Northeastern University

Khoury College of Computer Sciences

ARTIFACT
EVALUATED | EVALUATED

susenix rusenix
é.’ ASSOCIATION éf ASSOCIATION

AVAILABLE FUNCTIONAL

ARTIFACT

CO3: Concolic Co-execution for Firmware

Changming Liu*, Alejandro Mera*, Engin Kirda*, Meng Xu”, Long Lu*

*Northeastern University, University of Waterloo

Northeastern University

Khoury College of Computer Sciences

Embedded Systems and firmware

* Microcontrollers (MCUSs):
« Highly efficient and optimized (firmware and hardware).
* Resourced-constrained.
« Widely-deployed.
« Single

HOME CONTROL

Northeastern University

Khoury College of Computer Sciences

Dire security situation.

120

WORLD
.
S

100

CYBERSECURITY

How the Internet of Things (loT) became a
dark web target —and what to do aboutit

May 17, 2024 5 00

IoT Malware Attacks Jump 400% Since 2022, Report

Manufacturing was the primary target for malware attacks over the past year, though all industries adopting connected
devices are at risk

32.7

34.3

2018

2019

60.14
56.95 J
2020 2021

112.29

2022

Northeastern University

Khoury College of Computer Sciences

Problems with securing the firmware on the MCUs

0x6000,0000

0x4000,0000

Various, usually smaller than FLASH
0x2000,0000

Various, 1-2 MB Max

0x0000,0000

1. Resource constrained.

2. Highly heterogenous physical environment.
1. Alot of peripherals (types, vendors),
2. Function like a black-box.

Y
[1] Fasano, Andrew, et al. "Sok: Enabling security analyses of embedded systems via rehosting.” Proceedings of the 2021 ACM Asia conference on computer and communications security. 2021.

niversity

Khoury College of Computer Sciences

Problems with securing the firmware on the MCUs- Cont

* For the past decade, almost all works rehost the firmware.
« Hardware-in-the-loop:

« Expensive (7 hardware access per second).

« Hard to support all hardware (e.g., DMA).

 CPU halting (breaks real-time operation).

« GDB interface (high in price)
* Emulation: modeled hardware is bad.

Hardware-in-the-loop Emulation-based

4 pc) ([

Concolic
Executor

Firmware
CPU/RAM Emulator

pC)

Concolic
Executor

Firmware
Modeled — yumre
__Hardware J

Concolic
Executor

Firmware
Hardware [abided

GDB
Hardware Events

— Firmware
Hardware |Raades

Northeastern Uni it

: er versity
Khoury College of Computer Sciences

Objectives

« High-quality peripheral access.

« Performant concolic execution.
Universally applicable.

Support All peripherals and hardware.

Concolic

Executor
__ 1 J

1. Simpler Communication.
 No hardware events.

2. No emulator. |
3. only need Serial Port (i.e., USART/USB-CDC) Hardware DeV'Cel

* No GDB.
 No CPU Halting.
4. Real hardware and peripherals.

ReportlSerial Port

Northeastern University

Khoury College of Computer Sciences

How to achieve this?

Compile-time analysis + instrumentation.

~ _ B — ™
@modbusProcess(i32 %0} ! B | N -y
%1 = SymPara(1) | ReadSymMem(0x24007ab0, 4) ReadSymMem(_, 4)
%2 = load i32, 132" @var i
: SymPara 1

%3 = ReadSymMem(@var, 4) SymPara 1
%4 = add i32 %0, %2 |:::>

%9 = SymLessThan(%?5,%7)

bri1 %8, label %10, label %11 |[SymSolveConstraint(_, true) Eymsnluecm,)

SymSolveConstraint(%:9, %8)

Instrumented Target Program Symbolic Handler
i MCL A \. Workstation J

s e BLLENW
%5 = SymAdd(%1, %3) . [SymAdd] [SymBuildint(0x40,)] SymAdd||SymBuildint(_, 4)
%6 = load 132, i32* MMIO | Serial

%7 = SymBuildInt(%:6, 4) ; V Port \/

%8 = icmp st i32 %4, %6 i SymlLessThan SymLessThan

Northeastern University

Khoury College of Computer Sciences

How to achieve this- Cont
4

: LLVM Instrumented
SUCNELEH Compilation & Binary (ARM

Source Analysis Cortex-M)

