
Detecting Kernel Memory Bugs through Inconsistent
Memory Management Intention Inferences

Dinghao Liu Zhipeng Lu Shouling Ji Kangjie Lu
Jianhai Chen Zhenguang Liu Dexin Liu Renyi Cai Qinming He

USENIX Security 2024

Background

Ø Kernel memory bugs

Memory object
allocation

Allocated
object

Released
object

Memory leak Double-free Use-after-free

dead free

free

dereference

Performance/security issues

Kernel Memory Bug Detection

• Data-flow analysis
• Keep tracking the lifecycle of a memory object.

• Function pairing
• The memory management function pairs are

intended to operate in concert.

• Similarity analysis
• Memory operations should be consistent within

similar paths.

- Path explosion for kernel analysis

- Both rely on CORRECT code snippets

Insight

• Memory bugs frequently manifest within error handling paths,
where programs attempt to release allocated memory resources.

• A multitude of memory bugs originate from a fundamental issue: the
unclarity in ownership and lifecycle management of memory objects
when premature release is necessitated.

There exists inconsistent intentions

regarding the management of memory objects.

Memory Management Strategies

Ø Callee-based management

• Functions who allocate heap

memories do the cleanup on failure

• The callers need not to take care of

the cleanup

• The most widely-used strategy of

memory management

Memory Management Strategies

Ø Caller-based management

• The caller functions do the cleanup

on failure of callees

• The error handling of callee

functions would be simple and clear

• This strategy is also popular

Inconsistent MM Intentions

Ø Impact analysis

• Memory corruption: the callee function adopts callee-based management,

while the caller function adopts caller-based management.

• Memory leak: the callee function adopts caller-based management, while

the caller function adopts callee-based management.

Ø Causes of inconsistent MM intentions

• Complex error handling logic.

• Imperfect code updating.

• Implicit OS MM mechanisms.

Challenges & Solutions

Ø Challenge 1: How to infer MM intentions?

• Using static program analysis to infer explicit MM intentions.

• Using large language model to better understating implicit MM intentions.

• Demand-driven memory operation summarization

• Object-based code slicing

Ø Challenge 2: How to balance precision and efficiency?

System Design

Overview

IMMI (Inconsistent Memory Management Intentions)

Memory Operation Summarization

Ø Target: Simplify the inter-procedural analysis

debug_close(struct inode *inode, struct file *file)

file_private_info_t *p_info;
p_info = (file_private_info_t *) file->private_data;
…
debug_info_free(p_info->debug_info_snap);
…
kfree(file->private_data);
…

debug_info_free(debug_info_t *db_info)

…
debug_areas_free(db_info);
kfree(db_info->active_pages);
kfree(db_info);
…

debug_areas_free(debug_info_t *db_info)

…
kfree(db_info->areas);
…

Kernel developers typically implement
memory management in a layered fashion

Memory Operation Summarization

Ø Techniques: Demand-driven summarization

debug_close(struct inode *inode, struct file *file)

file_private_info_t *p_info;
p_info = (file_private_info_t *) file->private_data;
…
debug_info_free(p_info->debug_info_snap);
…
kfree(file->private_data);
…

debug_info_free(debug_info_t *db_info)

…
kfree(db_info->active_pages);
kfree(db_info);
…

First generate function level summaries

Find callers

(Release-kfree, 0), db_info->active_pages;
(Release-kfree, 0), db_info;

F: debug_info_free, Arg:db_info, LO:

F: debug_close, Arg:file, LO:

(Release-debug_info_free, 0),
file->private_data->debug_info_snap;
(Release-kfree, 0), file->private_data;

Memory Operation Summarization

Ø Techniques: Demand-driven summarization

Reconstruct complete summaries on-demand

(Release-kfree, 0), db_info->active_pages;
(Release-kfree, 0), db_info;

F: debug_info_free, Arg:db_info, LO:

F: debug_close, Arg:file, LO:

(Release-debug_info_free, 0),
file->private_data->debug_info_snap;
(Release-kfree, 0), file->private_data;

Find a customized release API, check its summary

F: debug_close, Arg:file, LO:

(Release-debug_info_free, 0),
file->private_data->debug_info_snap-
>active_pages;
(Release-debug_info_free, 0),
file->private_data->debug_info_snap;
(Release-kfree, 0), file->private_data;

Object-based Code Slicing

• Identifying error handling paths

- Combining the forward and backward data-flow analysis.

• Extracting memory object

- Extract memory object through official memory allocation APIs.

• Code slicing

- Tracking the usages of the memory object.

- Finding the instruction that permits access to the object for other functions

- Eliminating paths that are not reachable by this instruction.

- Eliminating paths that reset the memory object after its release.

Ø Target: Confine the analysis scope and enhance efficiency

Overview

IMMI (Inconsistent Memory Management Intentions)

MM Intention Inference

• Callee-based management

- All error paths within the code slices ensure the release of the memory objects.

