to 120, need 9139 inputs to finish
0.82, transmit 174.29 KB costs:0.45, total time:
84 inputs, © new edge found

4 from 1 to 120, need 10783 inputs to finish
0.85, transmit 176.54 KB costs:0.58, total time:
34 inputs, © new edge found

ACTraceback (most recent call last):

File "/home/lem/github/spear/C03/utils/co3_firmware.py",

main()

line 153, in <module>

File "/home/lcm/github/spear/C03/utils/co3_firmware.py", line 158, in main
runC03(args)

File "/home/lecm/github/spear/C03/utils/co3_firmware.py",
pl.wait(timeout)

File "/usr/lib/python3.10/subprocess.py",
return self._wait(timeout=timeout)

File "/usr/lib/python3.18/subprocess.py", line 1953,
time.sleep(delay)

KeyboardInterrupt

line 79, in runC03
line 1289, in wait
in _wait

lab-ubunt
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Thank you!
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« Code available: www.qgithub.com/Lawliar/co3 N o

« MCU is needed to experiment with the firmware.
« Workstation program (e.g., CGC) supported.

 Contact:
¢ @Lawliar Y

e charley.ashbringer @gmail.com


http://www.github.com/Lawliar/co3
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