Offline Compilation

Online Testing
.
Executor
Graph
__ ' J

Serial PortI
Ve

~N

Instrumented
Binary ARM
Device
Hardware

Northeastern University

Khoury College of Computer Sciences

Hybrid Fuzzing

Concolic Execution

4l Instrumented A
Binary Cco3

| Serial |

Port

ARM
Hardware Device

Unfilled | Concolic
Executor
(symcc)

Input
Exchang

Serial

Port
—

Crash/

Code
x64 PC / Cov

SHACO

Fuzzing

4 'nstrumented)
Binary SHIFT

ARM
Hardware Device

Northeastern University

Khoury College of Computer Sciences

Evaluation

 Speed.
« 1.3-1.7x faster than SymCC (SotA concolic executor)
« 1000x faster than Avatar2 (Classic hardware-in-the-loop)

e Cover more code within 24 hours.
« 1.2x more than Symcc
. 2x more than Avatar?2

« Qverhead:

 27% FLASH overhead
* 2.9% RAM overhead. (different modes)

Northeastern University

Khoury College of Computer Sciences

Evaluation: bug detection

« Compare SHACO with P2IM/Fuzzware
« 1000x speed up in detecting all known bugs.
« Eliminates hundreds of false positives per firmware.
* Found 3 new bugs.

Ref # Firmware 0S MCU SHACO SHiFT P2IM/DICE Fuzzware
Time(s) UC TP FP |Time(s) SUF UC TP FP |Time(s) SUF UC TP FP |Time(s) SUF UC TP FP

P2IM [24] 1 PLC F h743 38 8 4 0 165 43x 8 4 0 3873 1019x 183 4 2 73980 1946x 30 4 2
DICE [42] 2 M. ?a’.bus F h743 20 4 3 0 38 19x 4 3 0 20881 1494x 71 3 2 I n/a 25 0 1
3 Midi F h743 126 20 2 0 129 1.02x 20 2 O 25413 201x 4 2 0 I n/a 104 0 2

SHIFT [43] 4 Synthetic F h743 26 20 11 0 340 13.1x 23 11 O I n/a 8 3 1 I n/a 48 0 10
5 Shelly Dimmer F h743 40 6 3 0 262 6.5x 7 3 0 NB n/a 0 0o 0 I n/a 1496 0 1
6 CANopen F 14r5 164 7 3 0 525 32x 8 3 0 NB n/a 0 0 0 I n/a 0 0 0
SHACO 7 Stepper F 14r5 187 7 2 0 691 3.7x 7 2 0 NB n/a 0 0o 0 I n/a 2355 1 3
8 Bldc C f429 376 4 2 0 2068 5.5x 4 2 0 NB n/a 0 0 O NB n/a 0 0 O

Northeastern University
Khoury College of Computer Sciences

A& lcm@lcm-lab-ubuntu: ~

time:16.69 / 86400

symcc generated 18 inputs, ® new edge found

iter:1,cur at 21 from 1 to 123,
time:17.24 / 86480
symcc generated 53 inputs,

need 143351 inputs to finish
® new edge found

*CTraceback (most recent call last):
File "/home/lcm/github/spear/spear—code/code_coverage/generate_inputs_symcc.py"”,
ule>
main()
File "/home/lem/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 131,
num_generated_inputs, num_run_inputs, total_time, coverage = runSymcc(benchmark)
File "/home/lcm/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 72,
mcc

line 135, in <mod

in main
in runSy

pl.wait()

File "/usr/lib/python3.10/subprocess.py"”, line 1289, in wait
return self._wait(timeout=timeout)

File "/usr/lib/python3.18/subprocess.py", line 1959, in _
(pid, sts) = self._try wait(®)

File "/usr/lib/python3.18/subprocess.py", line 1917, in
(pid, sts) = os.waitpid(self.pid, wait_flags)