• Caller-based management

- None of the error paths within the code slices release the memory object.

• Undetermined management

- Some error paths release the memory object, while others do not.

Ø Callee MM intention inference

Upon a memory object is allocated, IMMI analyzes the host function:

MM Intention Inference

• Callee-based management

- All error paths within the code slices ensure the release of the memory objects.

• Caller-based management

- None of the error paths within the code slices release the memory object.

• Undetermined management

- Some error paths release the memory object, while others do not.

Ø Callee MM intention inference

Intro-inconsistency, stop further analysis

Upon a memory object is allocated, IMMI analyzes the host function:

MM Intention Inference

• Caller-based management

- The memory object is released on failure of the callee.

• Callee-based management

- The memory object is not released upon failure of the callee,

but is released in the subsequent error paths.

• Undetermined management

- No release operation is detected, track the transfer to further callers.

Ø Caller MM intention inference

When the memory object is propagated to caller functions, IMMI analyzes the callers:

MM Intention Inference

Ø Large language model integration

Target 1: Improving the understanding of implicit MM mechanisms.

Target 2: Improving the understanding of code comments.

Prompt message
- You re now a program static analysis expert. Your following analysis is based on the following
function: [code given by IMMI]

- We define "error path" in a function as follows: A sequence of basic blocks that finally returns a
non- zero number or null pointer. Note that if a call returns error but the path finally does not
return a negative number or null pointer, this path is not an error path.

- A heap memory``[object given by IMMI]“ is allocated through ”[instruction given by
IMMI]“ Please identify all of the LATER error paths after the allocation. Then, please analyze
whether all of these paths have freed the heap memory. Pay attention to the implicit kernel
memory release operations. Your final conclusion should be a separate line like: [Conclusion:
Answer], "Answer" should only be "yes" or "no".

Case Study

A Memory Leak Bug Found by IMMI

Function ql_alloc_buffer_queues
employs caller-based management
for qdev->lrg_buf.

When ql_alloc_buffer_queues
fails, qdev->lrg_buf is not freed.

When the following calls fail,
qdev->lrg_buf is freed through
ql_free_buffer_queues.

IMMI determines that this
function employs callee-based
management.

Evaluation

Evaluation Settings

Environment
• Use a Linux server with 126 GB RAM and an Intel Xeon Silver 4316 CPU

• Use Clang-15 to implement IMMI

Target
• The Linux kernel of v5.18

LLM settings
• Model: GPT-4 (gpt-4-1106-preview)

• Query each prompt 4 times, at least 3 responses should maintain consistent

• Let LLM present intermediate results, subsequently synthesizing them into a

definitive outcome

• Act as a post-filter for static analyzer

Evaluation - IMMI

Bug findings

80 new bugs: 57 memleak bugs, 16 double-free bugs, 6 UAF bugs, 1 null-

pointer-dereference bug

Performance

Evaluation - IMMI

IMMI effectively balances performance, precision, and the ability to uncover bugs.

Comparison with existing tools

Evaluation - LLM

Performance of LLM (GPT-4)
• Total bug reports: 158 -> 123

• Among the eliminated 35 reports, 32 are valid (false positives of IMMI)

• Overall false discovery rate of IMMI: 47.5% -> 35.0%

Comparison with different LLMs

Evaluation - LLM

Effectiveness of LLM (GPT-4)

·`device_add(dev)` is called, and if it fails,
`put_device(dev)` is called, which will decrement the
reference count and should trigger the release of the
device and its associated memory if the count
reaches zero.

·`devm_add_action_or_reset` is called to add a cleanup
action (`unregister_dax_mapping`) to the device-
managed resource list of `dax_region->dev`. If this fails,
the function returns the error code, and the device-
managed resource list will take care of cleaning up the
resources.

ØReference counting analysis

Ø Indirect release call analysis

Evaluation - LLM

False negative of LLM (GPT-4)

· The function `qedf_free_global_queues` is
not defined in the provided code snippet, but
based on the naming convention and typical
practices in C, we can infer that this function
is responsible for freeing the resources
allocated for the global queues. Since all
error paths after the allocation of `qedf-
>global_queues` lead to this function call, we
can conclude that the function is designed to
free the allocated heap memory.

qedf_free_global_queues() does not

actually release qedf->global_queues

Conclusion

29

Ø Inconsistent memory management intentions could lead to many
kernel memory bugs like memleaks and memory corruptions.

Ø We evaluated IMMI on the Linux kernel

• Demand-driven summarization.

• Object-based code slicing.

• Combining program analysis and LLM in MM intention inference.

Ø We presented IMMI to detect kernel memory bugs.

• Find 80 new memory bugs.

• IMMI could effectively detect bugs that missed by existing tools

Dinghao Liu: dinghao.liu@zju.edu.cn

Zhipeng Lu: alexious@zju.edu.cn