KeyboardInterrupt

wait

_try_wait

lem@lem—Llab-ubuntu 1 X r ~oV $
iter:®,cur at @ From <] to 1 need 73813 inputs to finish
time:1.52 / 86400

symcc generated 122 inputs,

python generate_inputs_symcc.py

iter:1,cur at 1 from 1 to 123,
time:2.79 / 86UB0
symcc generated 119 inputs,

need 805U4 inputs to finish

*CTraceback (most recent call last):
File "/home/lem/github/spear/spear—code/code_coverage/generate_inputs_symcc.py", line 135, in <mod
ule>
main()
File "/home/lem/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 131,
num_generated_inputs, num_run_inputs, total_time, coverage = runSymcc(benchmark)
File "/home/lcm/github/spear/spear-code/code_coverage/generate_inputs_symcc.py", line 72,
mcc

in main
in runSy

pl.wait()

File "/usr/lib/python3.18/subprocess.py", line 1209, in wait
return self._wait(timeout=timeout)

File "/usr/lib/python3.10/subprocess.py",
(pid, sts) = self._try_wait(e)

File "/usr/lib/python3.18/subprocess.py", line 1917,
(pid, sts) = os.waitpid(self.pid, wait_flags)

KeyboardInterrupt

line 1959, in _wait

in _try_wait

lem@lem—Llab—ubuntu:

In [1]: e
Out[1]: b

In [2]:

exit(l]
Lxmuh:m—ljd— ibuntu

$ python co3_firmware.py —p /dev/ttyACM1 -b 7580000

Traceback (most recent call last):

File "/home/lem/github/spear/C03/utils/co3_firmware.py", line 153,

main()

File "/home/lcm/github/spear/C03/utils/co3_firmware.py", line 158,

in <module=>

in main

runC03(args)
File "/home/lem/github/spear/C03/utils/co3_firmware.py", line 107, in runCO3

print("iter:{},cur at {} from {} to {},
batch_input_id_start , batch_input_id_end,

edge size:{}, need {} inputs to finish".format(it, cur_input_id,
estimate_inputs_needed(cur_input_id + 1, total_time, time_budget

IndexError: Replacement index 5 out of range for positional args tuple

lem@lem—Llab—ubuntu:

iter:0,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1,cur at

building time:

co3 generated

iter:1l,cur at

building time:

co3 generated

Ls$ python co3_firmware.py —-p /dev/ttyACM1 -b 7500000
® from @ to 1, need 7238 inputs to finish

0.26, transmit 106.45 KB costs:©.19, total time:©.26 / 1uue

119 inputs, @ new edge found

1 from 1 to 120, need 81Ul inputs to finish
0.46, transmit 134.09 KB costs:0.29, total time:
119 inputs, @ new edge found

0.u6 /

2 from 1 to 120, need 7857 inputs to finish
0.71, transmit 164.19 KB costs:0.38, total time:
135 inputs, @ new edge found

3 from 1 to 120, need 9139 inputs to finish
0.82, transmit 174.29 KB costs:0.45, total time:
84 inputs, © new edge found

4 from 1 to 120, need 10783 inputs to finish
0.85, transmit 176.54 KB costs:0.58, total time:
34 inputs, © new edge found

ACTraceback (most recent call last):

File "/home/lem/github/spear/C03/utils/co3_firmware.py",

main()

line 153, in <module>

File "/home/lcm/github/spear/C03/utils/co3_firmware.py", line 158, in main
runC03(args)

File "/home/lecm/github/spear/C03/utils/co3_firmware.py",
pl.wait(timeout)

File "/usr/lib/python3.10/subprocess.py",
return self._wait(timeout=timeout)

File "/usr/lib/python3.18/subprocess.py", line 1953,
time.sleep(delay)

KeyboardInterrupt

line 79, in runC03
line 1289, in wait
in _wait

lab-ubunt

Northeastern University

Khoury College of Computer Sciences

Thank you!

EVALUATED | EVALUATED
é;usenlx rusenix

’ AAAAAAAAAAA ’ AAAAAAAAAAA

« Code available: www.qgithub.com/Lawliar/co3 N o

« MCU is needed to experiment with the firmware.
« Workstation program (e.g., CGC) supported.

 Contact:
¢ @Lawliar Y

e charley.ashbringer @gmail.com

http://www.github.com/Lawliar/co3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Problems with securing the firmware on the MCUs- Cont
	Slide 6: Objectives
	Slide 7: How to achieve this?
	Slide 8: How to achieve this- Cont
	Slide 9: Hybrid Fuzzing
	Slide 10: Evaluation
	Slide 11: Evaluation: bug detection
	Slide 12: Demo
	Slide 13: Thank you!

